
15-712 Systems Final Report

Methods for Recognizing Service Quiescence

Gregory Hartman Jack Lin Michael Merideth

December 12, 2002





Abstract

Our motivation for this project is evaluating our hypoth-
esis that if we had a variety of statistics concerning pro-
cess resource consumption, we would be able to deter-
mine whether and when a process is quiescent.1 We in-
strument the Linux operating system to allow us to gather
relevant statistics, and write a second program, which we
call QAnalyzer, that allows us to analyze these statistics,
looking at variations in process resource consumption to
determine whether and when a process is quicescent. Fi-
nally, to evaluate our hypothesis, we perform experiments
in which we vary the behavior of the process under obser-
vation. Our results show both that we can determine when
a process is not quiescent, and that certain classes of pro-
cesses do post-processing when they would be expected
to be quiescent.

1 Introduction

Before safely checkpointing the state of a service (that is,
a server process providing an interface to an indeterminate
number of clients), it must be ascertained that the service
is quiescent. Without knowledge of the internal struc-
ture of a service, one would have difficulty in determin-
ing points of quiescence. For example, consider a simple
client-server application, in which we treat the service as
a black box. We might propose that the service would be
quiescent when there are no outstanding client requests.
For the purpose of simplifying this example, let us assume
it is true that every client request is followed by a service
response. Thus, we might propose monitoring the net-
work connection at the service for incoming requests, and
pairing these requests with responses. We might assume
then that as soon as the service sent a response, if upon
pairing this response with its request we determined that
there were no additional requests outstanding, the service
would be quiescent. However, this is an unsafe assump-
tion. The service might, for example, issue a response and
then do internal post processing of data it accessed.

In this paper we evaluate the hypothesis that by per-
forming analysis on statistics of server utilization of a va-
riety of resources, we could greatly increase our confi-
dence that a service is indeed quiescent.

To gather the necessary statistics, we modify the kernel
to track resource utilization on a per process basis. We
gather the following information:

• CPU utilization

1We define a quiescent process as one that is doing no processing.

• Bytes sent over the network

• Packets sent over the network

• Number of page faults

• Number of disk blocks touched

In some applications, resource utilization fluctuates
even in the case where the application truly is quiescent.
We test our ability to determine quiescent points with our
statistics by first writing small test-case applications that
consume one or more system resources. We then explore
detection of garbage collection in Java, and regular X11
application resource usage with emacs running against
an X server. These applications consume resources even
when they are quiescent.

Performance and resource consumption is a concern
in nearly all operating system and distributed system re-
search. The tools we have created to identify quiescent
states may have broader application in characterizing the
resource requirements of various servers. In turn, this
could allow system administrators or automated systems
to identify combinations of processes that would run well
on a single server.

We ask the following questions during the evaluation:

• Using our techniques, can we see a significant differ-
ence between active and inactive applications?

• Can we detect post-processing in any of the applica-
tions?

In Section 2 we survey related work. In Section 3 we
discuss our system design. Section 4 describes our testing
methodology. Section 5 gives the results of our tests. Sec-
tion 6 enumerates deficiencies in our current design and
gives plans for future work. Section 7 concludes.

2 Related Work

2.1 Quiescence

Kramer and Magee [13] provide a fundamental definition
of quiescence as the property that “[a] node is not within
a transaction and will neither receive nor initiate any new
transactions". They rely on application nodes to become
quiescent when instructed to, and provide an algorithm for
moving a group of nodes into a quiescent state within a
bounded period of time. However, they cannot guarantee
at runtime that any particular node has in fact complied
with instructions.

Bidan et. al. [3] follow [13], but attempt to minimize
impact on concurrency by reducing the number of nodes

1



that must be made quiescent at any one time. They do
this by restricting their technique to systems built from
multi-threaded nodes, and passivating only a part of each
node. Their technique additionally loses some degree of
generality by ignoring problems that would be caused by
the presence of procedure call cycles.

