Review

® Models that use SVD or eigen-analysis

» PageRank: eigen-analysis of random
dolphin surfer transition matrix

friendships » usually uses only first eigenvector

» Spectral embedding: eigen-analysis (or
equivalently SVD) of random surfer model
in symmetric graph

» usually uses 2nd—Kth EVs (small K)
o » first EV is boring

» Spectral clustering = spectral embedding
followed by clustering



Review: PCA

® The good: simple, successful

® The bad: linear, Gaussian
» E(X) = UVT
» X, U,V ~ Gaussian
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® The ugly: failure to generalize to new entities

» Partial answer: hierarchical PCA




VVhat about the second
rating for a new user?

® MLE/MAP of U;. from one rating: curi-
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® Note: often have only a few ratings per user
S‘b S&J\ - ¢ aanl— ’\Jﬂ.’*c. 127 qmw{a\ﬂl—a >"@h_g_

AO Ma"\'\d\ \-4 o

Lo e



MCMC for PCA ©
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® Can do Bayesian inference by Gibbs
sampling—for simplicity, assume Os known



Recognizing a Gaussian

® Suppose X ~ N(X | Y, 0?)
T
o L=—logP(X=x | 1,02 = by fie + - (x-1)
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» dldx = =, (- )
» d2L/dx?= /2

® So:if we see d’L/dx? = a, dL/dx = a(x — b)

» U= L 02= %
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Gibbs: element of @ .
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® Above, b

® Better:b

In reality
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ks are single elements of U orV

ks are entire rows of U orV

» take gradient, Hessian to get mean, covariance

» formulas look a lot like linear regression
(normal equations)

® And, want to fit oY, oY too

» sample |/0? from a Gamma (or 2! from a
Wishart) distribution



Nonlinearity:
conjunctive features




Disjunctive features




Non-Gaussian

® X U, andV could each be non-Gaussian

» e.g., binary!
» rents(U, M), comedy(M), female(U)

® For X:predicting —0.1 instead of O is only as
bad as predicting +0.| instead of 0

® For U,V: might infer —17% comedy or 32%
female
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Logistic PCA :
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® Regular PCA: X ~ N(U; -V, 0'2) v
® Logistic PCA: p (v~ v \uv) =g (u o)

® Might expect learning, inference to be hard

» but, MH works well, using dL/d0, d?L/d0?

® Generalization: exponential family PCA

» w/ optional hierarchy, Bayesianism
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Application: fMRI

stimulus: “dog”

stimulus:‘“cat”

stimulus: “hammer’”’

Brain activity
fMRI

Voxels

Stimulus
<

credit: Ajit Singh
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2-matrix model
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co- occurrences fMRI voxels
(logistic PCA) é g (linear PCA)



CME =
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Results (logistic PCA)
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Augmenting fMRI data with

word co-occurrence

Just using fMRI data
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