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Last time…

Inference in factor graphs/Bayes nets:

P(M,Ra,O,W,Ru)    φ(M) φ(Ra) φ(O) φ(Ra,O,W) φ(M,W,Ru)

P(W | Ra=F, Ru=T) = ?

(1) Incorporate evidence:

P(M, Ra=F, O, W, Ru=T)

(2) Eliminate nuisance nodes:

P(W, Ra=F, Ru=T)

(3) Normalize:

P(W | Ra=F, Ru=T) =
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Last time…

Benefits of factored representations:

• efficient inference

• fewer parameters to estimate

Last time: maximum likelihood

heads w/prob θ

N tosses
H heads

p(H | N, θ) = 
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Are we learning?

Task:

Performance measure:

Experience:

Are we learning?
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Maximum likelihood estimation

• expected log likelihood
maximized by true distribution

• average log likelihood of data
approximates expected log likelihood

GREAT!

Bayesian approach

initial belief over values of θ

e.g. θ uniform over [0,1]

p(θ) = 1, 
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Bayesian approach

θ, N parameters

H data,

p(θ) 

p(    | θ, N)

p(θ |    , N)

Priors and posteriors

prior: p(θ)

posterior:

p(θ | heads=1, tails=2)

posterior:

p(θ | heads=1, tails=1)

posterior:

p(θ | heads=20, tails=30)
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Beta family

Beta(θ | α, β)

• uniform: p(θ) = 1

• after H heads, T tails: p(θ | H, T)

Say p(θ) = Beta(θ | α, β)

• after H heads, T tails: p(θ | H, T) 

Conjugacy

• if posterior has the same form as prior,
we say: prior is conjugate relative to likelihood

• e.g.: Binomial and Beta are conjugate families

Conjugacy: simple Bayesian inference
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Bayesian updating

p(θ) = Beta(θ | α, β)

observe H heads, T tails

p(θ | H, T) = Beta(θ | α+H, β+T)

observe additional H’ heads, T’ tails

p(θ | H, T, H’, T’) =

Predicting next outcome

observe H heads, T tails

next observation X

• max likelihood

• prior p(θ) = Beta(θ | α, β)
posterior p(θ | H, T) = Beta(θ | α+H, β+T)
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What if posterior looks like…

Bayesian prediction

p(θ) = Beta(θ | α, β)
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Bayesian prediction

Bayesian prediction vs MAP

MAP:

Bayesian prediction:
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What you should know

Maximum likelihood estimation (MLE)
• approximates maximization of expected log likelihood

• expected log likelihood maximized by true distribution

• approximation poor on small data sets

Bayesian posterior, MAP, Bayesian prediction
• posterior reflects uncertainty in the parameter

• conjugacy: posterior has the same form as the prior
e.g., Beta and Binomial

• prior as a summary of previous experience (observations)

• maximum a posteriori can suffer similar problems as MLE

• Bayesian prediction can be intractable