Both PODUS [18] and ABACUS [1], which operate at
the procedure granularity level, recognize quiescence by
determining when a procedure is inactive. This method is
not directly comparable to ours as it is more fine grained
than our process based approach.

Gagliardi, et. al., [9] require that a module send no-
tification, to a third party component, of any IPCs it is
issuing. In this way, the third party can determine at any
point in time which of the modules it is managing are qui-
escent. This system works on the assumption that when a
module has no outstanding IPCs, it is indeed quiescent.

Tewksbury and Moser et. al., [19] [15] [16] define ob-
ject quiescence as any state in which the object is not
executing any of its methods. They outline two reasons
why they need object quiescence in their system for per-
forming live upgrades. First, their method involves object
replication and consistent extraction of the state from mul-
tiple copies of a replicated object. Second, their method
provides the ability to perform arbitrarily complex up-
grades in which multiple objects are changed. They guar-
antee consistency by providing an atomic switch-over op-
eration, which mandates the quiescence of all objects in-
volved in the switch-over. They might benefit from our
method of determining quiescence, as they state explicitly
that they “cannot ensure the quiescence of an object which
contains one-way, or asynchronous, operations unless the
completion of a one-way operation is signaled somewhere
to the infrastructure".

Hauptmann and Wasel [10] require that the pro-
grammer specify points of quiescence explicitly. In
POLYLITH, Hofmeister and Purtilo [11] provide addi-
tional mechanisms for exporting the state of a process
even if it is in the midst of a procedure call and even if
procedure calls can be nested to arbitrary levels of depth.
By not requiring that that programmer identify points in
the code where a process is quiescent they reduce the con-
ceptual burden. However, in order so that POLYLITH can
restore the state of the process in another location, the pro-
grammer still must name explicit reconfiguration points.

Our concept of quiescence is closely related to those
just discussed, i.e., a point in which it is safe to export
the state of some module, thread, or procedure, etc. How-
ever, it is important to note that different authors in various
communities may use the term quiescence in very differ-
ent lights. For example, McKenney and Slingwine [14]

are interested in quiescent threads in order to construct a
lightweight locking policy for shared data. However, they
more narrowly define a quiescent state of a thread as one
in which the thread holds no locks for any shared data ob-
jects.

2.2 Resource Consumption

Chang et. al. [4] propose user-level sand-boxing to con-
strain application resource consumption. They use a com-
bination of API interception and existing kernel statistics
to limit the application’s CPU, memory, and network us-
age. This paper also describes an algorithm to quickly de-
termine that a process is waiting. This algorithm may be
able to discover quiescent processes. We will be adding
kernel statistics to track many network and disk resource
consumption on a per application basis. This should re-
duce the need for API interception. In addition, our ap-
proach will allow system administrators to track resources
for all of the applications on a system, not just the ones
that are running in a sand-box.

Chang and Karamcheti [5] propose using these sand-
boxes to gather information to allow automatic run-time
adaptation of applications. By gathering statistics for all
of the processes on the system and making these statistics
available to all applications, we may allow these applica-
tions to make better decisions.

Druschel and Banga [7] point out that the CPU re-
sources consumed by network traffic are generally not as-
sociated with the application that caused the traffic. They
propose a systems, called lazy receiver processing, to cor-
rect this problem and to provide better server throughput
under high loads. We will not be able to address this con-
cern in our implementation. As a result, we may over-
estimate the CPU utilization of some processes on sys-
tems that are experiencing high network traffic.

Banga et. al. [2] point out that many server systems
need to track resources at a finer granularity than the pro-
cess and thread level. They propose a new operating sys-
tem abstraction called a resource container. They extend
the lazy receiver approach to associate the kernel pro-
cessing for network traffic with the appropriate container.
Since quiescence happens at a process level, we do not
need the fine-grained resource tracking that resource con-
tainers provide. However, we may be able to use resource-
containers in the future to discover which clients are pre-
venting processes from entering a quiescent state.

