Decision Trees

Machine Learning - 10601

Geoff Gordon, Miroslav Dudík

[partly based on slides of Carlos Guestrin and Andrew Moore]

http://www.cs.cmu.edu/~ggordon/10601/ October 21, 2009

Non-linear Classifiers

Dealing with non-linear decision boundary

- 1. add "non-linear" features to a linear model (e.g., logistic regression)
- 2. use non-linear learners (nearest neighbors, decision trees, artificial neural nets, ...)

k-Nearest Neighbor Classifier

- simple, often a good baseline
- can approximate arbitrary boundary: non-parametric
- downside: stores all the data

A Decision Tree for *PlayTennis*

Each internal node: test one feature X_i

Each branch from a node: select one value for X_i

Each leaf node node: predict Y

or $P(Y \mid X \in leaf)$

Decision trees

How would you represent

$$Y = A \vee B$$
 (A or B)

Decision trees

How would you represent

```
Y = (A \wedge B) \vee (\neg A \wedge C) ((A and B) or (not A and C))
```

Optimal Learning of Decision Trees is Hard

- learning the smallest (simplest) decision tree is NP-complete (existing algorithms exponential)
- use "greedy" heuristics:
 - start with an empty tree
 - choose the next best attribute (feature)
 - recurse

A small dataset: predict miles per gallon (mpg)

40 Records

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

From the UCI repository (thanks to Ross Quinlan)

A Decision Stump

Recursion Step

Recursion Step

Second Level of Tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia (Similar recursion in the other cases)

Which attribute is the best?

A good split:

increases certainty about classification after split

X ₁	X ₂	Υ
Т	T	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Entropy H(Y) of a random variable Y:

$$H(Y) = -\sum_{i=1}^{m} P(Y=y_i) \log_2 P(Y=y_i)$$

H(Y) is the expected number of bits needed to encode a randomly drawn value of Y

Entropy H(Y) of a random variable Y:

$$H(Y) = -\sum_{i=1}^{m} P(Y=y_i) \log_2 P(Y=y_i)$$

H(Y) is the expected number of bits needed to encode a randomly drawn value of Y

Why?

Entropy H(Y) of a random variable Y:

$$H(Y) = -\sum_{i=1}^{m} P(Y=y_i) \log_2 P(Y=y_i)$$

H(Y) is the expected number of bits needed to encode a randomly drawn value of Y

Why?

Information Theory: most efficient code assigns
- log₂ P(Y=y_i) bits to message Y=y_i

Y binary

$$P(Y=t) = \theta$$

$$P(Y=f)=1-\theta$$

$$H(Y) = \theta \log_2 \theta + (1 - \theta) \log_2 (1 - \theta)$$

Information Gain

= reduction in uncertainty

Entropy of Y before split: H(Y)

Entropy of Y after split:

(weighted by probability of each branch)
$$H(Y|X) = -\sum_{j=1}^{K} P(X=x_j) \sum_{i=1}^{m} P(Y=y_i|X=x_j) \log_2 P(Y=y_i|X=x_j)$$

Learning decision trees

- start with an empty tree
- choose the next best attribute (feature)
 - for example, one that maximizes information gain
- split
- recurse

Suppose we want to predict MPG.

Look at all the information gains...

A Decision Stump

Base cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Base cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Base cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

• Is this a good idea?

The problem with Base Case 3

а	b	У	
О	О	0	
О	1	1	
1	0	1	
1	1	0	

$$y = a XOR b$$

The information gains:

The resulting decision tree:

If we omit Base Case 3:

а	b	У	
О	О	0	
О	1	1	
1	0	1	
1	1	0	

$$y = a XOR b$$

The resulting decision tree:

Basic Decision-Tree Building Summarized:

BuildTree(*DataSet,Output*)

- If all output values are the same in *DataSet*, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create and return a non-leaf node with n_x children.
 - The ith child should be built by calling

BuildTree(DS, Output)

Where DS_i built consists of all those records in DataSet for which X = th distinct value of X.

Decision trees overfit!

Standard decision trees:

- training error always zero (if no label noise)
- lots of variance

Avoiding overfitting

- fixed depth
- fixed number of leaves
- stop when splits not statistically significant

Avoiding overfitting

- fixed depth
- fixed number of leaves
- stop when splits not statistically significant

OR:

grow the full tree,
 then prune
 (collapse some subtrees)

Reduced Error Pruning

Split available data into training and pruning sets

- 1. Learn tree that classifies training set perfectly
- 2. Do until further pruning is harmful over pruning set
 - consider pruning each node
 - collapse the node that best improves pruning set accuracy

This produces smallest version of most accurate tree (over the pruning set)

Impact of Pruning

A Generic Tree-Learning Algorithm

Need to specify:

- an objective to select splits
- a criterion for pruning (or stopping)
- parameters for pruning/stopping (usually determined by cross-validation)

What should we do if some of the inputs are real-valued?

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

What should we do if some of the inputs are real-valued?

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	1:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Idea One: Branch on each possible real value

"One branch for each numeric value" idea:

Hopeless: with such high branching factor, we will shatter the dataset and overfit

A better idea: thresholded splits

- Binary tree, split on attribute X:
 - one branch: X < t</p>
 - other branch: X ≥ t
- Search through all possible values of t
 - seems hard, but only finite set relevant
 - sort values of X: $\{x_1,...,x_m\}$
 - consider splits at $t = (x_i + x_{i+1})/2$
- Information gain for each split
 as if a binary variable: "true" for X < t
 "false" for X ≥ t

Example with MPG

Example tree using reals

What you should know about decision trees

- among most popular data mining tools:
 - easy to understand
 - easy to implement
 - easy to use
 - computationally fast (but only a greedy heuristic!)
- not only classification, also regression, density estimation
- meaning of information gain
- decision trees overfit!
 - many pruning/stopping strategies

Acknowledgements

Some material in this presentation is courtesy of **Andrew Moore**, from his collection of ML tutorials: http://www.autonlab.org/tutorials/

LEARNING THEORY

Computational Learning Theory

What general laws constrain "learning"?

- how many examples needed to learn a target concept to a given precision?
- what is the impact of:
 - complexity of the target concept?
 - complexity of our hypothesis space?
 - manner in which examples presented?
 - random samples—what we mostly consider in this course
 - learner can make queries
 - examples come from an "adversary"
 (worst-case analysis, no statistical assumptions)