Review

- Models that use SVD or eigen-analysis
 - PageRank: eigen-analysis of random surfer transition matrix
 - usually uses only first eigenvector
 - Spectral embedding: eigen-analysis (or equivalently SVD) of random surfer model in symmetric graph
 - usually uses 2nd–Kth EVs (small K)
 - first EV is boring
 - Spectral clustering = spectral embedding followed by clustering

dolphin friendships

Review: PCA

- The good: simple, successful
- The bad: linear, Gaussian
 - ightharpoonup $E(X) = UV^T$
 - ▶ X, U, V ~ Gaussian

- The ugly: failure to generalize to new entities
 - Partial answer: hierarchical PCA

What about the second rating for a new user?

- MLE/MAP of U_i. from one rating:
 - knowing μ^{U} :
 - result:
- How should we fix?
- Note: often have only a few ratings per user

MCMC for PCA

Need:

 Can do Bayesian inference by Gibbs sampling—for simplicity, assume σs known

Recognizing a Gaussian

- Suppose $X \sim N(X \mid \mu, \sigma^2)$
- L = $-\log P(X=x \mid \mu, \sigma^2) =$

- \rightarrow dL/dx =
- \rightarrow d²L/dx² =
- So: if we see $d^2L/dx^2 = a$, dL/dx = a(x b)

$$\mu = \sigma^2 =$$

Gibbs step for an element of μ^U

Gibbs: element of U

• $dL / dU_{ik} =$

- $dL^2 / (dU_{ik})^2 =$
 - post. mean =

post. var. =

In reality

- Above, blocks are single elements of U or V
- Better: blocks are entire rows of U or V
 - take gradient, Hessian to get mean, covariance
 - formulas look a lot like linear regression (normal equations)
- And, want to fit σ^U , σ^V too
 - sample $1/\sigma^2$ from a **Gamma** (or Σ^{-1} from a **Wishart**) distribution

Nonlinearity: conjunctive features

Disjunctive features

Non-Gaussian

- X, U, and V could each be non-Gaussian
 - e.g., binary!
 - rents(U, M), comedy(M), female(U)
- For X: predicting -0.1 instead of 0 is only as bad as predicting +0.1 instead of 0
- For U,V: might infer –17% comedy or 32% female

Logistic PCA

- Regular PCA: $X_{ij} \sim N(U_i \cdot V_j, \sigma^2)$
- Logistic PCA:

- Might expect learning, inference to be hard
 - but, MH works well, using dL/d θ , d²L/d θ ²
- Generalization: exponential family PCA
 - w/ optional hierarchy, Bayesianism

credit: Ajit Singh

Application: fMRI

stimulus: "dog"

stimulus:"cat"

stimulus: "hammer"

2-matrix model

credit: Ajit Singh

Results (logistic PCA)

Y (fMRI data): Fold-in