Jones et. al. [12] have implemented a system that tracks
resources at the provider. Applications contact a planner
to reserve resources. The planner, in turn contacts the
provider. The provider tracks the actual resource utiliza-

2



tion, and contacts the planner when activities exceed their
allocations. Our system does not need to reserve or al-
locate resources. However, we will be instrumenting the
Linux kernel near the resource providers to track resource
utilization. By tracking the extent of these modifications
we could estimate the difficulty of porting this planning
system to the Linux kernel.

Compton and Tennenhouse [6] attempt to gather CPU
statistics to allow individual applications to shed load.
When the system was implemented, it was difficult for
applications to obtain system load statistics and the CPU
utilization for the current process. In addition, when mul-
tiple applications were running on a system one applica-
tion tended to consume the majority of the resources. At
the end of the paper, they list information that would help
the applications to make better decisions. We will gather
statistics for many of the items on this list.

3 Design

Our test system can be divided into three primary com-
ponents: the kernel modifications to implement resource
counters, the process that gathers these counters at fixed
intervals (QAnalyzer), and the test applications. In this
section, we discuss the kernel modifications and QAna-
lyzer. In the next section, we describe the tests and test
applications.

3.1 Kernel Enhancements

We discovered that there are several useful resource coun-
ters in the current Linux kernel. The number of page faults
is already available through /proc/<PID>/stat. The minflt
parameter gives the number of page faults that didn’t re-
sult in a page being loaded into memory, and the majflt
parameter gives the number of faults that required page
loading. The CPU time is also available through this in-
terface in the utime and stime parameters.

These parameters are stored in the task_struct. There
are no parameters for the number of disk blocks touched,
number of bytes of network traffic, or the number of net-
work packets sent and received.

We have added the following values into the
task_struct:

dskblks Number of disk blocks accessed
cdskblks Number of disk blocks accessed by

children
roctnet Number of octets (bytes on most

systems) received for this process
rpktnet Number of packets received for this

process
soctnet Number of octets sent for this pro-

cess
spktnet Number of packets sent for this pro-

cess
croctnet Number of octets received for the

children of this process
crpktnet Number of packets received for the

children of this process
csoctnet Number of octets sent for the chil-

dren of this process
cspktnet Number of packets sent for the chil-

dren of this process

We encountered several issues as we added the new
counters to the kernel. The c* counters in the parent pro-
cess are updated when the child exits: parent->cminflt
= child->minflt + child->cminflt. The man page for the
/proc filesystem implies slightly different behavior. We
have elected to implement the new counters so that they
behave like the existing counters in the kernel.

We have added a new file, called “resuse”, into the di-
rectories for each process. resuse contains the PID, min-
flt, majflt, utime, and stime parameters, along with the
new parameters mentioned in the table above. All of these
parameters are represented as space delimited 32 bit un-
signed integers encoded in the ASCII character set. A
single newline comes after the last parameter. We dupli-
cate some of the parameters that are found in other proc
files to make the implementations of QAnalyzer easier to
build. Seeking resuse to offset 0 will cause the kernel to
refresh resuse with new data.

Threads in Linux are assigned PIDs. As a result, each
thread may have its own task structure in the kernel. There
is no easy way to distinguish threads and regular processes
from user space. Theps application does suppress threads
by comparing the command line arguments and virtual
memory size of each process to its parent. When all of
these parameters match, ps assumes that the process is a
thread. QAnalyzer should not have to duplicate this hack,
so we added code to place the statistics for child threads
on additional lines in the resuse file, following the line for
the parent. However, there is a 4k limit on the file size in
the kernel. This effectively limits the number of threads
that can be returned to about 16. When this happens, the

3



last line of the file is "*". QAnalyzer can detect this condi-
tion by examining the return value from scanf. This mod-
ification causes the proc filesystem code to lock the task
list and scan every task in the list to discover the threads.
Other code in the Linux kernel uses the same approach to
locate threads.

