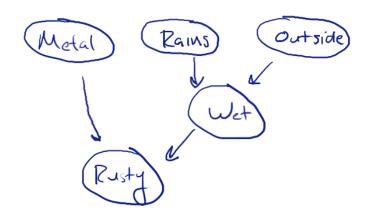
Review: probability

- Covariance, correlation
 - relationship to independence
- Law of iterated expectations
- Bayes Rule
- Examples: emacsitis, weighted dice
- Model learning

Review: graphical models

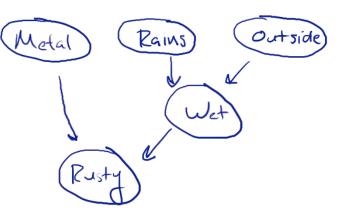


- Bayes net = DAG + CPT
- Factored representation of distribution
 - fewer parameters
- Inference: showed Metal & Outside independent for rusty-robot network

Independence independent hot

- Showed M ⊥ O
- Any other independences?

- independences depend only on DAG
- May also be "accidental" independences



Conditional independence

- How about O, Ru? O Ru
 Suppose we know we're not wet
- P(M, Ra, O, W, Ru) = P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
- Condition on W=F, find marginal of O, Ru

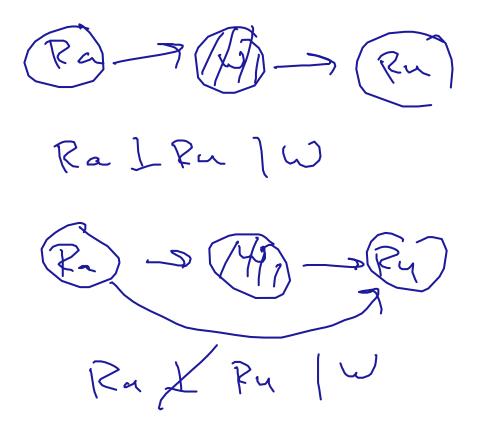
Conditional independence

- This is generally true
 - conditioning on evidence can make or break independences
 - many (conditional) independences can be derived from graph structure alone
 - "accidental" ones are considered less interesting -> except "context 5 pecific"

Graphical tests for independence

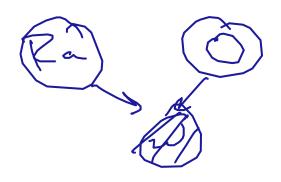
- We derived (conditional) independence by looking for factorizations
- It turns out there is a purely graphical test
 - this was one of the key contributions of Bayes nets
- Before we get there, a few more examples

Blocking



Shaded = observed (by convention)

