Probability Density Estimation

Machine Learning - 10601

Geoff Gordon, Miroslav Dudík

(partly based on slides of Carlos Guestrin and Tom Mitchell)
http://www.cs.cmu.edu/~ggordon/10601/
September 14, 2009

Last time...

Inference in factor graphs/Bayes nets:

P(M,Ra,O,W,Ru) $\phi_1(M)$ $\phi_2(Ra)$ $\phi_3(O)$ $\phi_4(Ra,O,W)$ $\phi_5(M,W,Ru)$ $\phi_5(M)$ $\phi_5(M)$

(1) Incorporate evidence:

P(M, Ra=F, O, W, Ru=T) €

(2) Eliminate nuisance nodes:

$$P(\underline{W}, Ra=F, Ru=T) \bigotimes \sum_{m} \sum_{\sigma} \dots = \phi^{\prime}(w)$$

(3) Normalize:

 $P(W \mid Ra=F, Ru=T) = \phi(\omega) \int \underset{\omega}{\mathbb{Z}} \phi(\omega = \omega)$

Last time...

Benefits of factored representations:

- efficient inference (some times)
- fewer parameters to estimate

A LEARNING SIMPLER less into needed

Last time: maximum likelihood

N tosses

H heads,
$$N - H$$
 tails
$$p(H \mid N, \theta) = \begin{pmatrix} N \\ H \end{pmatrix} + \begin{pmatrix} N$$

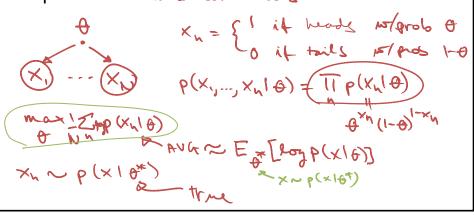
$$\binom{H}{N} = \frac{Hi(N - H)}{hi}$$

Are we learning?

Task: probability estimation (prediction)

Performance measure: Likelihood

Experience: thumbtack tosses



Are we learning? NOTICE PRICE PREASURE & FINAL Log P(Xn/A) & Ear [Log P(XlA)] And on the price of the pric

Maximum likelihood estimation

- expected log likelihood maximized by true distribution
- average log likelihood of data approximates expected log likelihood

Bayesian approach

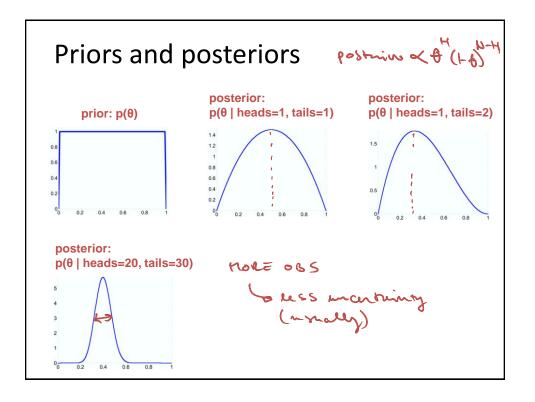
initial belief over values of θ

e.g. $\theta \sim$ uniform over [0,1]

$$p(\theta) = 1$$
, $\int_{0}^{1} \rho(\theta) d\theta = 1$


```
Bayesian approach \theta, N parameters \theta data, \mathfrak{D} \mathfrak{p}(\theta)
```

 $p(\theta)$ prin $p(\emptyset \mid \theta, N)$ likelihood $p(\theta \mid \emptyset, N)$ posterion



Beta family

Beta(
$$\theta$$
 | α , β) $\propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$
• uniform: $p(\theta) = 1$, $\alpha = \beta = 1$

• after H heads, T tails:
$$p(\theta \mid H, T) \propto \underbrace{\Phi^{H}(1-\theta)^{T}}_{N-H}$$
 $e^{(\Delta \mid \theta)} = \underbrace{\Phi^{H}(1-\theta)^{T}}_{N-H}$
 $e^{(\Delta \mid \theta)} = \underbrace{\Phi^{H}(1-\theta)^{T}}_{N-H}$

Say $p(\theta) = Beta(\theta \mid \alpha, \beta) \propto \underbrace{\Phi^{H}(1-\theta)^{T}}_{N-H}$

• after H heads, T tails: p(θ | H, T) «ρ(δ, Η, Τ)

ρ(δ) ρ(Σ) φ

= φ

- 1 λ τ η (1 - φ) τ η δ

- 1 λ τ η (Η+ λ , Τ η β)