These modifications allow QAnalyzer to total the re-
sources used for the process. The resources consumed
by threads are counted as resources used by children, so
QAnalyzer can accurately measure resource consumption
for processes with many short-lived threads by examining
the c* values of the initial thread of the process.

We discovered a bug in the counter handling in the
Linux kernel. If a process is killed, the process’s coun-
ters are added to its parents as expected. However, if the
process has threads, only the time for the initial thread is
added to the parent; the other threads are added to theinit
task. This problem does not occur if threads exit before
the parent process dies. We suspect that this bug is caused
by the order of operations in Linux: when the signal is de-
livered to the parent, the threads are re-parented to the init
process. When the signal is delivered to the threads, they
die and add their time to the init process. This bug should
be fixed to make the c* counters more reliable, but we did
not attempt to fix it during the duration of this project.

We wanted to be certain that our patches were localized
to a small set of files in the kernel. We especially wanted
to avoid patching specific device drivers and filesystem,
since patching in these areas may cause the counters to
fail when the configuration of the test system changed. As
a result, we have placed the increments for the disk based
counters in the generic_file_read and generic_file_write
functions.

Some specific filesystems do not use the generic_file
routines. As a result, we will not see operations to these
filesystems. In the 2.4.19 kernel, the following filesystem
are affected: pipe, coda, devfs, hfs, ncpfs, ntfs, proc, in-
termezzo, jbd, and the openpromfs. In the last three, we
will detect reads, but not writes. We suspect that some of
these filesystems do not support writing.

We made small changes to the following files to imple-
ment the new counters:

fs/proc/array.c Add code to return the val-
ues of the counters

include/linux/sched.h Add the new counters to
the task structure

kernel/exit.c Increment the parent’s
statistics when a task exits

kernel/fork.c Initialize the new statistics
to zero

mm/filemap.c Increment the counters for
file operations

net/socket.c Increment the counters for
network operations

3.2 QAnalyzer

We have implemented QAnalyzer in C. QAnalyzer peri-
odically gathers and accumulates observations, which it
builds from the kernel enabled statistics. QAnalyzer em-
ploys interval timers to ensure that delays in sampling do
not accumulate as QAnalyzer runs.

QAnalyzer records timestamps in its logs, and many
of our test applications write output messages indicating
when they are active and when they are idle. Since both
processes use the same clock, we are able to compare our
application’s behavior with the information in the QAna-
lyzer logs. This would also allow us to detect when mul-
tiple intervals collapse into a single observation, though
this has not occurred during our testing.

While refining our test plan, we realized that our
planned statistical model could be implemented as a con-
fidence interval for each of the resources we are monitor-
ing (perhaps with an additional overall model to evaluate
the significance of multiple resources varying together).
This would be less expensive than, but equivalent to, hy-
pothesis testing for each observation, and would allow
us to run our quiescence analysis in real time in QAna-
lyzer. The reason for the efficiency improvement is that
the components of each observation would merely need
to be checked against their respective resource confidence
interval.

4 Evaluation Framework

From the outset we had planned to empirically model the
resource consumption of a quiescent process. We had ex-
pected that a process’s resource consumption would fluc-
tuate even while the process idled. This modeling stage
became simplified when it became clear that many UNIX

4



processes consume no resources while idle. See the re-
sults section for a discussion of this topic.

We have written a suite of four test applications to con-
sume specific resources.spinner consumes user mode
CPU time by looping over an increment operation on a
variable. client continually sends data via a socket con-
nection toserver which reads the data.reader reads a
large file from disk. By monitoring the resource consump-
tion of each of these programs, we are able to confirm that
the resource counters in the kernel are working.

We also monitor the resource consumption of a number
of real-world applications, including tcsh, emacs running
against an X server, and the Java Virtual Machine (JVM).
In doing so, we show that a single simple model of quies-
cence is not sufficient for every class of application.

Our JVM tests are an attempt to validate whether we
can detect offline or post-processing activity not directly
initiated by our own programs. By testing this, we demon-
strate that internal knowledge of program behavior is not
necessarily enough to determine quiescence if, for exam-
ple, the program is tied to other processes.

