Probability Density Estimation

Machine Learning - 10601

Geoff Gordon, Miroslav Dudík http://www.cs.cmu.edu/~ggordon/10601/ September 9, 2009

Machine learning challenges

Representation of

observations, assumptions, solutions

Generalization to

present (but unobserved) data, future data

Computation

Last few lectures

how to describe probability distributions

REPRESENTATION

Next

how to learn probability distributions

GENERALIZATION

Probability Density Estimation

thumbtack θ down "tails" w/prob θ -

unknown probability $0 \le \theta \le 1$

$$\theta = 3$$

Maximum Likelihood Estimation

- a priori no reason to favor some
 ⊕ over another
- pick the one that assigns the largest probability to data

EXPERIMENT:

H come my heads N-H come up tails

b(HIN' Q) = (FI) OH (I-B) N-H

(sin oniae)

max p(HIN, D)

parameterst pixed

instead: med (red b (HIN'B))

$$A = \frac{H}{h}$$

$$A =$$