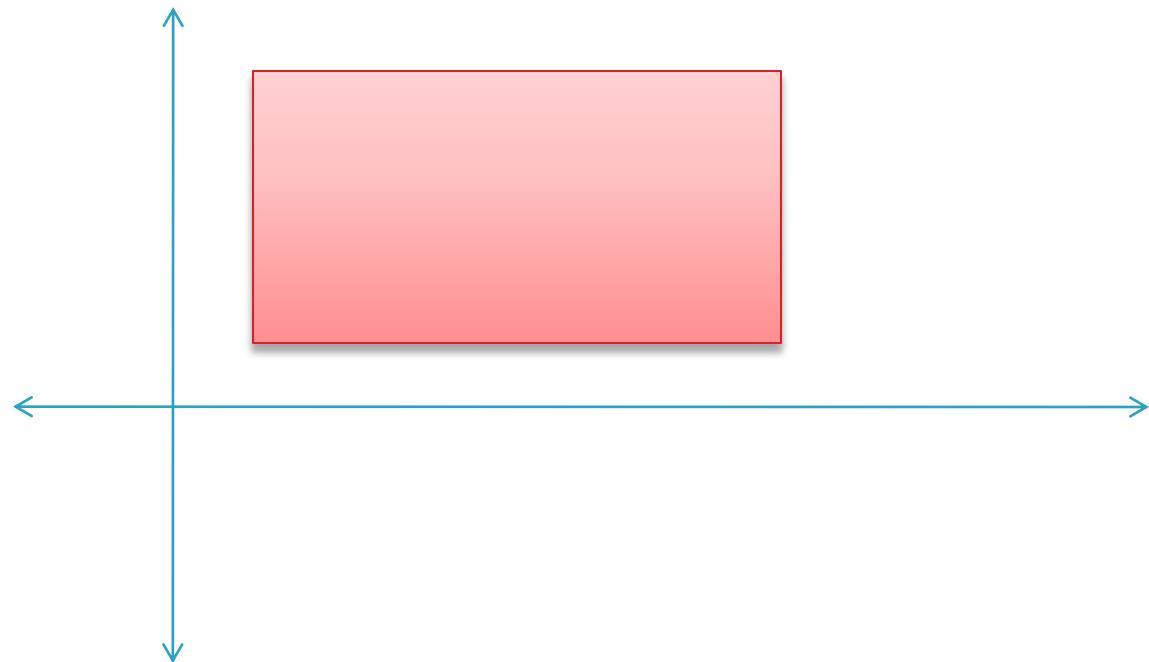


PAC Learning and The VC Dimension

A handwritten signature in black ink, appearing to read "F. C. N." or "F. C. N. S.".

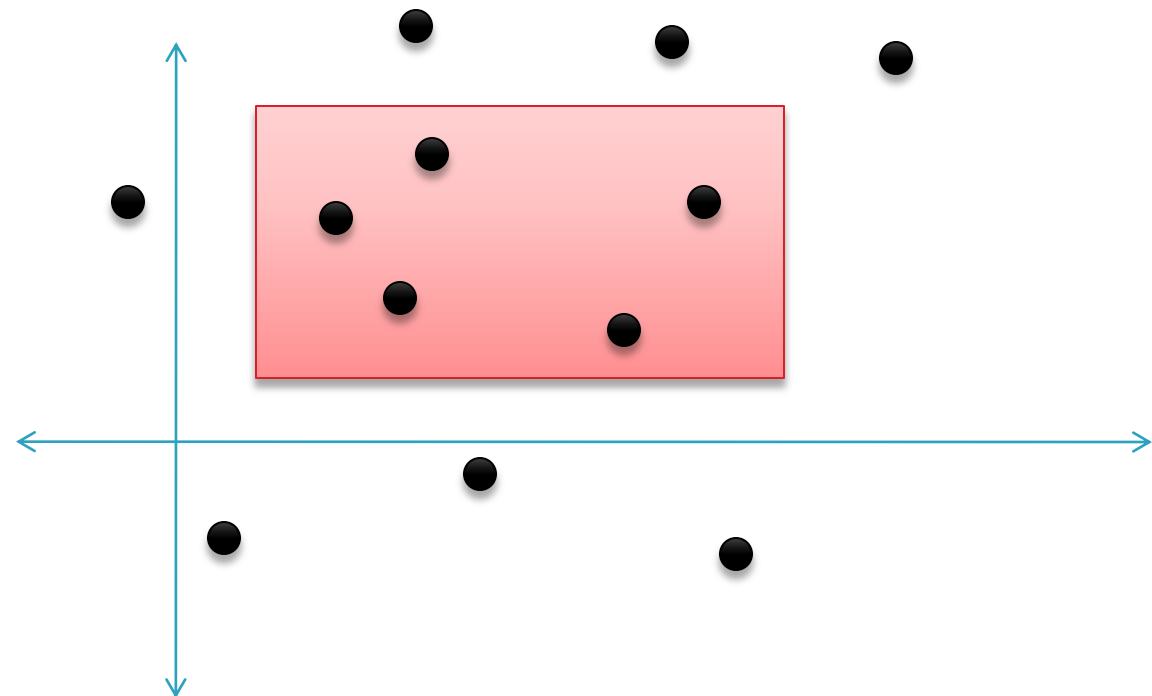
Rectangle Game

- ▶ Fix a rectangle (unknown to you):



