
Review

• Multivariate Gaussian

‣ N(X | μ, Σ) = 

(1/√|2pi Σ|) exp{–0.5 (x–μ)T Σ–1 (x–μ)}
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Multivariate Gaussians
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μ3 = [-.5; 0]

μ1 = [0; 3]

μ2 = [2; 1]

Σi = UDiUT

U = 
√2 / 2 √2 / 2

√2 / 2 –√2 / 2
D2 = diag([.02 .26])

D1 = diag([.2 .08])

D3 = diag([.1 .1]) note UTU = I
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Review

• Naïve Bayes, Gaussian NB, Fisher model:

‣ all lead to linear discriminants

‣ w0 + ∑j wj Xj ≥ 0   or   w0 + wTX ≥ 0

‣ formulas for w0, w depend on which model
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Fisher linear discriminant
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Fisher w/ bad Σ
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Features

• Can generalize to use features of X:

‣ w0 + ∑j wj ϕj(X) ≥ 0

‣ ϕj(X) are features

• Why might we want to do so?
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Use of ϕj(X)
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Use of ϕj(X)
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Lots of discriminants

• One of most important types of classifier

• Consequently, many ways to train LDs

‣ based on different assumptions about data

• We saw 3 so far

‣  

• Another one: coming up soon
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Class probability
• We showed:

‣ log P(Y=1 | X) – log P(Y=0 | X) = 

• This implies

‣ log P(Y = 1) = 
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Sigmoid: σ(z) = 1/(1+exp(–z))
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NB = MLE (or MAP)
• P(Y=1 | X) = σ(z)

‣ z = w0 + ∑ wj Xj

• NB is one algorithm for finding w

• NB = maximum likelihood in this model

‣ arg max
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Conditional likelihood

• Another: maximum conditional likelihood

‣ given data (X1, Y1), …, (XN, YN)

‣ arg max

• Same model, different training criterion

• Cond. MLE for logistic linear discriminant: 
logistic regression
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Discussion

• maxw P(X, Y | w) vs. maxw P(Y | X, w)

• We’ve seen cond. MLE before:

• Why choose one?

‣ MLE: ‣ cond. MLE:
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Generative vs 
discriminative

• Same trick works for any graphical model

‣ if we know we’re always going to be asking 
same query (Y given X1…XM), optimize for it

‣ max

• Can improve performance, but also more 
risk of overfitting
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Logistic regression

• given data (X1, Y1), …, (XN, YN)

• arg maxw ∏i P(Yi | Xi, w)
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Neg. log likelihood
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Example

!! !" # " ! $

#

#%!

#%&

#%'

#%(

"

18



Weight space
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(X, Y) = (1.2, –1)
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(X, Y) = (1.2, –1)
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(X, Y) = (–1, 1)
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(X, Y) = (2, 1)
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–log(P(Y1..3 | X1..3, W))
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Generalization: multiple 
classes

• One weight vector per class:  Y ∈ {1,2,…,C}

‣ P(Y=k) = 

‣ Zk = 

• In 2-class case:
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Multiclass example
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Conditional MAP logistic 
regression

• P(Y | X, W) = 

‣ Z = 

• As in linear regression, can put prior on W

‣ common priors: L2 (ridge), L1 (sparsity)

• maxw P(W=w | X, Y)
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Software
• Logistic regression software is easily 

available: most stats packages provide it

‣ e.g., glm function in R

‣ or, http://www.cs.cmu.edu/~ggordon/IRLS-example/

• Most common algorithm: Newton’s method 
on log-likelihood (or L2-penalized version)

‣ called “iteratively reweighted least squares”

‣ for L1, slightly harder (less software available)
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Bayesian regression

• In linear and logistic regression, we’ve 
looked at 

‣ conditional MLE: maxw P(Y | X, w)

‣ conditional MAP: maxw P(W=w | X, Y)

• But of course, a true Bayesian would turn 
up nose at both

‣ why?
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Sample from posterior
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Predictive distribution
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Overfitting

• True Bayesian inference never leads to 
overfitting

‣ may still lead to bad results for other reasons!

‣ e.g., not enough data, bad model class, …

• Overfitting is an indicator that the MLE or 
MAP approximation is a bad one
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