Review

- Gibbs sampling
- MH with proposal

$$
\text { , } \mathrm{Q}\left(\mathbf{X} \mid \mathbf{X}^{\prime}\right)=\mathrm{P}\left(\mathbf{X}_{B(i)} \mid \mathbf{X}_{-B(i)}\right) \mid\left(\mathbf{X}_{-B(i)}=\mathbf{X}^{\prime}-B(i)\right) / \# B
$$

, failure mode:"lock-down"

- Relational learning (properties of sets of entities)
- document clustering, recommender systems, eigenfaces

Review

- Latent-variable models
- PCA, pPCA, Bayesian PCA

- everything Gaussian
- $E(X \mid U, V)=U V^{\top}$
- MLE: use SVD
- Mean subtraction, example weights

PageRank

- SVD is pretty useful: turns out to be main computational step in other models too
- A famous one: PageRank
- Given: web graph (V, E)
- Predict: which pages are important

PageRank: adjacency matrix

Random surfer model

- W.p. α :
- W.p. $(I-\alpha)$:

Stationary distribution

Thought experiment

- What if A is symmetric?
- note: we're going to stop distinguishing $\mathrm{A}, \mathrm{A}^{\prime}$
- So, stationary dist'n for symmetric A is:
- What do people do instead?

Spectral embedding

- Another famous model: spectral embedding (and its cousin, spectral clustering)
- Embedding: assign low-D coordinates to vertices (e.g., web pages) so that similar nodes in graph \Rightarrow nearby coordinates
- A, B similar $=$ random surfer tends to reach the same places when starting from A or B

Where does random surfer reach?

- Given graph:
- Start from distribution π
- after I step: $P(k \mid \pi, I$-step $)=$
- after 2 steps: $\mathrm{P}(\mathrm{k} \mid \pi, 2$-step $)=$
- after t steps:

Similarity

- A, B similar $=$ random surfer tends to reach the same places when starting from A or B
- $P(k \mid \pi, t-s t e p)=$
- If π has all mass on i:
- Compare i \& j:
- Role of $\Sigma^{\text {t. }}$

Role of Σ^{t} (real data)

Example: dolphins

- 62-dolphin social network near Doubtful Sound, New Zealand
- $\mathrm{A}_{\mathrm{ij}}=\mathrm{I}$ if dolphin ifriends dolphin j

Dolphin network

Comparisons

spectral embedding of random data

random embedding of dolphin data

Spectral clustering

- Use your favorite clustering algorithm on coordinates from spectral embedding

PCA: the good, the bad, and the ugly

- The good: simple, successful
- The bad: linear, Gaussian
- $E(X)=U V^{\top}$
- X, U, V ~ Gaussian
- The ugly: failure to generalize to new entities

Consistency

- Linear \& logistic regression are consistent
- What would consistency mean for PCA?
- forget about row/col means for now
- Consistency:
- \#users, \#movies, \#ratings (= nnz(W))
- numel(U), numel(V)
- consistency =

Failure to generalize

- What does this mean for generalization?
- new user's rating of moviej; only info is
- new movie rated by useri: only info is
- all our carefully-learned factors give us:
- Generalization is:

Hierarchical model

Benefit of hierarchy

- Now: only $k \mu^{\mathrm{U}}$ latents, $\mathrm{k} \mu^{\vee}$ latents (and corresponding σ s)
- can get consistency for these if we observe more and more X_{ij}
- For a new user or movie:

Mean subtraction

- Can now see that mean subtraction is a special case of our hierarchical model
- Fix $\mathrm{V}_{\mathrm{jl}}=I$ for all j; then $\mathrm{U}_{\mathrm{il}}=$
- Fix $\mathrm{U}_{\mathrm{i} 2}=I$ for all i ; then $\mathrm{V}_{\mathrm{i} 2}=$
- global mean:

What about the second

rating for a new user?

- Estimating U_{i} from one rating:
- knowing μ^{U} :
, result:
- How should we fix?
- Note: often we have only a few ratings per user

MCMC for PCA

- Can do Bayesian inference by Gibbs sampling-for simplicity, assume σ s known

Recognizing a Gaussian

- Suppose $X \sim N\left(X \mid \mu, \sigma^{2}\right)$
- $L=-\log P\left(X=x \mid \mu, \sigma^{2}\right)=$
- $\mathrm{dL} / \mathrm{dx}=$
- $\mathrm{d}^{2} \mathrm{~L} / \mathrm{dx} \mathrm{x}^{2}=$
- So: if we see $d^{2} L / d x^{2}=a, d L / d x=a(x-b)$
- $\mu=$
$\sigma^{2}=$

Gibbs step for an element of μ^{U}

Gibbs step for an element of U

In reality

- We'd do blocked Gibbs instead
- Blocks contain entire rows of U or V
- take gradient, Hessian to get mean, covariance
- formulas look a lot like linear regression (normal equations)
- And, we'd fit $\sigma^{U}, \sigma^{\vee}$ too
- sample I/ σ^{2} from a Gamma (or Σ^{-1} from a Wishart) distribution

Nonlinearity:

conjunctive features

Disjunctive features

"Other"

Non-Gaussian

- X, U, andV could each be non-Gaussian
- e.g., binary!
- rents(U, M), comedy(M), female(U)
- For X : predicting -0.1 instead of 0 is only as bad as predicting +0.1 instead of 0
- For U, V : might infer $-\mathrm{I} 7 \%$ comedy or 32% female

Logistic PCA

- Regular PCA: $\mathrm{X}_{\mathrm{ij}} \sim \mathrm{N}\left(\mathrm{U}_{\mathrm{i}} \cdot \mathrm{V}_{\mathrm{j}}, \sigma^{2}\right)$
- Logistic PCA:

More generally...

- Can have
- $X_{i j} \sim \operatorname{Poisson}\left(\mu_{i j}\right), \mu_{i j}=\exp \left(U_{i} \cdot V_{i}\right)$
- $X_{i j} \sim \operatorname{Bernoulli}\left(\mu_{i j}\right), \mu_{i j}=\sigma\left(U_{i} \cdot V_{i}\right)$
- Called exponential family PCA
- Might expect optimization to be difficult

Application: fMRI

stimulus:"dog"
stimulus:"cat"
stimulus:"hammer"

Results (logistic PCA)

Y (fMRI data): Fold-in

credit:Ajit Singh

