Review

- Gibbs sampling
 - MH with proposal
 - failure mode: "lock-down"
- Relational learning (properties of sets of entities)
 - document clustering, recommender systems, eigenfaces

Review

- Latent-variable models
- PCA, pPCA, Bayesian PCA
 - everything Gaussian
 - $E(X \mid U,V) = UV^{T}$
 - MLE: use SVD
- Mean subtraction, example weights

PageRank

- SVD is pretty useful: turns out to be main computational step in other models too
- A famous one: PageRank
 - Given: web graph (V, E)
 - Predict: which pages are important

PageRank: adjacency matrix

Random surfer model

- W. p. α:
- W. p. $(1-\alpha)$:

Intuition: page is important if a random surfer is likely to land there

Stationary distribution

Thought experiment

- What if A is symmetric?
 - note: we're going to stop distinguishing A, A'

- So, stationary dist'n for symmetric A is:
- What do people do instead?

Spectral embedding

- Another famous model: spectral embedding (and its cousin, spectral clustering)
- Embedding: assign low-D coordinates to vertices (e.g., web pages) so that similar nodes in graph ⇒ nearby coordinates
 - A, B similar = random surfer tends to reach the same places when starting from A or B

Where does random surfer reach?

- Given graph:
- Start from distribution π
 - after I step: $P(k \mid \pi, I-step) =$
 - after 2 steps: $P(k \mid \pi, 2\text{-step}) =$
 - after t steps:

Similarity

- A, B similar = random surfer tends to reach the same places when starting from A or B
- $P(k \mid \pi, t\text{-step}) =$
 - \blacktriangleright If π has all mass on i:
 - Compare i & j:
 - \blacktriangleright Role of Σ^{t} :

Role of Σ^t (real data)

Example: dolphins

- 62-dolphin social network near Doubtful Sound, New Zealand
 - \rightarrow $A_{ij} = I$ if dolphin i friends dolphin j

Dolphin network

Comparisons

spectral embedding of random data

random embedding of dolphin data

Spectral clustering

 Use your favorite clustering algorithm on coordinates from spectral embedding

PCA: the good, the bad, and the ugly

- The good: simple, successful
- The bad: linear, Gaussian
 - ightharpoonup $E(X) = UV^T$
 - ➤ X, U, V ~ Gaussian
- The ugly: failure to generalize to new entities

Consistency

- Linear & logistic regression are consistent
- What would consistency mean for PCA?
 - forget about row/col means for now
- Consistency:
 - #users, #movies, #ratings (= nnz(W))
 - numel(U), numel(V)
 - consistency =

Failure to generalize

- What does this mean for generalization?
 - new user's rating of movie; only info is
 - new movie rated by user_i: only info is
 - all our carefully-learned factors give us:
- Generalization is:

Hierarchical model

old, non-hierarchical model

Benefit of hierarchy

- Now: only $k \mu^U$ latents, $k \mu^V$ latents (and corresponding σ s)
 - can get consistency for these if we observe more and more X_{ij}
- For a new user or movie:

Mean subtraction

- Can now see that mean subtraction is a special case of our hierarchical model
 - Fix $V_{i1} = I$ for all j; then $U_{i1} =$
 - Fix $U_{i2} = I$ for all i; then $V_{j2} =$
 - global mean:

What about the second rating for a new user?

- Estimating U_i from one rating:
 - knowing μ^{U} :
 - result:
- How should we fix?
- Note: often we have only a few ratings per user

MCMC for PCA

 Can do Bayesian inference by Gibbs sampling—for simplicity, assume σs known

Recognizing a Gaussian

- Suppose $X \sim N(X \mid \mu, \sigma^2)$
- L = $-\log P(X=x \mid \mu, \sigma^2) =$

- \rightarrow dL/dx =
- \rightarrow d²L/dx² =
- So: if we see $d^2L/dx^2 = a$, dL/dx = a(x b)

$$\mu = \sigma^2 =$$

Gibbs step for an element of μ^U

Gibbs step for an element of U

In reality

- We'd do blocked Gibbs instead
- Blocks contain entire rows of U or V
 - take gradient, Hessian to get mean, covariance
 - formulas look a lot like linear regression (normal equations)
- And, we'd fit σ^U , σ^V too
 - sample $1/\sigma^2$ from a **Gamma** (or Σ^{-1} from a **Wishart**) distribution

Nonlinearity: conjunctive features

Disjunctive features

"Other"

Non-Gaussian

- X, U, and V could each be non-Gaussian
 - e.g., binary!
 - rents(U, M), comedy(M), female(U)
- For X: predicting -0.1 instead of 0 is only as bad as predicting +0.1 instead of 0
- For U,V: might infer –17% comedy or 32% female

Logistic PCA

- Regular PCA: $X_{ij} \sim N(U_i \cdot V_j, \sigma^2)$
- Logistic PCA:

More generally...

- Can have
 - ▶ $X_{ij} \sim Poisson(\mu_{ij}), \mu_{ij} = exp(U_i \cdot V_j)$
 - ► X_{ij} ~ Bernoulli(μ_{ij}), $\mu_{ij} = \sigma(U_i \cdot V_j)$
 - **)** ...
- Called exponential family PCA
- Might expect optimization to be difficult

credit: Ajit Singh

Application: fMRI

stimulus: "dog"

stimulus:"cat"

stimulus: "hammer"

credit: Ajit Singh

Results (logistic PCA)

Y (fMRI data): Fold-in