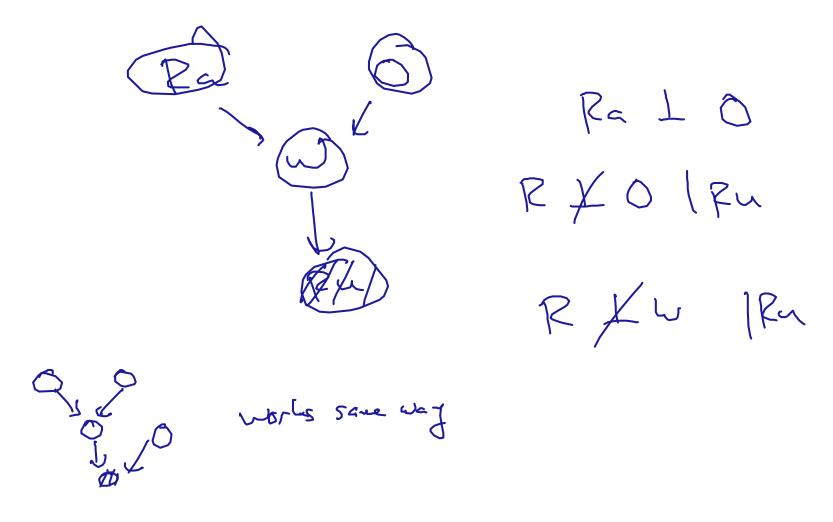
Explaining away



Ra L O Ra NO 1 W

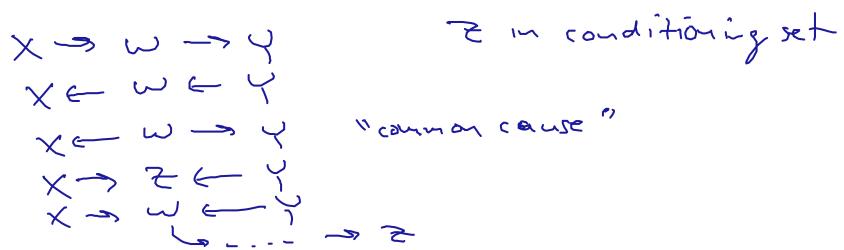
• Intuitively: Luon W=F, Ra ⇒ not O

Son of explaining away



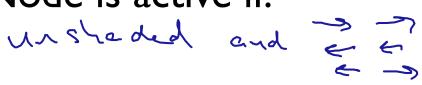
d-separation

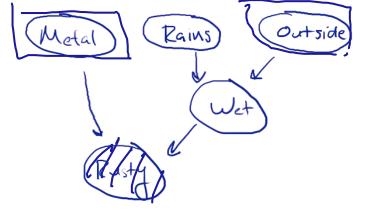
- General graphical test: "d-separation"
 - d = dependence
- $X \perp Y \mid Z$ when there are no **active paths** between $X \in X$
- Active paths (W outside conditioning set):



Longer paths

• Node is active if:



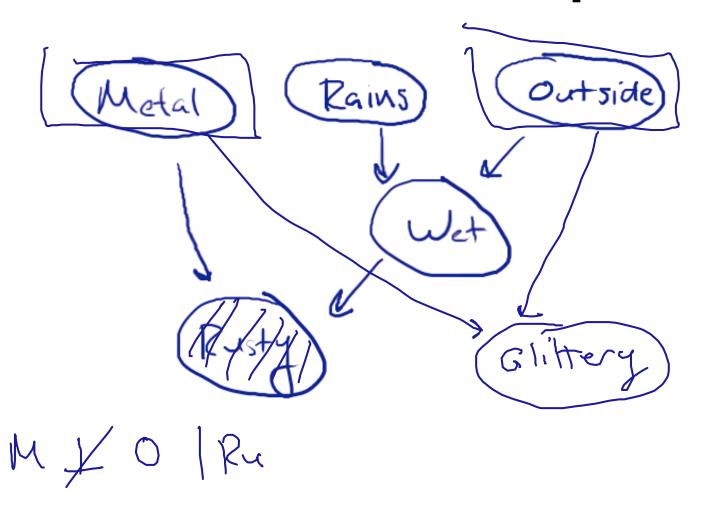


shaded and -> c or descendant shaded

and inactive o/w

• Path is active if intermediate nodes are edice

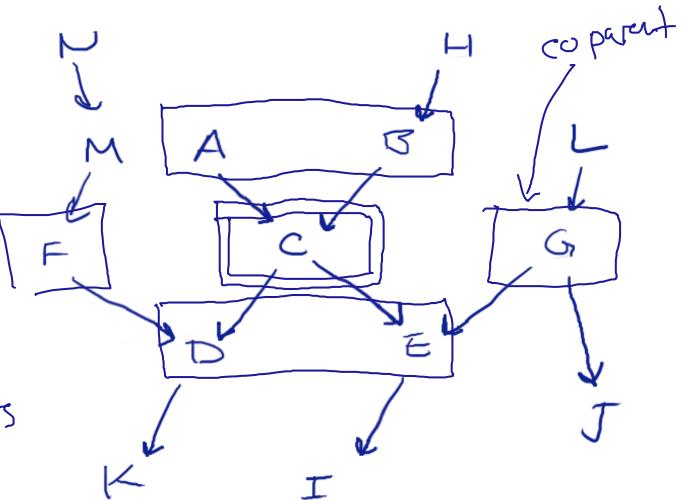
Another example



Markov blanket

Markov blanket of C = minimal set of observations to render C independent of rest of graph

= parents, children and co-parents



Paramoder

Learning Bayes nets

045]

