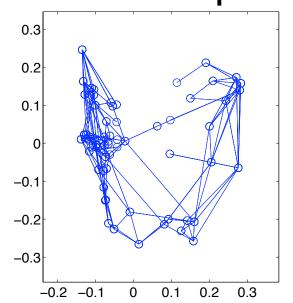
Review

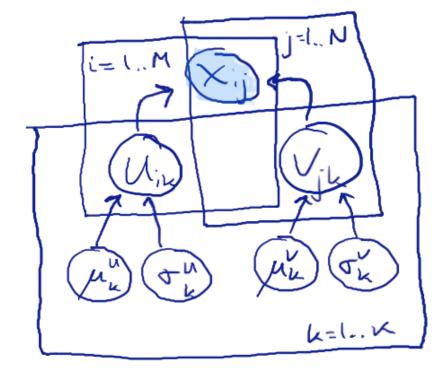
- Models that use SVD or eigen-analysis
 - PageRank: eigen-analysis of random surfer transition matrix
 - usually uses only first eigenvector
 - Spectral embedding: eigen-analysis (or equivalently SVD) of random surfer model in symmetric graph
 - usually uses 2nd–Kth EVs (small K)
 - first EV is boring
 - Spectral clustering = spectral embedding followed by clustering

dolphin friendships



Review: PCA

- The good: simple, successful
- The bad: linear, Gaussian
 - \rightarrow E(X) = UV^T
 - ▶ X, U, V ~ Gaussian

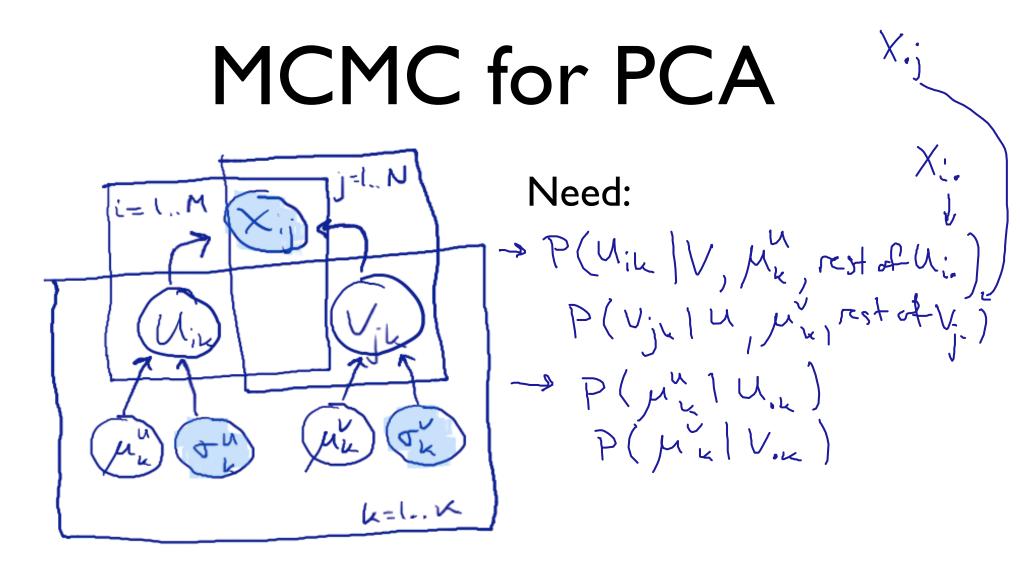


- The ugly: failure to generalize to new entities
 - Partial answer: hierarchical PCA

What about the second rating for a new user?

- MLE/MAP of U_i from one rating: overfit
 - ▶ knowing µU: helps but doesn't fix
 - result: confidently wrong
- How should we fix? The Bayesian
- Note: often have only a few ratings per user

So, significant posterior uncertainty => Bayes is
important
no metter how
much data we



 Can do Bayesian inference by Gibbs sampling—for simplicity, assume σs known

Recognizing a Gaussian

- Suppose $X \sim N(X \mid \mu, \sigma^2)$
- L = $-\log P(X=x \mid \mu, \sigma^2) = \log \sqrt{2\pi} \sigma + \frac{1}{2\sigma^2} (x-\mu)^2$
 - $dL/dx = \frac{1}{5^2} (x y)$
 - $d^2L/dx^2 = \frac{1}{\sqrt{3}}$
- So: if we see $d^2L/dx^2 = a$, dL/dx = a(x b)

$$\mu = \frac{1}{2}$$

$$\sigma^2 = \frac{1}{2}$$

Gibbs step for an Eij - Xij - Zi Wik Yik element of Wik • $L = const. + \frac{2(x_i - \frac{2u_{ik}v_{jk})}{2\sigma^2}$ 1 \(\langle \ du; = \(\Sigma\) \(\si Post. var. (of Uil) = 1/p2 post. Mean I The Eight Due Mx

Gibbs: element of White

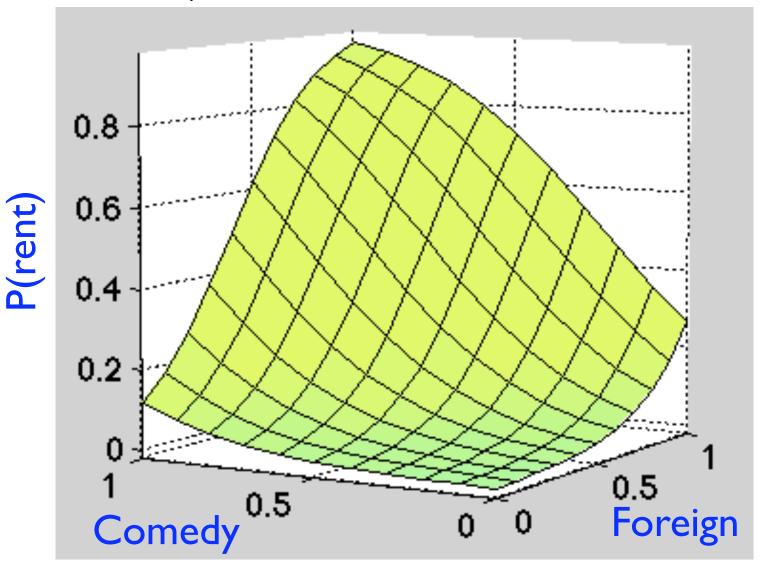
•
$$\frac{dL^2h}{dU_{ik}}^2$$
 = $\frac{2}{M}$ post. mean = $\frac{2}{M}$

post. var. =
$$\frac{\nabla u}{M}$$

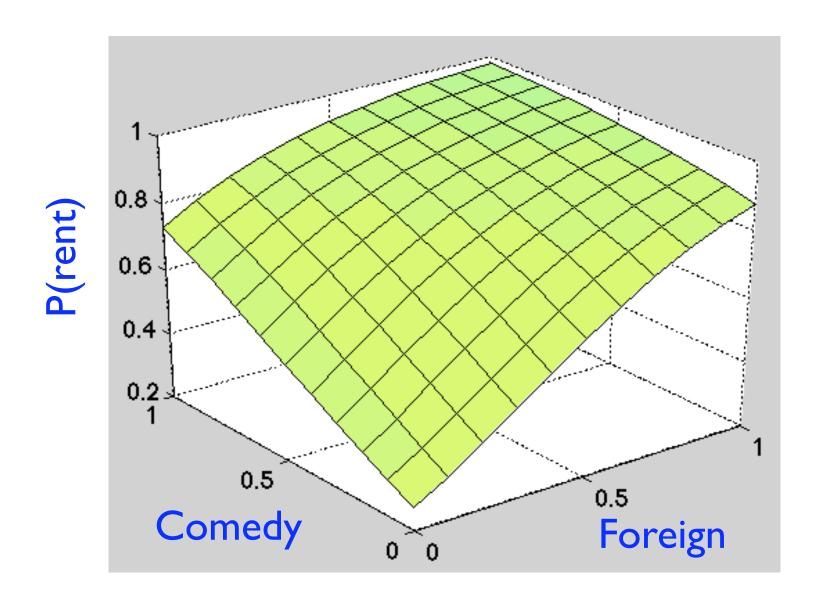
In reality

- Above, blocks are single elements of U or V
- Better: blocks are entire rows of U or V
 - take gradient, Hessian to get mean, covariance
 - formulas look a lot like linear regression (normal equations)
- And, want to fit σ^{U} , σ^{V} too
 - sample $1/\sigma^2$ from a **Gamma** (or Σ^{-1} from a **Wishart**) distribution