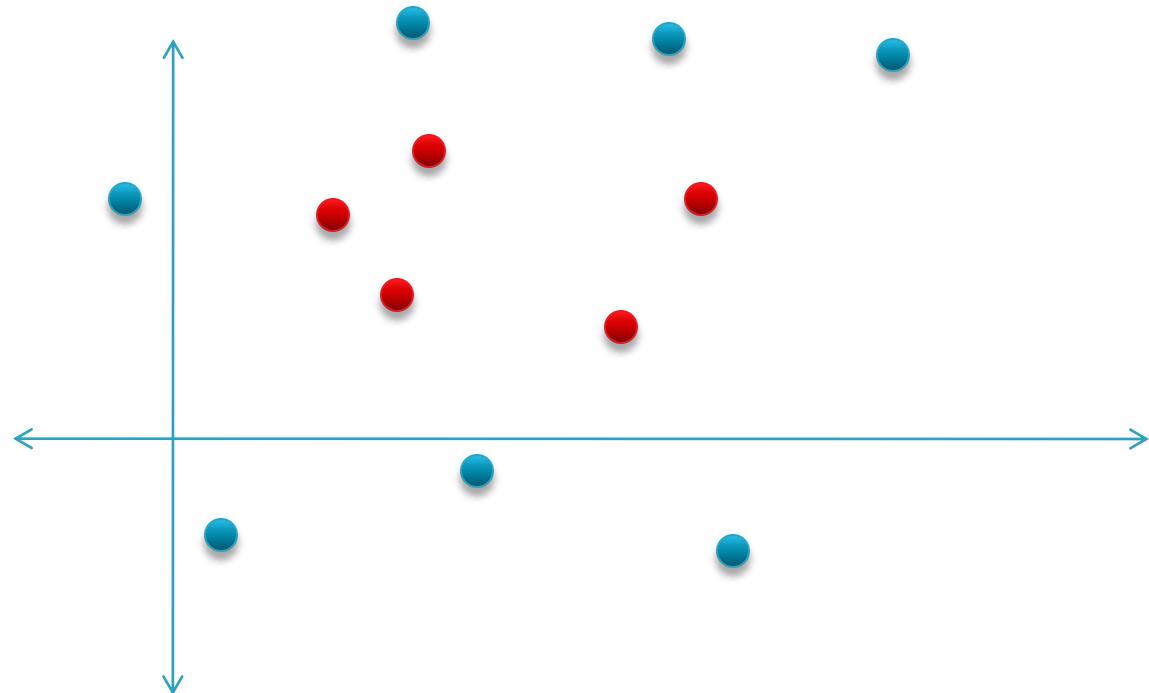
Rectangle Game

- ▶ Draw points from some fixed unknown distribution:



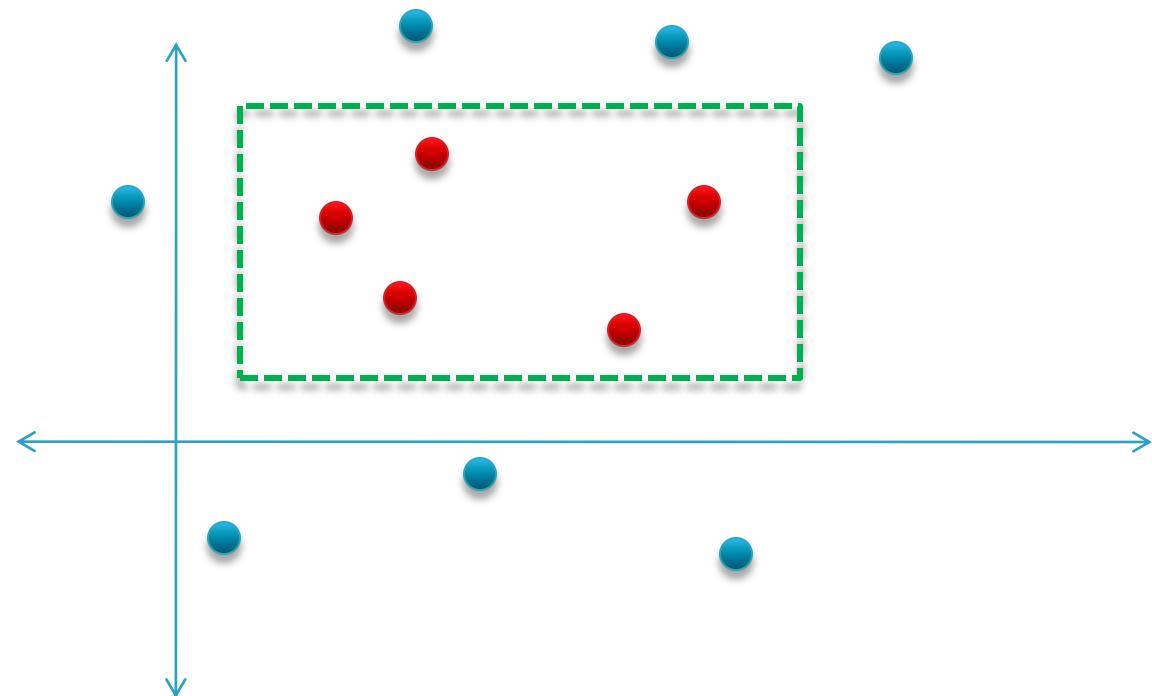
Rectangle Game

- ▶ You are told the points and whether they are **in** or **out**:



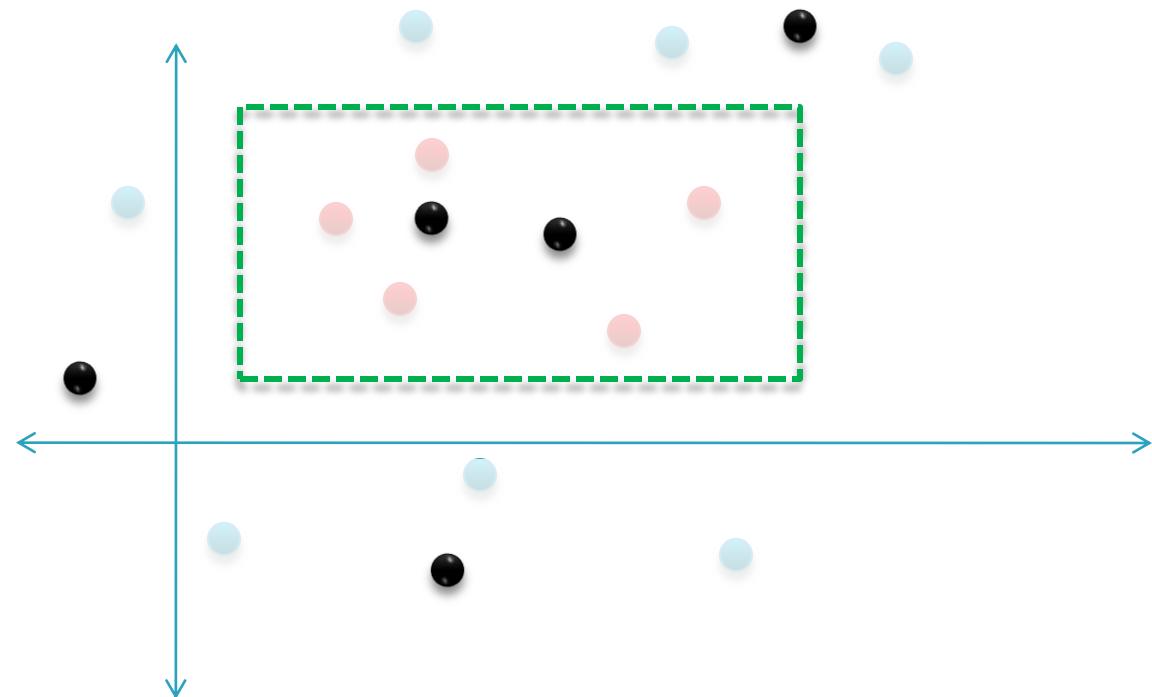
Rectangle Game

- ▶ You propose a **hypothesis**:



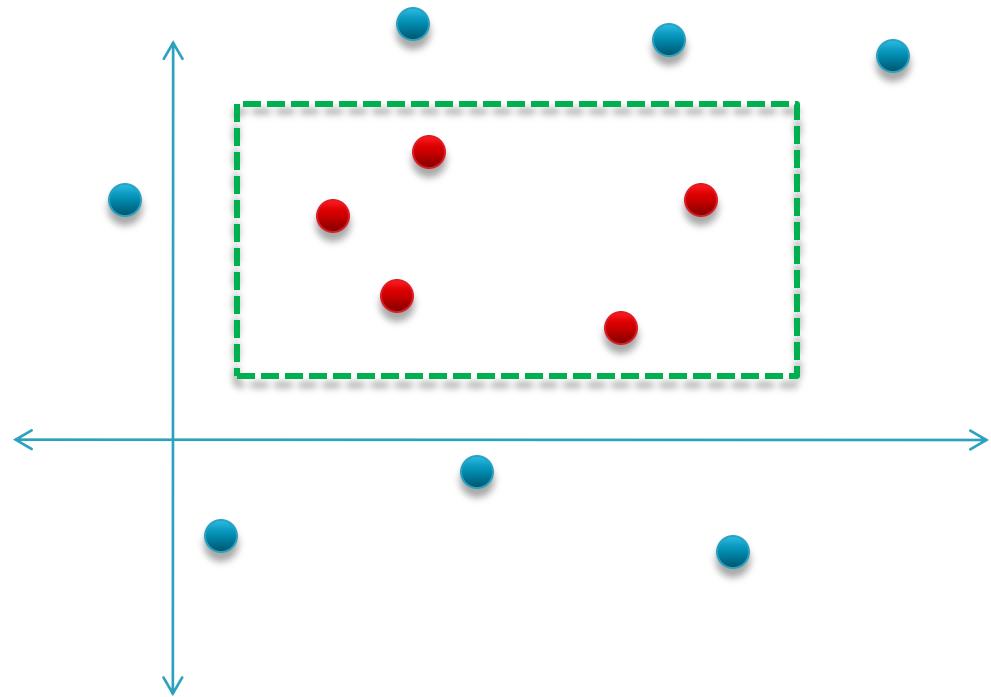
Rectangle Game

- ▶ Your hypothesis is tested on points drawn from the same distribution:



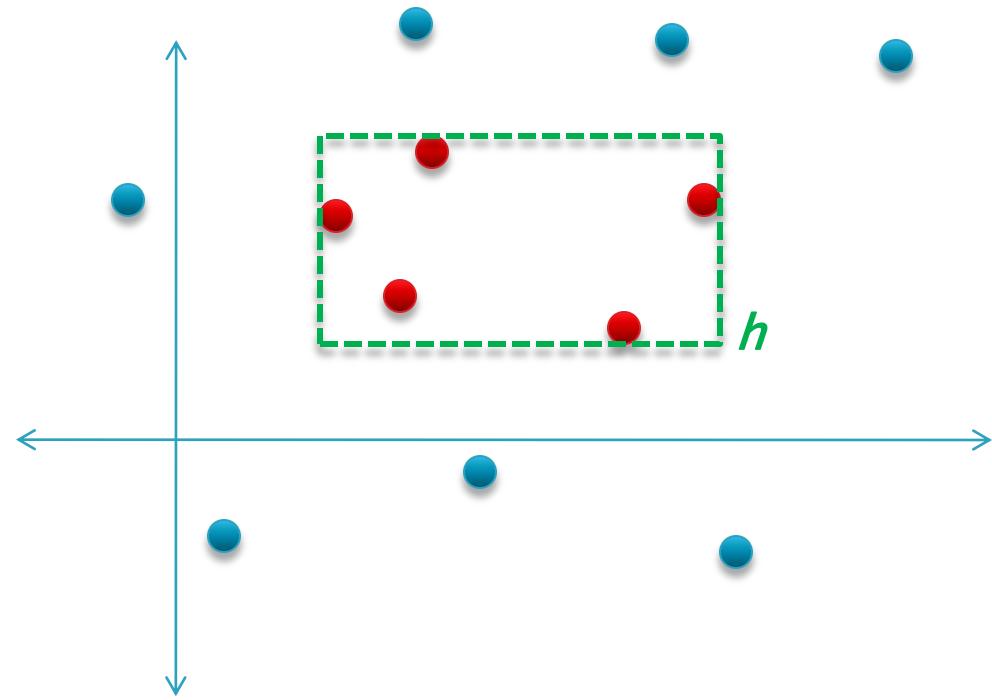
Goal

- ▶ We want an algorithm that:
 - With high probability will choose a hypothesis that is approximately correct.



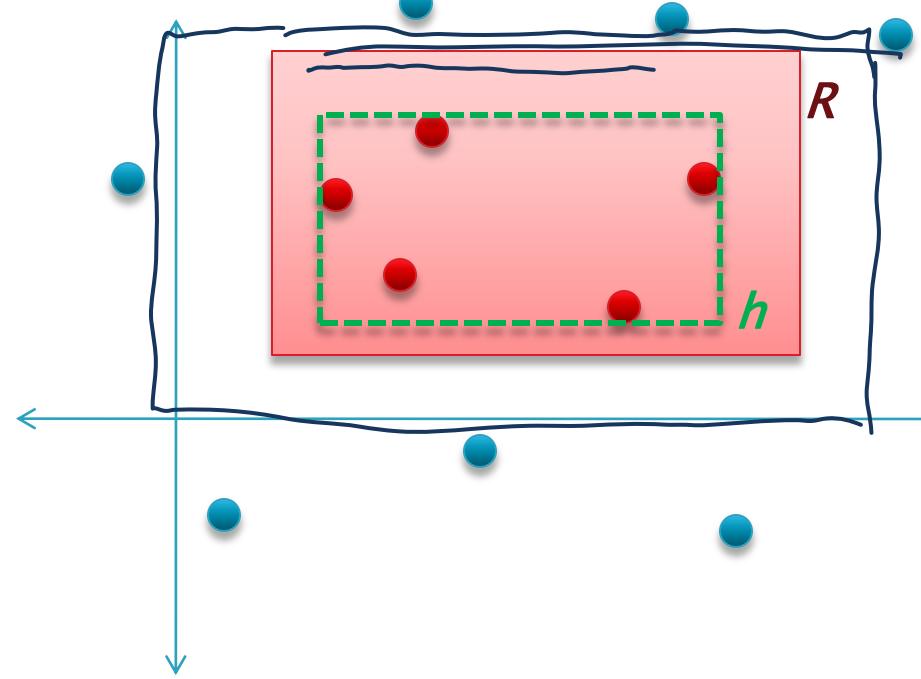
Minimum Rectangle Learner:

- Choose the minimum area rectangle containing all the positive points:



How Good is this?

