


 Fix a rectangle (unknown to you):
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 Draw points from some fixed unknown 
distribution:



 You are told the points and whether they are 
in or out:



 You propose a hypothesis:



 Your hypothesis is tested on points drawn 
from the same distribution:



 We want an algorithm that:
◦ With high probability will choose a hypothesis that is 

approximately correct.



 Choose the minimum area rectangle containing all 
the positive points:

h



 Derive a PAC bound:

 For fixed:
◦ R : Rectangle

◦ D : Data Distribution

◦ ε : Test Error

◦ δ : Probability of failing

◦ m : Number of Samples
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 We want to show that with high probability the 
area below measured with respect to D is 
bounded by ε :

h

R< ε



 We want to show that with high probability the 
area below measured with respect to D is 
bounded by ε :
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R

< ε/4



 Define T to be the region that contains 
exactly ε/4 of the mass in D sweeping 
down from the top of R.

 p(T’) > ε/4 = p(T) IFF
T’ contains T

 T’ contains T IFF
none of our m samples
are from T

 What is the probability
that all samples miss T
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R
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 What is the probability that all m samples 
miss T:

 What is the probability that
we miss any of the 
rectangles?
◦ Union Bound 
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 What is the probability that all m samples 
miss T:

 What is the probability that
we miss any of the
rectangles:
◦ Union Bound 

h

R
T

= ε/4



 Probability that any region has weight greater than 
ε/4 after m samples is at most:

 If we fix m such that:

 Than with probability 1- δ
we achieve an error 
rate of at most ε

h

R
T

= ε/4



 Common Inequality:

 We can show:

 Obtain a lower bound on the samples:



 Provides a measure of the complexity of a 
“hypothesis space” or the “power” of “learning 
machine”

 Higher VC dimension implies the ability to 
represent more complex functions

 The VC dimension is the maximum number of 
points that can be arranged so that f shatters 
them.

 What does it mean to shatter?



 A classifier f can shatter a set of points if and 
only if for all truth assignments to those 
points f gets zero training error

 Example: f(x,b) = sign(x.x-b)



 What is the VC Dimension of the classifier:
◦ f(x,b) = sign(x.x-b)



 Conjecture:

 Easy Proof (lower Bound):



 Harder Proof (Upper Bound):



 VC Dimension Conjecture:



 VC Dimension Conjecture: 4

 Upper bound (more Difficult):



 What is the VC Dimension of:
◦ f(x,{w,b})=sign( w . x + b )

◦ X in R^d

 Proof (lower bound):
◦ Pick {x_1, …, x_n} (point) locations:

◦ Adversary gives assignments {y_1, …, y_n} and you 
choose {w_1, …, w_n} and b:





 Proof (upper bound): VC-Dim = d+1
◦ Observe that the last d+1 points can always be 

expressed as:



 Proof (upper bound): 
VC-Dim = d+1
◦ Observe that the last d+1 points 

can always be expressed as:




