
Review: probability

• Covariance, correlation

• relationship to independence

• Law of iterated expectations

• Bayes Rule

• Examples: emacsitis, weighted dice

• Model learning
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Review: graphical models

• Bayes net = DAG + CPT

• Factored representation of distribution

• fewer parameters

• Inference: showed Metal & Outside 
independent for rusty-robot network
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Independence

• Showed M ! O

• Any other independences?

• Didn’t use

• independences depend only on

• May also be “accidental” independences
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Conditional independence

• How about O, Ru?  O   Ru

• Suppose we know we’re not wet

• P(M, Ra, O, W, Ru) = 

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

• Condition on W=F, find marginal of O, Ru
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Conditional 
independence

• This is generally true

• conditioning on evidence can make or 
break independences

• many (conditional) independences can be 
derived from graph structure alone

• “accidental” ones are considered less 
interesting
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Graphical tests for 
independence

• We derived (conditional) independence by 
looking for factorizations

• It turns out there is a purely graphical test

• this was one of the key contributions of 
Bayes nets

• Before we get there, a few more examples
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Blocking

• Shaded = observed (by convention)
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Explaining away

• Intuitively:
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Son of explaining away
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d-separation

• General graphical test: “d-separation”

• d = dependence

• X ! Y | Z when there are no active 

paths between X and Y

• Active paths (W outside conditioning set):
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Longer paths

• Node is active if:

and inactive o/w

• Path is active if      intermediate nodes are
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Another example
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Markov blanket

• Markov blanket of 
C = minimal set 
of observations 
to render C 
independent of 
rest of graph

13



Learning Bayes nets

M Ra O W Ru

T F T T F

T T T T T

F T T F F

T F F F T

F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =
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Laplace smoothing

M Ra O W Ru

T F T T F

T T T T T

F T T F F

T F F F T

F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =
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Advantages of Laplace

• No division by zero

• No extreme probabilities 

• No near-extreme probabilities unless lots 
of evidence
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Limitations of counting 
and Laplace smoothing

• Work only when all variables are observed 
in all examples

• If there are hidden or latent variables, 
more complicated algorithm—we’ll cover a 
related method later in course

• or just use a toolbox!
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Factor graphs

• Another common type of graphical model

• Uses undirected, bipartite graph 
instead of DAG
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Rusty robot: factor graph

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
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Convention

• Don’t need to show unary factors

• Why?  They don’t affect algorithms below.
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Non-CPT factors

• Just saw: easy to convert Bayes net ! 
factor graph

• In general, factors need not be CPTs: any 
nonnegative #s allowed

• In general, P(A, B, …) =

• Z = 
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Ex: image segmentation
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Factor graph ! Bayes net

• Conversion possible, but more involved

• Each representation can handle any 
distribution

• Without adding nodes:

• Adding nodes:
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Independence

• Just like Bayes nets, there are graphical tests 
for independence and conditional 
independence

• Simpler, though:

• Cover up all observed nodes

• Look for a path
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Independence example
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Modeling independence

• Take a Bayes net, list the (conditional) 
independences

• Convert to a factor graph, list the 
(conditional) independences

• Are they the same list?

• What happened?
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Inference

• We gave an example of inference in a Bayes 
net, but not a general algorithm

• Reason: general algorithm uses factor-graph 
representation

• Steps: instantiate evidence, eliminate 
nuisance nodes, answer query
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