$$P(M) = \sqrt[3]{\varsigma}$$

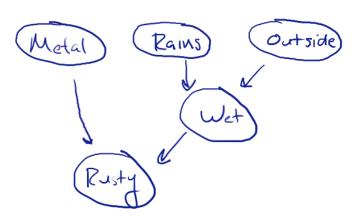
$$P(Ra) = 2/5$$

$$P(O) = \forall \int$$

$$P(W \mid Ra, O) =$$

THE ON - O E prob A2

TY h



M	Ra	0	W	Ru
Т	F	Т	Т	F
Т	Т	7	4	Т
F	Т	Т	F	F
Т	F	F	F	Т
F	F	Т	F	Т

Daraneter learning by

Laplace smoothing

asyptotically unhiered

$$P(M) = \frac{4}{7} = \frac{3+1}{3+1+2+1}$$

 $P(Ra) = \frac{3}{7}$

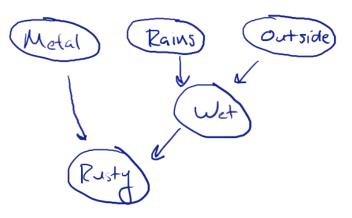
$$P(O) = \sqrt[5]{7}$$

$$P(W \mid Ra, O) =$$

$$T = \frac{2}{4}$$

$$T = \frac{1}{2}$$

$$P(Ru \mid M, W) = \frac{3}{4}$$



M	Ra	0	W	Ru
Т	F	Т	Τ	F
Т	H	T	H	Т
F	Т	Т	F	F
Т	F	F	F	Т
F	щ	Т	щ	Т

Advantages of Laplace

- No division by zero
- No extreme probabilities
 - No near-extreme probabilities unless lots of evidence

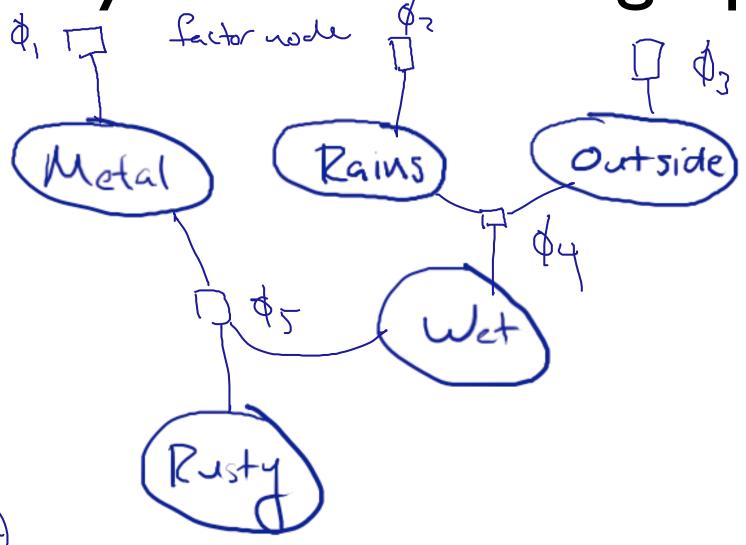
Limitations of counting and Laplace smoothing

- Work only when all variables are observed in all examples
- If there are *hidden* or *latent* variables, more complicated algorithm—we'll cover a related method later in course
 - or just use a toolbox!

Factor graphs

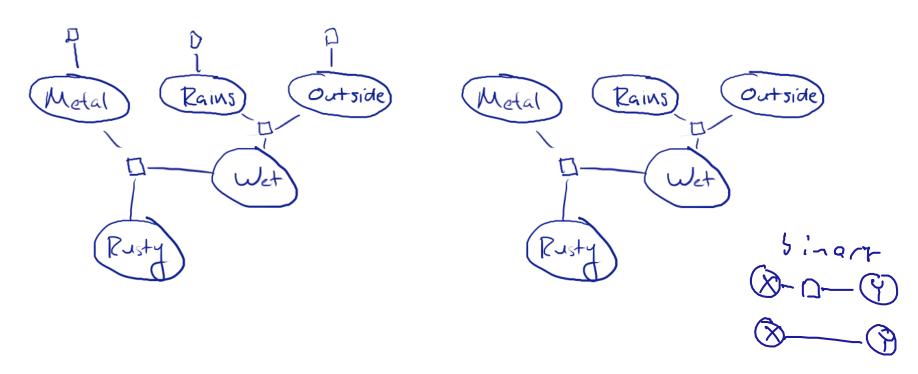
- Another common type of graphical model
- Uses undirected, bipartite graph instead of DAG

Rusty robot: factor graph



\$ (m)

Convention



- Don't need to show unary factors
- Why? They don't affect algorithms below.