Conjugacy

- if posterior has the same form as prior, we say; prior is conjugate relative to likelihood
- e.g.: Binomial and Beta are conjugate families

Conjugacy: simple Bayesian inference

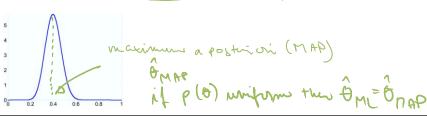
Bayesian updating

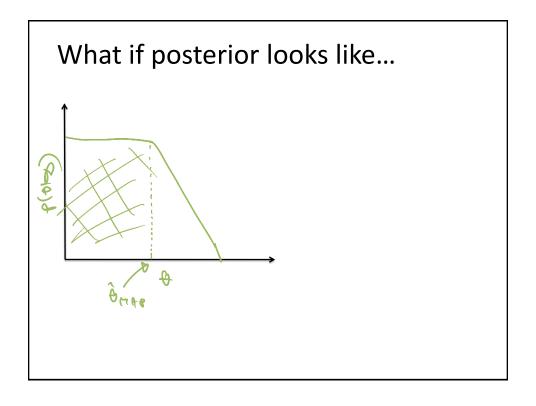
$$p(\theta) = Beta(\theta \mid \alpha, \beta)$$
observe H heads T tails
 $p(\theta \mid H, T) = Beta(\theta \mid \alpha + H, \beta + T)$
observe additional H' heads T' tails
 $p(\theta \mid H, T, H', T') = beta(\theta \mid \alpha + H + H', \beta + T + T')$
 $\rho(\theta \mid H, T, H', T') = beta(\theta \mid \alpha + H + H', \beta + T + T')$
 $\rho(\theta \mid H, T, H', T') = beta(\theta \mid \alpha + H + H', \beta + T + T')$
 $\rho(\theta \mid H, T, H', T') = beta(\theta \mid \alpha + H + H', \beta + T + T')$
 $\rho(\theta \mid H, T, H', T') = beta(\theta \mid \alpha + H + H', \beta + T + T')$
 $\rho(\theta \mid H, T, H', T') = beta(\theta \mid \alpha + H + H', \beta + T + T')$

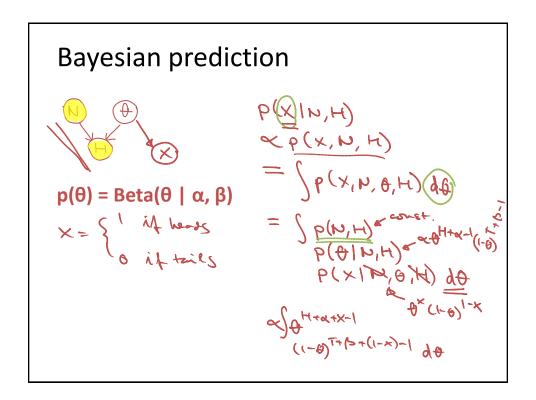
Predicting next outcome

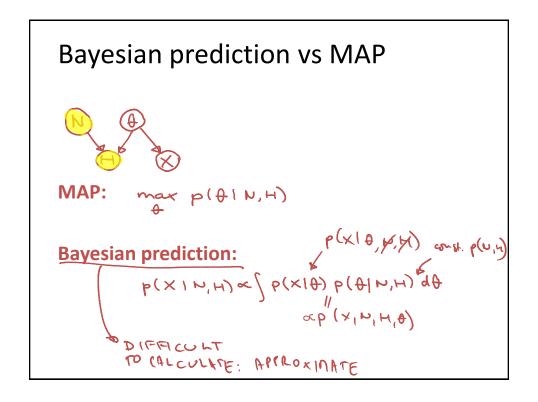
observe **H** heads, **T** tails next observation **X**

- · max likelihood $\hat{\theta}_{ML} = \frac{H}{H+T} p(x=mass | \hat{\theta}_{ML}) = \hat{\theta}_{ML}$
- prior $p(\theta) = Beta(\theta \mid \alpha, \beta)$ posterior $p(\theta \mid H, T) = Beta(\theta \mid \alpha+H, \beta+T)$









What you should know

Maximum likelihood estimation (MLE)

- approximates maximization of expected log likelihood
- expected log likelihood maximized by true distribution
- approximation poor on small data sets

Bayesian posterior, MAP, Bayesian prediction

- posterior reflects uncertainty in the parameter
- conjugacy: posterior has the same form as the prior e.g., Beta and Binomial
- prior as a summary of previous experience (observations)
- maximum a posteriori can suffer similar problems as MLE
- Bayesian prediction (an be)intractable っていている