Nonlinearity: conjunctive features



Disjunctive features



Non-Gaussian

- X, U, and V could each be non-Gaussian
 - e.g., binary!
 - rents(U, M), comedy(M), female(U)
- For X: predicting -0.1 instead of 0 is only as bad as predicting +0.1 instead of 0
- For U,V: might infer –17% comedy or 32% female

- ν; = ν; = ξ±ς του -2ν j = νj = ξ±ς του
- Regular PCA: $X_{ij} \sim N(U_i \cdot V_j, \sigma^2)^{V_j} \sim \sqrt{1 \sqrt{1 1}}$
- Logistic PCA: P(xij = 1 (u,v) = 0 (ui vj)

- Might expect learning, inference to be hard
 - but, MH works well, using dL/d θ , d²L/d θ ²
- Generalization: exponential family PCA
 - w/ optional hierarchy, Bayesianism

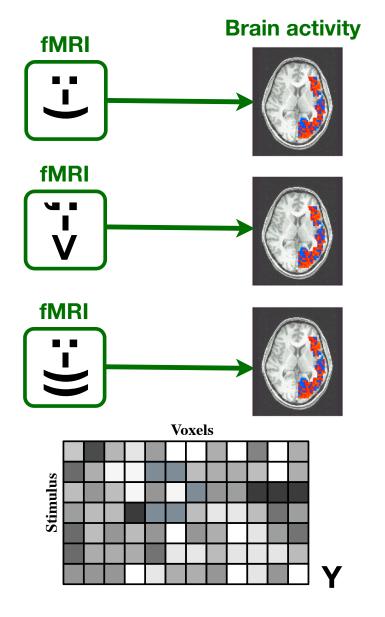
credit:Ajit Singh

Application: fMRI

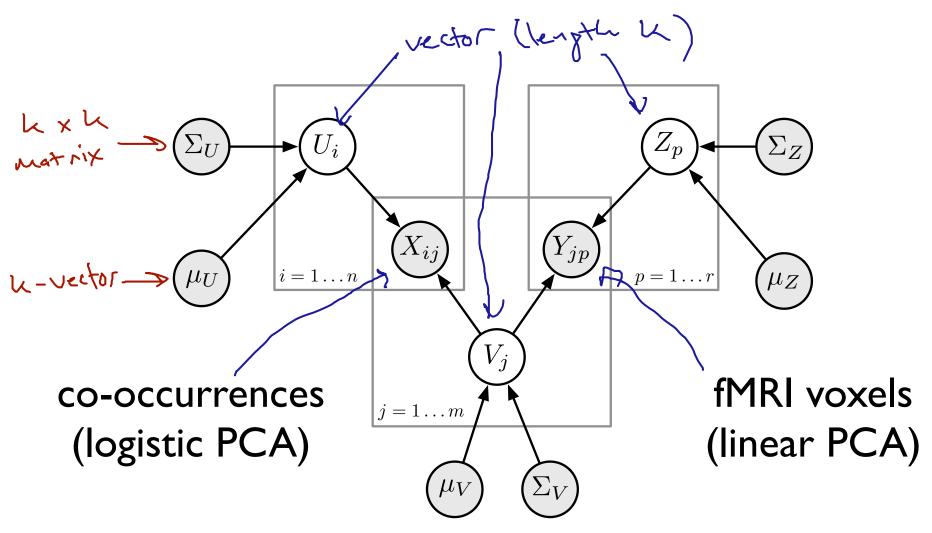
stimulus: "dog"

stimulus:"cat"

stimulus: "hammer"



2-matrix model



Results (logistic PCA)

Y (fMRI data): Fold-in