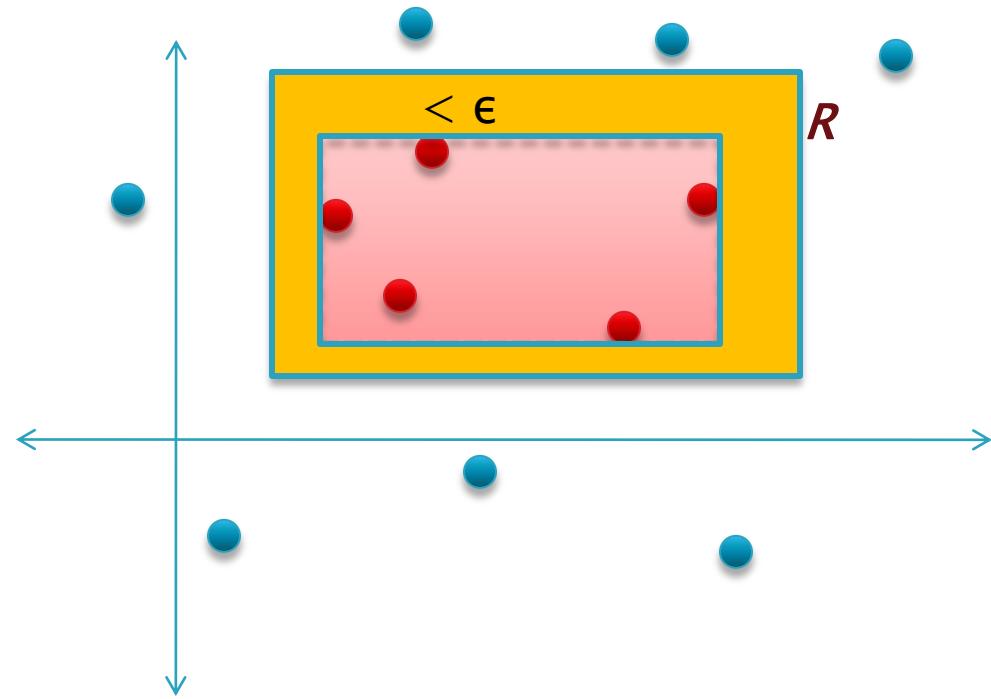
- ▶ Derive a PAC bound:
- ▶ For fixed:
 - R : Rectangle
 - D : Data Distribution
 - ϵ : Test Error
 - δ : Probability of failing
 - m : Number of Samples



$$P(\text{error}_{\text{test}}(h) \leq \epsilon) \leq 1 - \delta$$

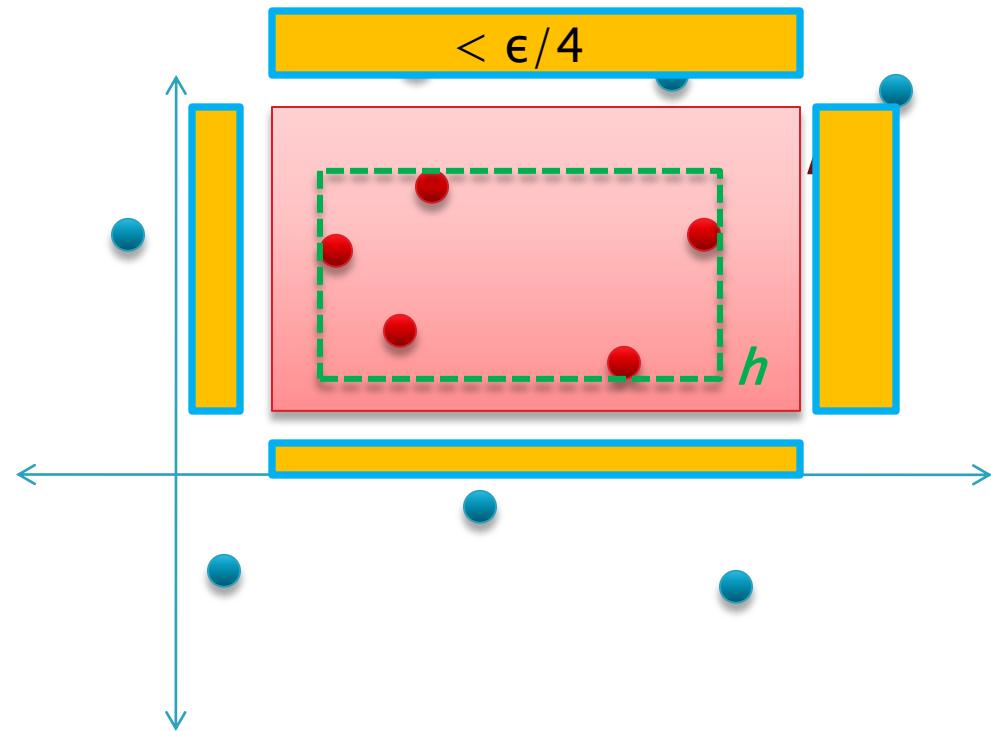
Proof:

- ▶ We want to show that with high probability the area below measured with respect to D is bounded by ϵ :



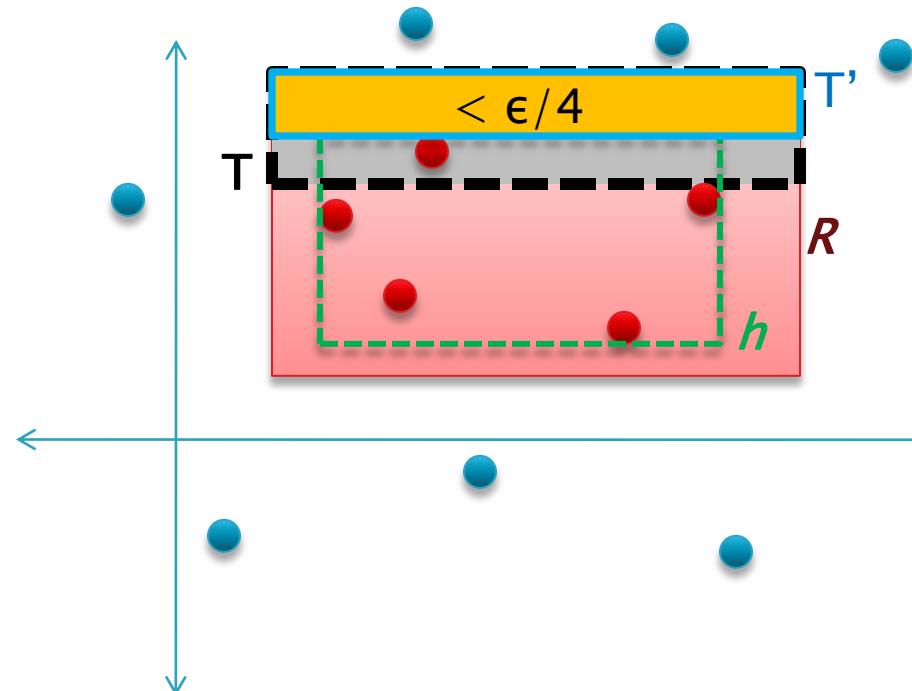
Proof:

- ▶ We want to show that with high probability the area below measured with respect to D is bounded by ϵ :



Proof:

- ▶ Define T to be the region that contains exactly $\epsilon/4$ of the mass in D sweeping down from the top of R .
- ▶ $p(T') > \epsilon/4 = p(T)$ IFF T' contains T
- ▶ T' contains T IFF none of our m samples are from T
- ▶ What is the probability that all samples miss T

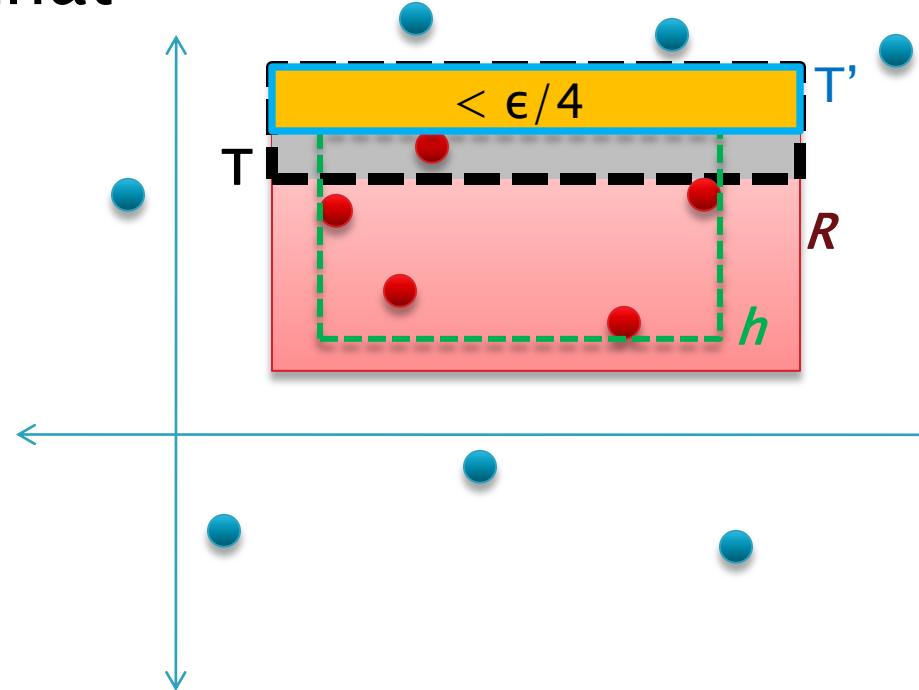


Proof:

- ▶ What is the probability that all m samples miss T :

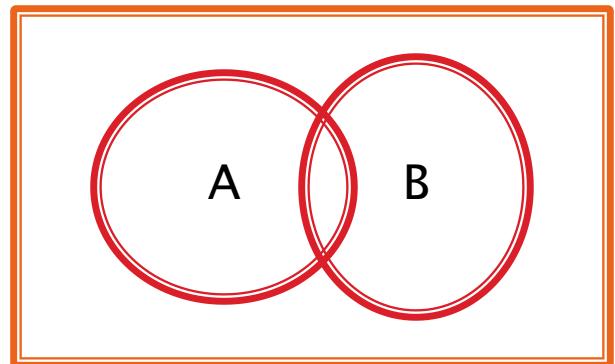
$$\mathbf{P} (m \text{ samples miss } T) = \left(1 - \frac{\epsilon}{4}\right)^m$$

- ▶ What is the probability that we miss any of the rectangles?
 - Union Bound



Union Bound

$$\mathbf{P}(A \cup B) \leq \mathbf{P}(A) + \mathbf{P}(B)$$



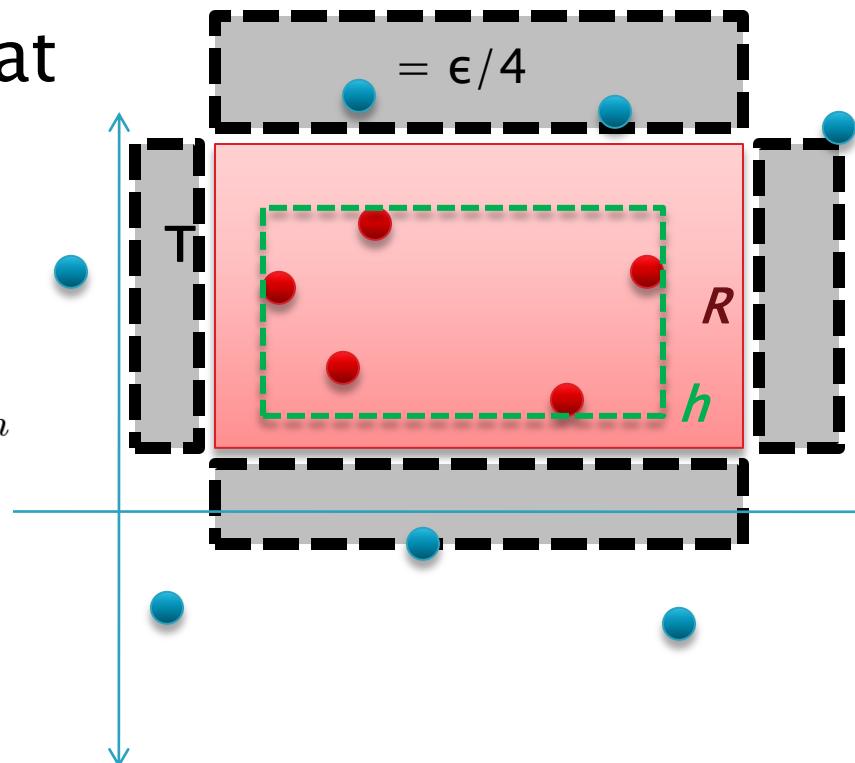
Proof:

- ▶ What is the probability that all m samples miss T :

$$\mathbf{P} (m \text{ samples miss } T) = \left(1 - \frac{\epsilon}{4}\right)^m$$