The QAnalyzer timestamps aid us in evaluating the ef-
fectiveness of our approach by allowing us to compare
observations with known points of quiescence, which we
have our test programs signal upon entry and exit.

All along it has been an important goal to ensure the re-
producibility of our results. For this reason we collected
multiple datasets for test run of each process we moni-
tored, and we varied QAnalyzer’s sampling frequency for
each of the many test runs we performed.

We ran these tests on RedHat Linux 8.0 and a modified
2.4.19 kernel. The test system had one 200 MHZ Pentium
Pro processor, with 8k of Level 1 I cache, 8k of Level 1 D
cache, 256K of Level 2 cache, and 256MB of 70ns RAM.
ECC and write-back caching are enabled. The disk was
a 4G Seagate ST34371W, connected to an Adaptec 2940
UW SCSI controller. The drive was partitioned with a 1G
swap partition and 3G ext3 partition which is mounted as
the root. The system was connected to the network, but is
sitting behind a NAT/router.

This system initially exhibited some stability problems.
When we ran non-stop kernel compiles with the unmod-
ified RedHat kernel from the 8.0 distribution, the system
spontaneously rebooted after about 12 hours. So, we first
tested the modified kernel on a different system to avoid
running into the known stability problems on our test sys-
tem. The kernel ran for 18 hours while doing constant
kernel compiles and running cat /proc/*/resuse once per
second. No crashes, faults, or memory leaks appeared.
Since moving the modified kernel to the test system, the
test system has been entirely stable.

5 Results

Our experimental results show that certain quiescent pro-
cesses consume no measurable quantities of the resources
we track. For example, we were unable to detect any re-
source consumption in an idle UNIX tcsh shell process.
However, this fact increases our confidence that when we
observe fluctuations in resource consumption, we are, in
fact, viewing an active process.

We present the results of controlled tests, in which we
monitor the resource consumption of programs we wrote
specifically to test our ability to track individual resource
use.

We are able to distinguish between periods of activity
and periods of quiescence in a Java process we wrote.
We were also able to find an example of process post-
processing, in the concurrent garbage collector of Sun’s
Java Runtime Environment (JRE), version 1.4.1.

5.1 Correctness of Method - Targeted Tests

Figures [1,2,3,4] show the results of our test suite of appli-
cations. Each of these tests was designed to test a specific
type of of resource; our results show that we are able to
detect this resource consumption.

Setting out in this project we hypothesized that quies-
cent UNIX processes exhibit a low, but non-zero, level of
fluctuating resource consumption. As can be seen in the
charts in this section, the quiescent shell process (tcsh),
consumes none of our tracked resources at any rate we
can detect. The result of this realization is that our model
of a quiescent process is very simple: if we detect that a
process is consuming any amount of resources, it is not
quiescent; if a process is not consuming resources, is it
quiescent.

5.2 Quiescent Processes that Consume Re-
sources

When we expanded our tests to include an idle emacs pro-
cess, we discovered that it did consume resources. First, it
sent periodic traffic to the server to flash its cursor. In ad-
dition, it received events for mouse events over the emacs
window.

We utilized Xnee to implement our test on emacs run-
ning against X server. Xnee records X11 protocol data
such as Xevents from the local X server into log files
and later, uses those recorded log files to replay those
events.2 The keyboard events are sent to whichever win-

2While we specified that Xnee record only the keyboard events, Xnee
is also capable of capturing mouse events.

5



0 20 40 60 80 100

client

server

spinner

reader

shell

Jiffies / sec

utime
stime

Figure 1: The average number of jiffies per second that
each process was scheduled. The bars are stacked in this
graph. There are 100 jiffies per second on the test system.