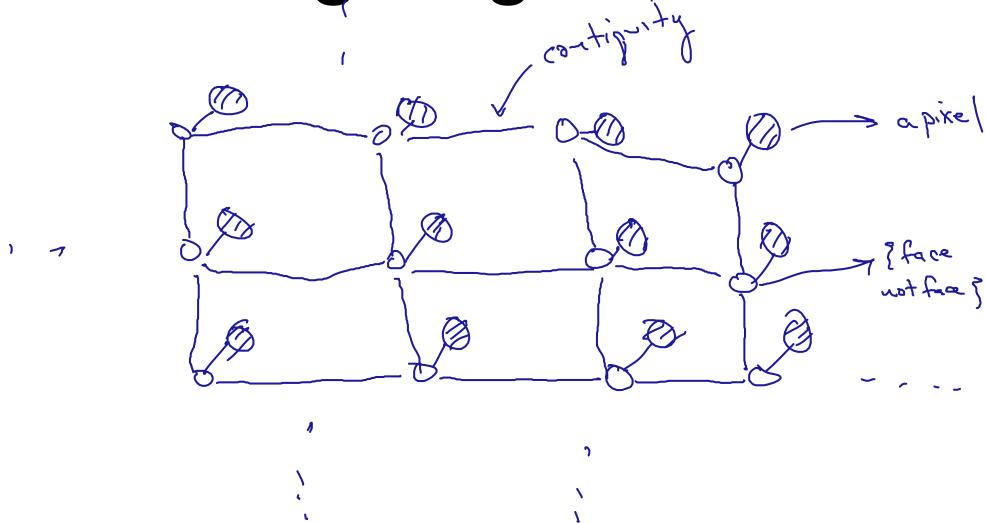
Non-CPT factors

- Just saw: easy to convert Bayes net → factor graph
- In general, factors need not be CPTs: any nonnegative #s allowed $\phi_{i}(x,y) = \tau_{i}^{2}$
- In general, $P(A, B, ...) = \widetilde{P}(A, B, ...)$

•
$$Z = \sum_{nones} \hat{p}_i(nbr(i)) = \sum_{nones} \hat{p}_i(nbr(i))$$

A emq(A) Berng(B)

Ex: image segmentation



Factor graph → Bayes net

much

- Conversion possible, but more involved
 - Each representation can handle any distribution
- Without adding nodes: → P complete - wethink exp time

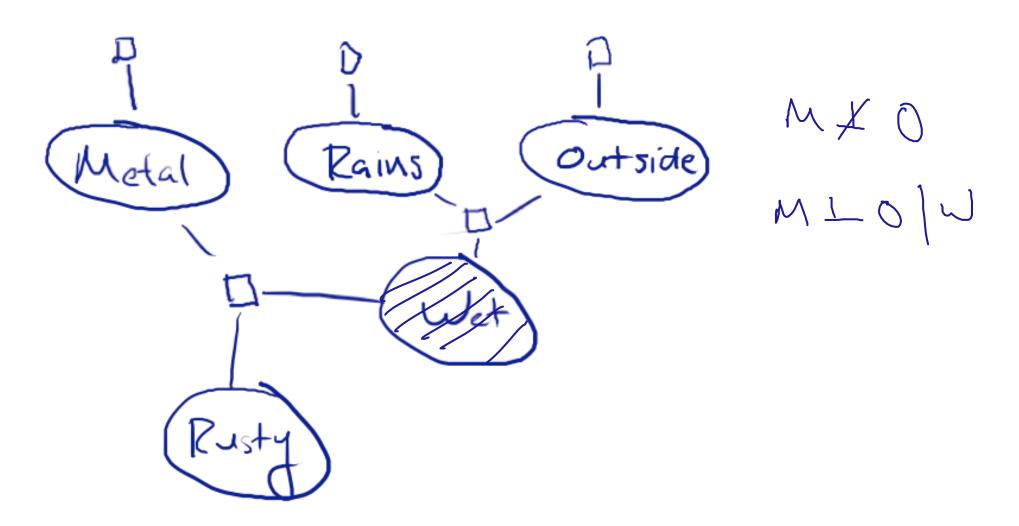
Adding nodes:

poly-time Some what complicated

Independence

- Just like Bayes nets, there are graphical tests for independence and conditional independence
- Simpler, though:
 - Cover up all observed nodes
 - Look for a path

Independence example



Modeling independence

- Take a Bayes net, list the (conditional) independences
- Convert to a factor graph, list the (conditional) independences
- Are they the same list?
- What happened?

accidental indep- an different

Inference

- We gave an example of inference in a Bayes net, but not a general algorithm
- Reason: general algorithm uses factor-graph representation
- Steps: instantiate evidence, eliminate nuisance nodes, answer query