- ▶ What is the probability that we miss any of the rectangles:
 - Union Bound

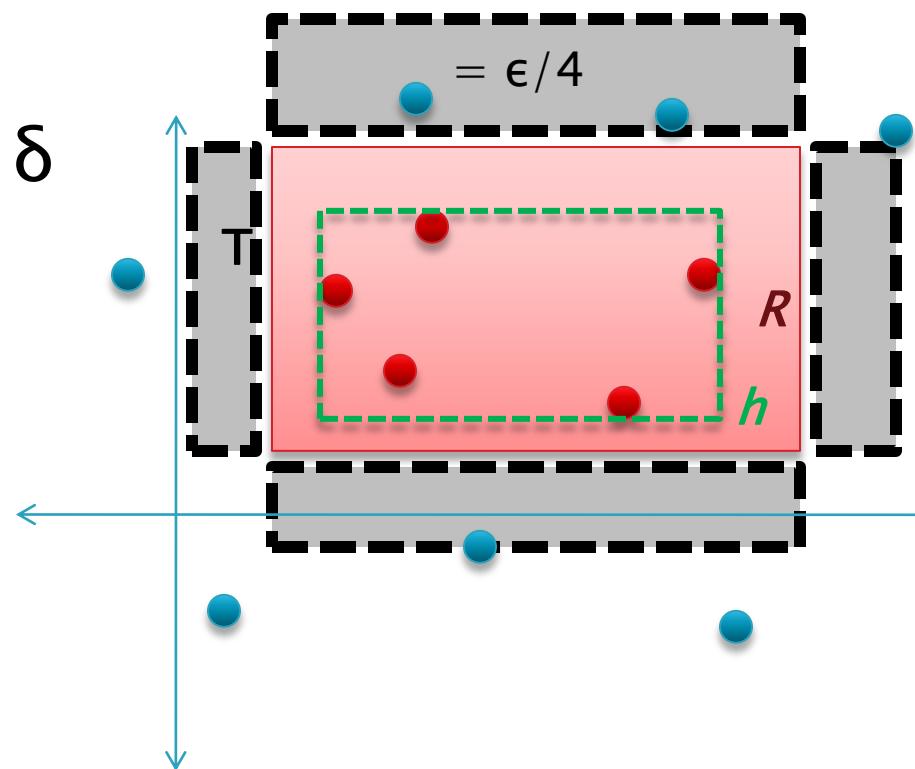
$$\mathbf{P} (m \text{ samples miss any } T) \leq 4 \left(1 - \frac{\epsilon}{4}\right)^m$$



Proof:

- ▶ Probability that any region has weight greater than $\epsilon/4$ after m samples is at most:
- ▶ If we fix m such that:
$$4 \left(1 - \frac{\epsilon}{4}\right)^m \leq \delta$$
- ▶ Then with probability $1 - \delta$ we achieve an error rate of at most ϵ

$$\underbrace{4 \left(1 - \frac{\epsilon}{4}\right)^m}$$



Extra Inequality

- ▶ Common Inequality:

$$1 - x \leq e^{-x}$$

- ▶ We can show:

$$4 \left(1 - \frac{\epsilon}{4}\right)^m \leq 4e^{-m\epsilon/4}$$

- ▶ Obtain a lower bound on the samples:

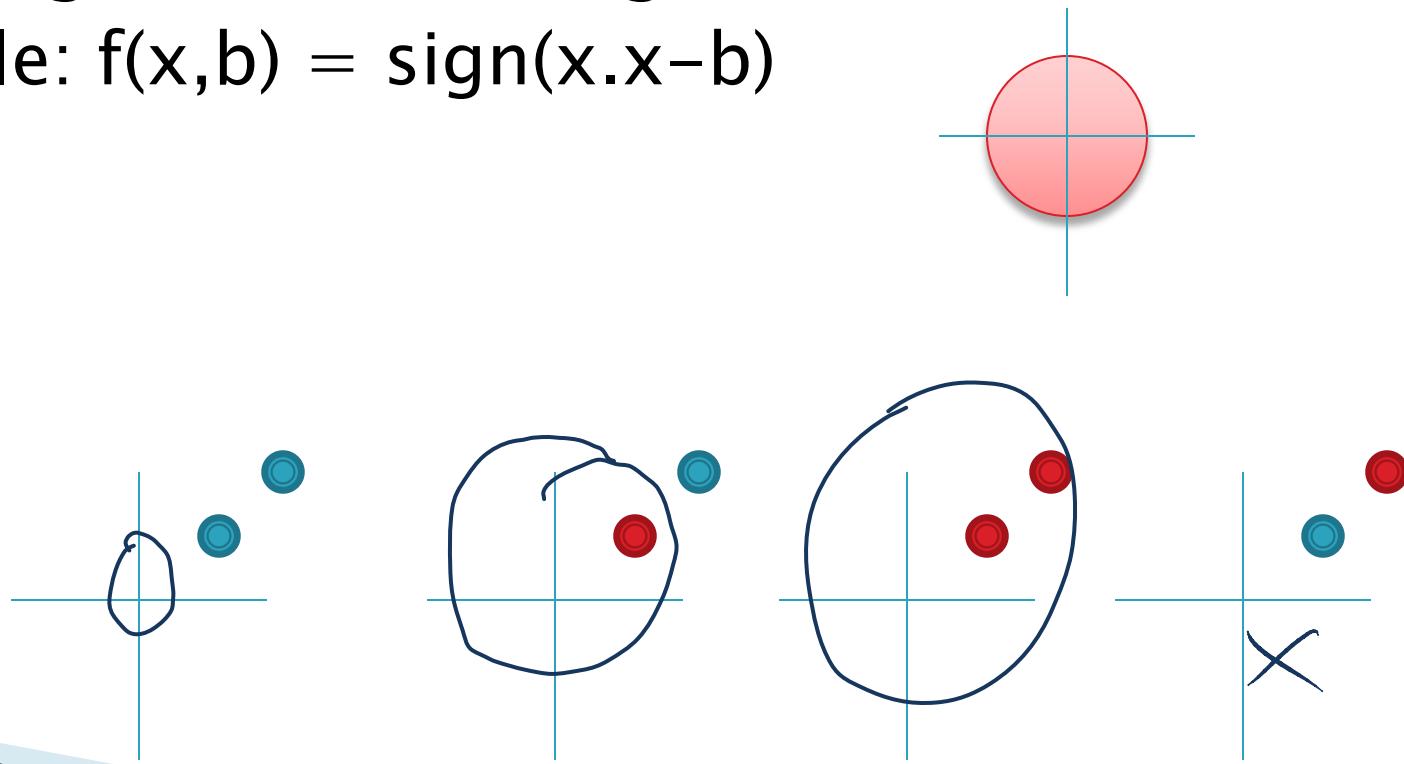
$$m \geq \frac{4}{\epsilon} \ln \left(\frac{4}{\delta} \right)$$

VC – Dimension

- ▶ Provides a measure of the complexity of a “hypothesis space” or the “power” of “learning machine”
- ▶ Higher VC dimension implies the ability to represent more complex functions
- ▶ The VC dimension is the maximum number of points that can be arranged so that f shatters them.
- ▶ What does it mean to shatter?