1 10 100 1000 10000 100000

client

server

spinner

reader

shell

Blocks / sec

dskblks

Figure 2: Graph of the number of blocks / second on a
logarithmic scale.

dow is in focus; in our case, we clicked on the emacs win-
dow to bring it to the front in order to direct keyboard
events there. In addition, we modified Xnee source code
to output the system time stamps right before the keyboard
events are replayed, so that we can compare periods of
recorded program activity against the period of resource
consumption output by the QAnalyzer.

Figures [5,6,7] show correspondences between known
program activity periods and resource consumption, and
illustrate the contrast between the resource consumption
during idle periods with consumption during typing. It
is interesting to note in Figure 6 that even when the pro-
gram is quiescent, there is small, but non-zero, network
resource consumption. The network bytes sent are due
to the blinking cursor that appears in the emacs windows.
Under this circumstance, it is still trivial to discern quies-
cence from activity by looking at the number of bytes sent,

1 100 10000 1000000 100000000

client

server

spinner

reader

shell

octets / sec

soctnet
roctnet

Figure 3: Graphs of the number of octets transmitted and
received per second on a logarithmic scale.

1 10 100 1000 10000 100000

client

server

spinner

reader

shell

Packets / sec

spktnet
rpktnet

Figure 4: Graph of the number of packets sent and re-
ceived per second on a logarithmic scale. The packet
counters currently count system calls, not network pack-
ets.

without even examining the other recorded resources such
as the number of bytes received or utime.

5.3 Detecting Activity

Going into our evaluation, we shared the collective hy-
pothesis that the Java Virtual Machine (JVM) garbage col-
lector would run in the background, if given the chance.
To test this, we designed and built a Java program that
allocates memory, nullifies its reference to the memory,
goes to sleep for a fixed interval of time, and then begins
again. The program creates a time stamp when the pro-
cess goes to sleep and another when it wakes. Comparing
these time stamps to the time stamps corresponding to the
QAnalyzer observations allows us to map observed activ-
ity to know periods of quiescence.

6



Figure 5: User mode CPU activity, showing with periods
of activity (typing) indicated.

We monitored this program using version 1.3.1 of the
Java Runtime Environment (JRE). Our QAnalyzer data
indicated no activity outside of time periods that could
not be accounted for by our programmed activity in our
Java program. Somewhat surprised by this result, we be-
gan to look for explanations and found an article on “java-
coffeebreak.com” [8] that appeared to confirm our results,
stating: “In the Sun literature you’ll find many references
to garbage collection as a low-priority background pro-
cess, but it turns out that this was a theoretical experiment
that didn’t work out. In practice, the Sun garbage collec-
tor is run when memory gets low.” Certain that someone
must have implemented a version of this “theoretical ex-
periment”, we began to search for alternate garbage col-
lectors.

A Sun article [17] describes additional garbage collec-
tion policies added to Java version 1.4.1. Of particular in-
terest is the new concurrent garbage collector, which runs
in a background thread concurrently with the application
thread(s). This collector must be explicitly enabled, which
can be done with theXconcgcruntime environment flag.

The results of analyzing our Java program again, using
this concurrent garbage collector, are shown in Figure 8.
These results still fail to show any JVM post-processing,
as all observed activity can again be accounted for by the
known activity of our program. Each sampling period
containing observed activity (utime, stime, and minflts),
also contains programmed activity, as determined by the
direct output of the Java program (activity-start, activity-
end).

While these results do not confirm our hypothesis

Figure 6: Sent bytes per second with activity (typing) pe-
riod indicated. In is interesting to note the steady rate of
bytes per second during inactive periods. This stream cor-
responds to the data required to notify the X server of the
blinking cursor.

that the JVM will garbage collect when the application
thread(s) is quiescent, they do validate our primary hy-
pothesis that QAnalyzer can use the kernel output statis-
tics to recognize periods of programmed process activity.
For confirmation of concurrent Java garbage collection,
see the section of this paper concerning detecting post-
processing.

5.4 Detecting Post-processing

We created a second Java program in which we were able
to catch garbage collection activity in the process dur-
ing time in which the code we wrote was supposed to be
sleeping/quiescent. For this test we again used JRE 1.4.1
with the concurrent garbage collector.

