Probability Density Estimation

Machine Learning - 10601

Geoff Gordon, Miroslav Dudík

(partly based on slides of Carlos Guestrin and Tom Mitchell)

http://www.cs.cmu.edu/~ggordon/10601/

September 14, 2009

Last time...

Inference in factor graphs/Bayes nets:

P(M,Ra,O,W,Ru) $\propto φ_1(M) φ_2(Ra) φ_3(O) φ_4(Ra,O,W) φ_5(M,W,Ru)$ $P(W \mid Ra=F, Ru=T) = ?$

(1) Incorporate evidence:

P(M, Ra=F, O, W, Ru=T) ∝

(2) Eliminate nuisance nodes:

P(W, Ra=F, Ru=T)≪

(3) Normalize:

 $P(W \mid Ra=F, Ru=T) =$

Last time...

Benefits of factored representations:

- efficient inference
- fewer parameters to estimate

Last time: maximum likelihood

heads w/prob €

N tosses

H heads

 $p(H \mid N, \theta) =$

Are we learning?

Task:

Performance measure:

Experience:

Are we learning?

Maximum likelihood estimation

- expected log likelihood maximized by true distribution
- average log likelihood of data approximates expected log likelihood

GREAT!

Bayesian approach

initial belief over values of θ

e.g.
$$\theta \sim \text{uniform over } [0,1]$$

 $p(\theta) = 1,$ $\int_{0}^{1} \rho(\theta) d\theta = 1$

Bayesian approach

```
\theta, N parameters

H data, \mathfrak{D}

p(\theta)

p(\mathfrak{D} | \theta, N)

p(\theta | \mathfrak{D} , N)
```

Priors and posteriors

prior: $p(\theta)$

posterior: p(θ | heads=1, tails=1)

posterior: p(θ | heads=1, tails=2)

posterior: p(θ | heads=20, tails=30)

Beta family

Beta(
$$\theta \mid \alpha, \beta$$
) $\propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

- uniform: $p(\theta) = 1$
- after H heads, T tails: $p(\theta \mid H, T) \propto \theta^{H} (1-\theta)^{T}$

Say
$$p(\theta) = Beta(\theta \mid \alpha, \beta)$$

after H heads, T tails: p(θ | H, T) =

Conjugacy

- if posterior has the same form as prior,
 we say: prior is conjugate relative to likelihood
- e.g.: Binomial and Beta are conjugate families

Conjugacy: simple Bayesian inference

Bayesian updating

```
p(\theta) = Beta(θ | α, β)
observe H heads, T tails
p(\theta \mid H, T) = Beta(θ | α+H, β+T)
```

observe additional H' heads, T' tails $p(\theta \mid H, T, H', T') =$

Predicting next outcome

observe **H** heads, **T** tails next observation **X**

max likelihood

• prior $p(\theta) = Beta(\theta \mid \alpha, \beta)$ posterior $p(\theta \mid H, T) = Beta(\theta \mid \alpha+H, \beta+T)$

What if posterior looks like...

Bayesian prediction

$$p(\theta)$$
 = Beta(θ | α, β)

Bayesian prediction

Bayesian prediction vs MAP

Bayesian prediction:

What you should know

Maximum likelihood estimation (MLE)

- approximates maximization of expected log likelihood
- expected log likelihood maximized by true distribution
- approximation poor on small data sets

Bayesian posterior, MAP, Bayesian prediction

- posterior reflects uncertainty in the parameter
- conjugacy: posterior has the same form as the prior e.g., Beta and Binomial
- prior as a summary of previous experience (observations)
- maximum a posteriori can suffer similar problems as MLE
- Bayesian prediction can be intractable

Learning to classify text documents

- classify which emails are spam?
- classify which emails promise an attachment?
- classify which web pages are student home pages?

As a subroutine:

 for each category, learn the distribution over the documents belonging there

"Bag of words" approach

	aardvark	0
3	about	2
	all	2
	Africa	1
3	apple	0
	anxious	0
9		
	gas	1
	•••	
	oil	1
	Zaire	0

Multinomial and Dirichlet

Multinomial: $P(N_1, N_2, ..., N_k | \theta_1, ..., \theta_k)$ $= \frac{N_1! ... N_k!}{N_2! ... N_k!} \theta_1^{N_1} ... \theta_k^{N_k}$ Dividable to

Dirichlet:

Subtle points:

- dictionary is potentially infinite
- need to estimate "missing mass"

Gaussian distribution