Review

® Multivariate Gaussian
» NX|H,2)=
(1N]2pi Z[) exp{-0.5 (x—p)T ™' (x—p)}



Multivariate Gaussians
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® Naive Bayes, Gaussian NB, Fisher model:

» all lead to linear discriminants
» wot DiwiX;=20 or wotw'X=0

» formulas for wo, w depend on which model



Fisher linear discriminant
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_ figure from book



Features

® Can generalize to use features of X:
> wot 2w di(X) 20
»  di(X) are features

® VWhy might we want to do so!



Use of @j(X)
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Use of @j(X)
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Lots of discriminants

® One of most important types of classifier

® Consequently, many ways to train LDs

» based on different assumptions about data

® VWe saw 3 so far
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® Another one: coming up soon



Class probability

® Ve showed:

» log P(Y=1 | X) — log P(Y=0 | X) =

® This implies
» logP(Y =1) =



Sigmoid: 0(z) = |/(l+exp(—z))




NB = MLE (or MAP)

o P(Y=I|X)=0(z)
» Z=wo+ ) wj X
® NB is one algorithm for finding w

® NB = maximum likelihood in this model

» arg max @

e



Conditional likelihood

® Another: maximum conditional likelihood
» given data (X', Y'), ..., (XN, YN)

» arg max
® Same model, different training criterion

® Cond. MLE for logistic linear discriminant:

logistic regression @

T



. . Y
Discussion /O\
® maxw P(X,Y | w) vs. maxw P(Y | X, w)

® VWe've seen cond. MLE before:

® Why choose one!
» MLE: » cond. MLE:



(Generative vs
discriminative

® Same trick works for any graphical model

» if we know we're always going to be asking
same query (Y given X|...XM), optimize for it

» max

® Can improve performance, but also more
risk of overfitting
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Logistic regression

® given data (X', Y'), ..., (XN, YN)
® arg maxw [ |i P(Y' | X, w)



Neg. log likelihood
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X,Y) = (1.2,—1)
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(X,Y) = (1.2,—1)
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—log(P(Y 1.3 | Xi.3,W))
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Generalization: multiple

classes
® One weight vector per class: Y € {l,2,...,C}
» P(Y=k) =
4 Zk —

® |n 2-class case:



Mult

iclass example
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» figure from book



Conditional MAP logistic
regression

o P(Y | X,W) =
p L=
® As in linear regression, can put prior on W

» common priors: L, (ridge), L (sparsity)

® maxw P(W=w | X,Y)



Software

® | ogistic regression software is easily
available: most stats packages provide it

» e.g,glm functionin R

» o, http://www.cs.cmu.edu/~ggordon/IRLS-example/

® Most common algorithm: Newton’s method
on log-likelihood (or L;-penalized version)

» called “iteratively reweighted least squares”

» for Li, slightly harder (less software available)
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Bayesian regression

® |n linear and logistic regression, we've
looked at

» conditional MLE: maxw P(Y | X, w)
» conditional MAP: maxw P(W=w | X,Y)

® But of course, a true Bayesian would turn
up nose at both

»  why?
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Sample from posterior
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Predictive distribution
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Overfitting

® True Bayesian inference never leads to
overfitting

» may still lead to bad results for other reasons!

» e.g, not enough data, bad model class, ...

® Opverfitting is an indicator that the MLE or
MAP approximation is a bad one
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