Review: probability

- RVs, events, sample space Ω
- Measures, distributions
 - disjoint union property (law of total probability—book calls this "sum rule")
- Sample v. population
- Law of large numbers
- Marginals, conditionals

Very

Monty Hall

has no pize

Terminology

- Experiment = planned of sevations queous sot • Prior = probability dicta of parameter before experiment
- · Posterior = dist'n after experiment

Example: model selection

- You're gambling to decide who has to clean the lab
- You are accused of using weighted dice!
- Two models:
 - fair dice: all 36 rolls equally likely $\frac{1}{30}$
 - weighted: rolls summing
 to 7 more likely

prior: 1/10 weighted 9/10 vot observation: 2-5

posterior:

Philosophy

- Frequentist v. Bayesian
- Frequentist view: a probability is a property of the world (the coin has P(H) = 0.62)
- Bayesian view: a probability is a representation of our internal beliefs about the world (we think P(H) = 0.62)

Difference

- Bayesian is willing to assign P(E) to any E, even one which has happened already (although it will be I or 0 if E or ¬E has been observed)
- Frequentist will assign probabilities only to outcomes of future experiments
- Consider the question: what is the probability that coin #273 is fair?

Which is right?

- Both!
- Bayesians can ask more questions
- But for a question that makes sense to both, answer will agree
- Can often rephrase a Bayesian question in frequentist terms
 - answer may differ
 - either may see other's answer as a reasonable approximation

Independence

- X and Y are independent if, for all possible values of y, P(X) = P(X | Y=y)
 - equivalently, for all possible values of x, $P(Y) = P(Y \mid X=x)$ P(X,Y)/P(Y) = P(X)
 - equivalently, P(X,Y) = P(X) P(Y)
- Knowing X or Y gives us no information about the other

Independence: probability = product of marginals

Admin

- Slides and annotated slides
 - http://www.cs.cmu.edu/~ggordon/10601/schedule.html
- Mailing list:
 - 10601-09f-announce@cs
- Recitation

Readings

Bishop

- So far: p1-4, sec 1-1.2, sec 2-2.3
- We'll put them next to relevant lectures on schedule page
- They provide extra detail beyond what's in lecture—you are responsible for knowing it
- No specific due date

Expectations

AAPL price

 How much should we expect to earn from our AAPL stock?

Weather

	up	same	down
sun	0.09	0.15	0.06
rain	0.21	0.35	0.14

Weather 1.9 = $(1-) \times 12$. + 1×50 .

	up	same	down
sun	+	0	-
rain	+	0	-1

E(X+4) = E(x) + E(Y) E(LX) = LE(X)

Linearity of expectation

AAPL price

- Expectation is a linear function of numbers in bottom table
- E.g., change Is to 0s or to -2s

_2	->	1
-\		
\bigcirc	~	+.3

ner		up	same	down
eath	sun	0.09	0.15	0.06
>	rain	0.21	0.35	0.14

her		up	same	down
/eat	sun	+	0	1
>	rain	+	0	<u>-</u>

Conditional expectation

AAPL price

What if we know it's sunny?

er	٢	up.	same	down
eather	sun	0.09	0.15	0.06
>	rain	0.21	0.35	0.14

ler		up	same	down
eatr	sun			
>	rain	+	0	-

Independence and expectation

- If X and Y are independent, then: E(XY) = E(X)E(Y)
- Proof: $E(XY) = \sum_{\substack{(X,Y) \in X}} \frac{P(X,Y)P(Y)}{XY}$ = E(X) E(Y)

Sample means

- Sample mean = $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$
- Expectation of sample mean:

Estimators

- Common task: given a sample, infer something about the population
- An estimator is a function of a sample that we use to tell us something about the population
- E.g., sample mean is a good estimator of population mean
- E.g., linear regression

Law of large numbers (more general form)

- If we take a sample of size N from a distribution P with mean μ and compute sample mean \overline{x}
- Then $\overline{x} \rightarrow \mu$ as $N \rightarrow \infty$

Bias

- Given an estimator T of a population quantity θ
- The **bias** of T is $E(T) \Theta$
- Sample mean is an unliesed estimator of population mean
- (I + \sum_{c=1}^{N} \times \) / (N+I) is biased

 of asyptotically un biased

 as N \sigma

Variance

- Two estimators of population mean: sample mean, mean of every 2nd sample
- Both unbiased, but one is more variable
- Measure of variability: variance

Variance

- If zero-mean: variance = $E(X^2)$
 - Ex: constant 0 v. coin-flip ±1

• In general: $E((X - E(X))^2)$

$$E(X - E(X)) = E(X) - E(E(X)) = 0$$

Exercise: simplify the expression for variance

•
$$E((X - E(X))^2) = E(X^2 - 2X E(X) + E(X)^2)$$

$$= E(X^2) - 2E(X)E(X) + E(X)^2$$

$$= E(X^2) - E(X)^2$$

$$= E(X^2) - E(X)^2$$

Exercise

• What is the variance of 3X?

$$E((3x)^{2}) = E((4x^{2}) - 4E(x^{2}) - 4$$

Sample variance

• Sample variance = $\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2$ • Expectation: $\frac{N-1}{N} \text{ Var}(x)$ biased asy p. and p are p asy p.

Sample size correction:

Bias-variance decomposition

- Estimator T of population quantity θ
- Mean squared error = $E((T \theta)^2)$ =

Bias-variance tradeoff

- It's nice to have estimators w/ small MSE
- Typically there is a smallest possible MSE for a given amount of data
 - limited data provides limited information
- Estimator which achieves min is efficient (close for large N: asymptotically eff.)
- Often can adjust estimator so MSE is due to bias or variance—the famed tradeoff