#### Review

- Parallel importance sampling
  - bias due to I/normalizer
  - particle filter = recursive parallel IS

#### MCMC

- randomized search for high P(x)
- burn-in, mixing
- approx. iid:  $\{X_t, X_{t+\Delta}, X_{t+2\Delta}, X_{t+3\Delta}, \dots\}$
- use to construct estimator of  $E_P(g(X))$

#### Review

- Metropolis-Hastings
  - way to design chain w/ stationary dist'n P(X)
  - proposal distribution Q(X' | X)
    - e.g., random walk  $N(X' | X, \sigma^2 I)$
  - accept w.p. min(I,  $\frac{P(x')}{P(x_k)} \frac{Q(x_k|x')}{Q(x'|x_k)}$ )
  - tension btwn long moves, high accept rate

# MH example



# MH example



#### In example

- $g(x) = x^2$
- True E(g(X)) = 0.28...
- Proposal:  $Q(x' \mid x) = N(x' \mid x, 0.25^2 I)$
- Acceptance rate 55–60%
- After 1000 samples, minus burn-in of 100:

```
final estimate 0.282361 final estimate 0.271167 final estimate 0.322270 final estimate 0.306541 final estimate 0.308716
```

### Gibbs sampler

- Special case of MH
- Divide **X** into blocks of r.v.s B(1), B(2), ...
- Proposal Q:
  - pick a block i uniformly
  - $\blacktriangleright$  sample  $\mathbf{X}_{B(i)} \sim P(\mathbf{X}_{B(i)} \mid \mathbf{X}_{\neg B(i)})$
- Useful property: acceptance rate p = I

#### Gibbs example



#### Gibbs example



### Gibbs failure example



#### Relational learning

- Linear regression, logistic regression:
   attribute-value learning
  - set of i.i.d. samples from P(X,Y)
- Not all data is like this
  - an attribute is a property of a single entity
  - what about properties of sets of entities?

# Application: document clustering

#### 10-601 Machine Learning Fall 2009

Geoff Gordon and Miroslav Dudik School of Computer Science, Carnegie Mellon University

About | People | Lectures | Recitations | Homework | Exams | Projects

Mailing lists
Textbooks

Grading

Auditing

Homework policy

Collaboration policy

Late policy

Regrade policy

Final project

Class lectures: Mondays and Wednesdays 10:30-11:50 in Newell Simon Hall 1305

Recitations: Wednesday, 6:00-8:00 pm GHC 8102

HW3 is out! It's due on Wednesday Oct 7, 10:30 am

Machine Learning is concerned with computer programs that learn to make better predictions or take better actions given increasing numbers of observations (e.g., programs that learn to spot high-risk medical patients, recognize human faces, recommend music and movies, or drive autonomous robots). This course covers theory and practical algorithms for machine learning from a variety of perspectives. We cover topics such as Bayesian networks, boosting, support-vector machines, dimensionality reduction, and reinforcement learning. The course also covers theoretical concepts such as bias-variance trade-off, PAC learning, margin-based generalization bounds, and Occam's Razor. Short programming assignments include hands-on experiments with various learning algorithms. Typical assignments include learning to automatically classify email by topic, and learning to automatically classify the mental state of a person from brain image data. The course will include a term project where the students will have opportunity to explore some of the class topics on a real-world data set in more detail.

Students entering the class with a pre-existing working knowledge of probability, statistics and algorithms will be at an advantage, but the class has been designed so that anyone with a strong numerate background can catch up and fully participate. This class is intended for Masters students and advanced undergraduates.

#### **Announcement Emails**

# Application: recommendations

#### Latent-variable models

#### Best-known LVM: PCA

- Suppose  $X_{ij}$ ,  $U_{ik}$ ,  $V_{jk}$  all  $\sim$  Gaussian
  - yields principal components analysis
  - or **probabilistic PCA**
  - or Bayesian PCA

### PCA: the picture





#### Mean subtraction

```
► U_{ik} \sim N(0, V^2)

► V_{jk} \sim N(0, V^2)

► X_{ij} \sim N(U_i \cdot V_j, \sigma^2)
```

## Data weights

Let W<sub>ij</sub> =

• Likelihood · prior =

• More generally,  $W_{ij} \ge 0$ 

### PCA: cartoon example

#### Movie

User

### PCA: cartoon example



Data matrix X

Compressed matrix U

## PCA: cartoon example



Data matrix X





rows of V<sup>T</sup> span the low-rank space

Compressed matrix U

## Interpreting PCA

basis weights



movies

wectors

well a sector of the sector

## Interpreting PCA

basis weights





Basis vectors represent movies that **vary together**Weights say how much each user cares about each type of movie

#### Another use of PCA



face images from Groundhog Day, extracted by Cambridge face DB project

## Image matrix

#### pixels



#### Result of factoring

basis weights



basis vectors

- vi
- vk

- vk

Basis vectors are often called "eigenfaces"

# Eigenfaces



image credit: AT&T Labs Cambridge

# PCA: finding the MLE

#### PCA:

- ►  $U_{ik} \sim N(0, V^2)$
- $V_{jk} \sim N(0, V^2)$
- $\rightarrow$   $X_{ij} \sim N(U_i \cdot V_j, \sigma^2)$
- $\rightarrow$   $\sigma/\nu \rightarrow 0$

#### PCA & SVD

- The singular value decomposition is
  - $\rightarrow$  X = R  $\Sigma$  S<sup>T</sup>
  - ▶ R, S orthonormal;  $\Sigma \ge 0$  diagonal
  - All matrices can be expressed this way
  - See svd, svds in Matlab

$$\vee =$$

### PageRank

- SVD is pretty useful: turns out to be main computational step in other models too
- A famous one: PageRank
  - Given: web graph (V, E)
  - Predict: which pages are important

# PageRank: adjacency matrix



#### Random surfer model

- W. p. α:
- W. p.  $(1-\alpha)$ :

Intuition: page is important if a random surfer is likely to land there



#### Stationary distribution



## Thought experiment

- What if A is symmetric?
  - note: we're going to stop distinguishing A, A'

- So, stationary dist'n for symmetric A is:
- What do people do instead?

## Spectral embedding

- Another famous model: spectral embedding (and its cousin, spectral clustering)
- Embedding: assign low-D coordinates to vertices (e.g., web pages) so that similar nodes in graph ⇒ nearby coordinates
  - A, B similar = random surfer tends to reach the same places when starting from A or B

# Where does random surfer reach?

- Given graph:
- Start from distribution π
  - after I step:  $P(j \mid \pi, I step) =$
  - after 2 steps:  $P(j \mid \pi, 2\text{-step}) =$
  - after t steps:

### Similarity

- A, B similar = random surfer tends to reach the same places when starting from A or B
- $P(j \mid \pi, t\text{-step}) =$ 
  - If π has all mass on i:
  - Compare i & j:
  - ightharpoonup Role of  $\Sigma^t$ :

## Role of $\Sigma^t$ (real data)



## Example: dolphins



- 62-dolphin social network near Doubtful Sound, New Zealand
  - $\rightarrow$   $A_{ij} = I$  if dolphin i friends dolphin j

#### Dolphin network



spectral embedding

random embedding

## Spectral clustering



 Use your favorite clustering algorithm on coordinates from spectral embedding