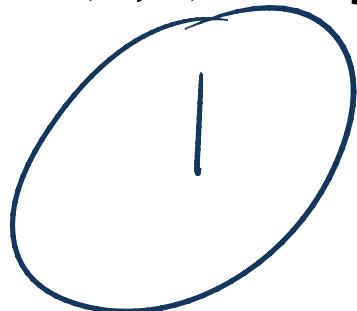
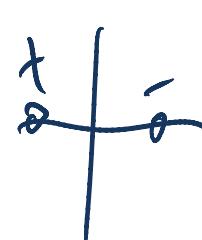
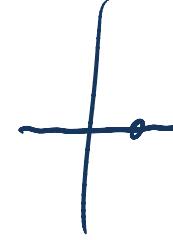
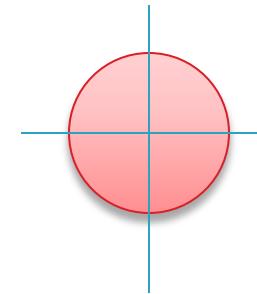
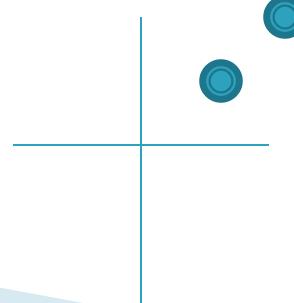
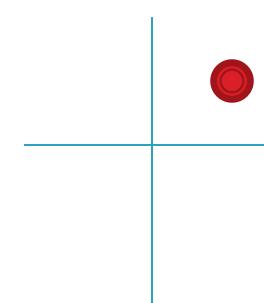
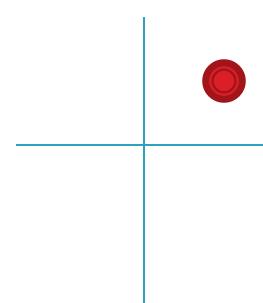
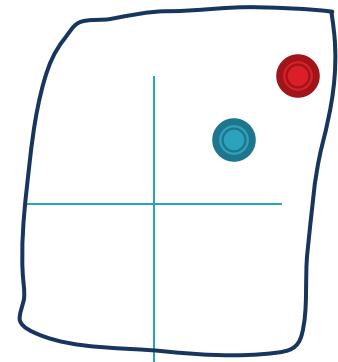
Define: Shattering

- ▶ A classifier f can shatter a set of points if and only if for all truth assignments to those points f gets zero training error
- ▶ Example: $f(x,b) = \text{sign}(x \cdot x - b)$



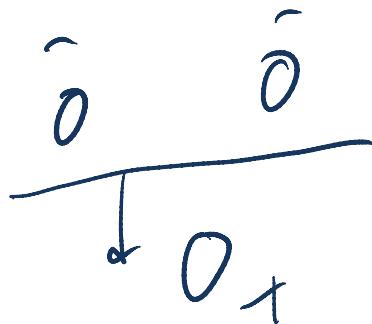
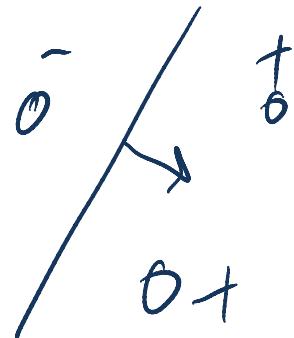
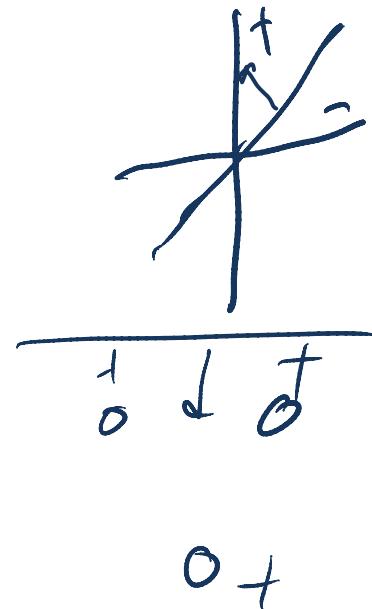
Example Continued:

- ▶ What is the VC Dimension of the classifier:
 - $f(x, b) = \text{sign}(x \cdot x - b)$



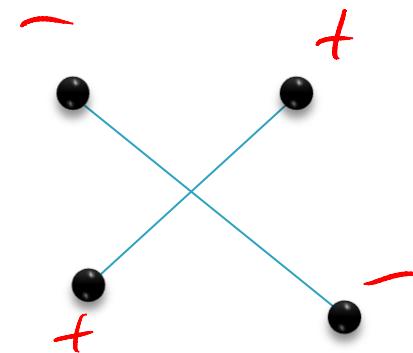
VC Dimension of 2D Half-Space:

- ▶ Conjecture: 3
- ▶ Easy Proof (lower Bound):



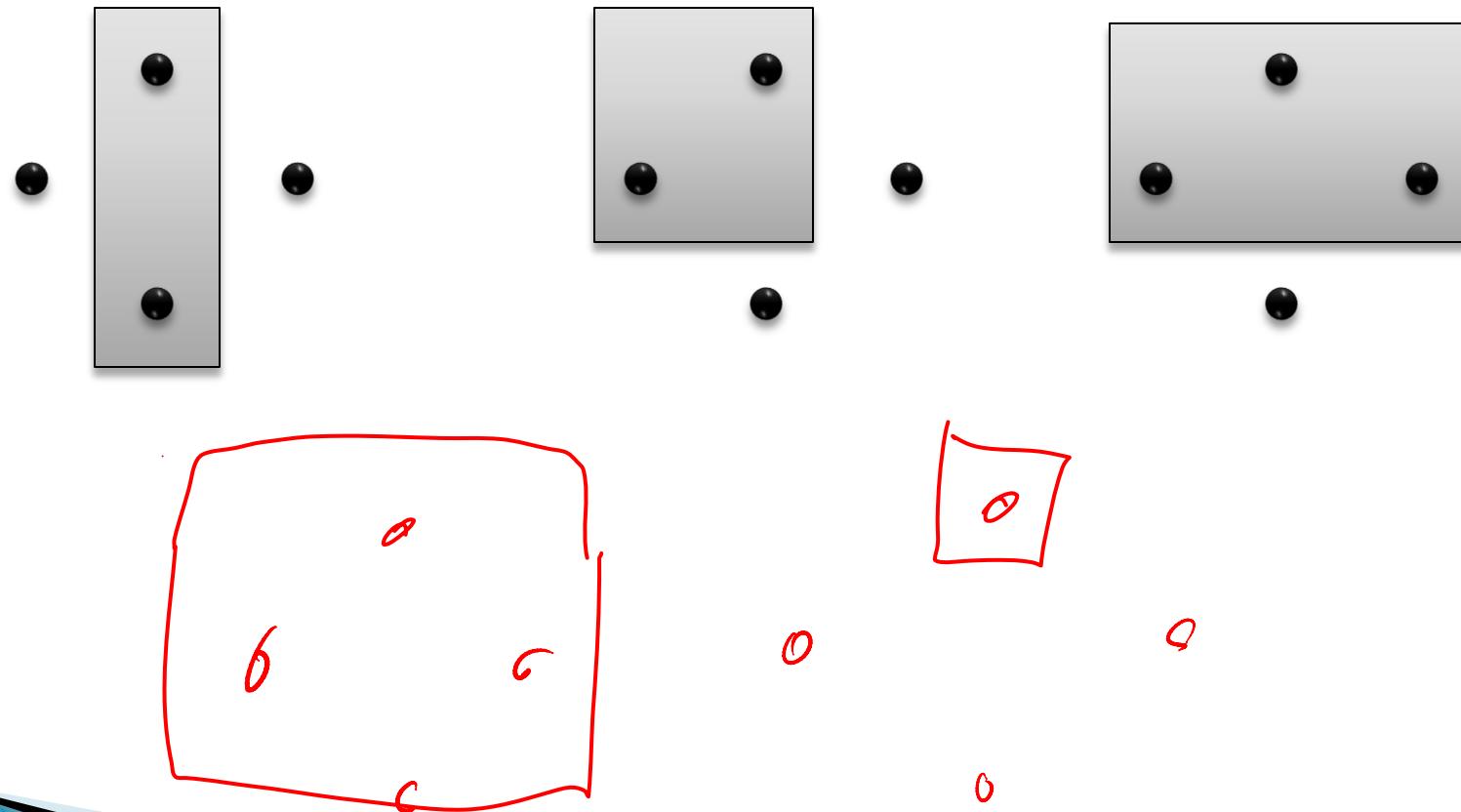
VC Dimension of 2D Half-Space:

- ▶ Harder Proof (Upper Bound):



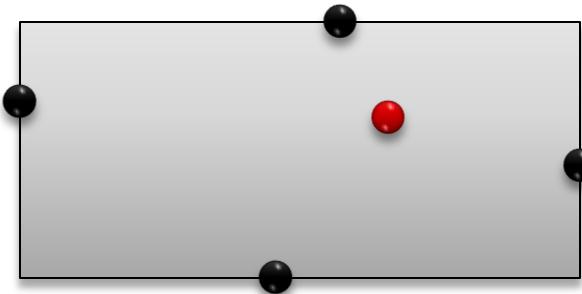
VC-Dim: Axis Aligned Rectangles

- ▶ VC Dimension Conjecture: 4

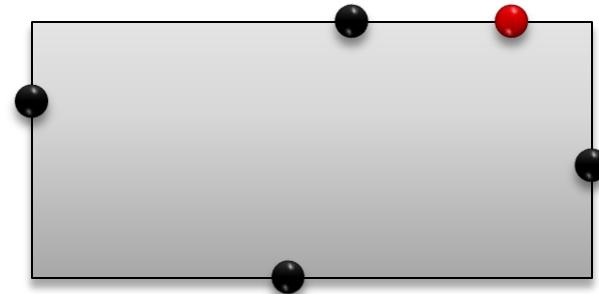
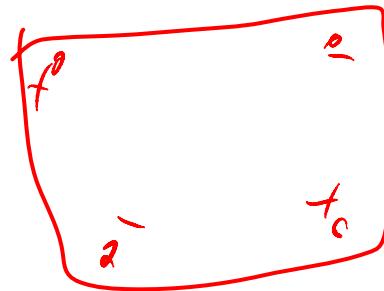


VC-Dim: Axis Aligned Rectangles

- ▶ VC Dimension Conjecture: 4
- ▶ Upper bound (more Difficult):



not



General Half-Spaces in (d - dim)

► What is the VC Dimension of:

- $f(x, \{w, b\}) = \text{sign}(w \cdot x + b)$ $\in \{-1, 1\}$
- X in R^d

► Proof (lower bound):

- Pick $\{x_1, \dots, x_n\}$ (point) locations:

$$X_1 = \underbrace{\{0, 0.5, 1, 0, \dots\}}_d \stackrel{d+1}{\sim} 3$$

$$X_2 = \{1, 0.5, 0.1, \dots\} \stackrel{3}{\sim}$$

$$X_3 = \{0, 1, 0.000000\} \stackrel{3}{\sim}$$

- Adversary gives assignments $\{y_1, \dots, y_n\}$ and you choose $\{w_1, \dots, w_n\}$ and b :

$$y_1 = -1 \Rightarrow b \cancel{=} -1$$

$$y_2 = 1 \Rightarrow w_1 = 2$$

$$\begin{pmatrix} w \\ b \end{pmatrix} = \tilde{x}^{-1}(y)$$
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} w \\ b \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix}$$

Extra Space:

General Half-Spaces

- ▶ Proof (upper bound): VC-Dim = d+1
 - Observe that the last d+1 points can always be expressed as:

$$\begin{pmatrix} -x - 1 \\ -x - 1 \\ -x - 1 \end{pmatrix} \quad \begin{pmatrix} x_{d+2} \\ | \\ 1 \end{pmatrix} = \sum_{i=1}^{d+1} \alpha_i x_i$$
$$1 = \sum_{i=1}^{d+1} \alpha_i$$

$$\tilde{x}_{d+2} = \begin{pmatrix} x_{d+1} \\ | \\ 1 \end{pmatrix} = \sum \alpha_i \begin{pmatrix} x_i \\ | \\ 1 \end{pmatrix} = \begin{pmatrix} \sum \alpha_i x_i \\ \sum \alpha_i \end{pmatrix}$$

▶ Proof (upper bound):

VC-Dim = d+1

$\tilde{w} = \begin{pmatrix} w \\ 1 \\ b \end{pmatrix}$ Observe that the last d+1 points can always be expressed as:

$$\tilde{x}_{d+2} = \begin{pmatrix} x_{d+2} \\ 1 \end{pmatrix}$$

$$\begin{aligned} y_{d+2} &= \text{sign}(\tilde{w} \cdot \tilde{x}_{d+2}) \\ &= \text{sign}(\tilde{w} \cdot \sum \alpha_i \tilde{x}_i) \\ &= \text{sign}(\sum \alpha_i \tilde{w} \cdot \tilde{x}_i) \end{aligned}$$

$$y_{d+2} = -1$$

$$y_i = \begin{cases} -1 & \alpha_i < 0 \\ 1 & \text{otherwise} \end{cases}$$

Contradiction

$$\begin{aligned} x_{d+2} &= \sum_{i=1}^{d+1} \alpha_i x_i \\ 1 &= \sum_{i=1}^{d+1} \alpha_i \end{aligned}$$

$$\sum \alpha_i w \cdot \tilde{x}_i \geq 0$$

$$\Rightarrow y_{d+2} = +1$$

Extra Space