#### Review

- Multivariate Gaussian
  - ► N(X | μ, Σ) =  $(1/\sqrt{|2pi \Sigma|}) \exp{-0.5 (x-\mu)^T \Sigma^{-1} (x-\mu)}$

#### Multivariate Gaussians



$$\Sigma_{i} = UD_{i}U^{T}$$

$$J = \begin{bmatrix} \sqrt{2} / 2 & \sqrt{2} / 2 \\ \sqrt{2} / 2 & -\sqrt{2} / 2 \end{bmatrix}$$

note  $U^TU = I$ 

#### Review



- Naïve Bayes, Gaussian NB, Fisher model:
  - all lead to linear discriminants
  - $w_0 + \sum_j w_j X_j \ge 0$  or  $w_0 + w^T X \ge 0$
  - ▶ formulas for w<sub>0</sub>, w depend on which model

# figure from book

#### Fisher linear discriminant



# figure from book

#### Fisher w/ bad Σ



#### Features

- Can generalize to use features of X:
  - $w_0 + \sum_j w_j \varphi_j(X) \ge 0$
  - $\rightarrow$   $\phi_i(X)$  are **features**
- Why might we want to do so?

## Use of $\phi_j(X)$



## Use of $\phi_j(X)$



#### Lots of discriminants

- One of most important types of classifier
- Consequently, many ways to train LDs
  - based on different assumptions about data
- We saw 3 so far

Another one: coming up soon

### Class probability

- We showed:
  - ▶ log P(Y=1 | X) log P(Y=0 | X) =

- This implies

#### Sigmoid: $\sigma(z) = 1/(1 + \exp(-z))$



## NB = MLE (or MAP)

- $P(Y=I \mid X) = \sigma(z)$ 
  - $z = w_0 + \sum w_j X_j$
- NB is one algorithm for finding w
- NB = maximum likelihood in this model
  - arg max



#### Conditional likelihood

- Another: maximum conditional likelihood
  - given data  $(X^1,Y^1),...,(X^N,Y^N)$
  - arg max
- Same model, different training criterion
- Cond. MLE for logistic linear discriminant:
   logistic regression

#### Discussion



- $\max_{w} P(X,Y \mid w) \text{ vs. } \max_{w} P(Y \mid X,w)$
- We've seen cond. MLE before:
- Why choose one?
  - MLE: → cond. MLE:

## Generative vs discriminative

- Same trick works for any graphical model
  - if we know we're always going to be asking same query (Y given  $X_1...X_M$ ), optimize for it
  - max
- Can improve performance, but also more risk of overfitting

## Logistic regression

- given data  $(X^1,Y^1),...,(X^N,Y^N)$
- arg max<sub>w</sub>  $\prod_i P(Y^i \mid X^i, w)$

## Neg. log likelihood



## Example



#### Weight space



## (X,Y) = (1.2,-1)



## (X,Y) = (1.2,-1)



$$(X,Y) = (-1,1)$$



## (X,Y)=(2,1)



## $-log(P(Y_{1..3} | X_{1..3}, W))$



## Generalization: multiple classes

- One weight vector per class: Y ∈ {1,2,...,C}
  - ▶ P(Y=k) =
  - ightharpoonup  $Z_k =$
- In 2-class case:

# figure from book

## Multiclass example



## Conditional MAP logistic regression

- P(Y | X,W) =
  - Z =
- As in linear regression, can put prior on W
  - common priors: L<sub>2</sub> (ridge), L<sub>1</sub> (sparsity)

max<sub>w</sub> P(W=w | X,Y)

#### Software

- Logistic regression software is easily available: most stats packages provide it
  - e.g., glm function in R
  - or, http://www.cs.cmu.edu/~ggordon/IRLS-example/
- Most common algorithm: Newton's method on log-likelihood (or L<sub>2</sub>-penalized version)
  - called "iteratively reweighted least squares"
  - for L<sub>I</sub>, slightly harder (less software available)

#### Bayesian regression

- In linear and logistic regression, we've looked at
  - conditional MLE: max<sub>w</sub> P(Y | X, w)
  - conditional MAP: max<sub>w</sub> P(W=w | X,Y)
- But of course, a true Bayesian would turn up nose at both
  - why?

## Sample from posterior



#### Predictive distribution



#### Overfitting

- True Bayesian inference never leads to overfitting
  - may still lead to bad results for other reasons!
  - e.g., not enough data, bad model class, ...
- Overfitting is an indicator that the MLE or MAP approximation is a bad one