While the post-processing activity, graphed in Figure
9, appears minimal, we are certain, for two reasons, that
it is not an outlier. First, we repeated the test many times,
each time getting very similar results. Second, we en-
abled JVM garbage collection verbose logging with the
verbose:gcswitch. The corresponding output showed
garbage collection activity continuing for many seconds
after the “Sleeping at:” message, seen in Figure 10, had
been printed.

7



Figure 7: Received bytes per second with activity (typing)
period indicated.

6 Future work

This project focuses on quiescence. However there may
be broader applications for the resource counters that we
are adding to the kernel. We have made several simplifi-
cations to the counters which would need to be addressed
before broader application is practical:

• We should improve the resolution of the CPU coun-
ters in the system. The current counters have a res-
olution of .01s, which may not be high enough to
detect activity some applications.

• We should implement LRP[7] to ensure that the pro-
cessing time for network activity is attributed to the
correct process.

• The disk counters should differentiate between ac-
cesses that hit the cache and accesses that result in
a block read. This distinction is important from a
resource management perspective, but either type of
access indicates that the process is not quiescent.

• We should differentiate between network traffic that
is local to the system and network traffic between
systems.

• The packet counters currently count the number of
system calls. However, a single system call could
result in many packets being sent over the wire. Im-
plementing packet counting will greatly expand the
scope of the patches that we will make in the kernel.

• The network counters do not count network packets
that do not carry data.

• We should create a system that can differentiate be-
tween TLB faults that are generated by TLB over-
flow and TLB faults that are generated by new re-
quests for a page of memory. These modifications
could be expensive in terms of system performance
and will involve extensive modifications to the ker-
nel.

The applicability of our method of detecting quiescence
may not work for certain classes of applications, particu-
larly those that consume substantial resources while qui-
escent. One test that we looked at was running a browser
against the X server. When the browser is displaying
pages with many animated GIFs, the network resources
utilization is substantial. Based on network utilization
alone, it might be difficult to discern quiescence from ac-
tual program activity. We would need to further examine
this and similar classes of applications.

7 Conclusions

We have implemented simple kernel modifications that
provide resource counters for unmodified user processes.
We have also written QAnalyzer, a program that takes pe-
riodic samples from these counters and generates a log
file. We demonstrate that different classes of UNIX pro-
cesses would require different models of quiescence. Our
testing results with this system indicate that the counters
work, and that our method is able to detect activity in a
wide range of processes.

8 Acknowledgments

We would like to thank Tim Halloran, who helped us to
find and configure the test system.

8



Figure 8: Periods of designed process activity are indicated between theactivity-startandactivity-endvertical dashed
lines. The process spends more time sleeping than working, in an attempt to coax the garbage collector into motion.
However, every period of observed activity can be accounted for by the designed activity. QAnalyzer is sampling at
quarter-second intervals.

9



Figure 9:Post-processing.As can be seen at approximately 38 and 39 seconds, the garbage collector causes observed
activity, despite the fact that the Java test program should be sleeping. Note the greater resource consumption before
sleeping, which is due to our programmed activity in addition to garbage collection, while consumption during sleep
is due only to non-programmed activity. QAnalyzer is sampling at one-twentieth of a second intervals.

10



private static int NUM_OBJECTS = 100000;
...
System.out.println("Starting at " + (new Date()).getTime());

{
GarbageNew first = new GarbageNew();
GarbageNew recent = first;
int i = 0;

try {
for (; i<NUM_OBJECTS; i++) {

recent.setNext(new GarbageNew());
recent = recent.getNext();

}
}catch (OutOfMemoryError oe) {

System.out.println("hit memory boundry at object "+ i);
}

recent.setNext(first);
}

System.out.println("Sleeping at " + (new Date()).getTime());
try{

Thread.sleep(5000);
}catch(InterruptedException e){

System.err.println("error sleeping:");
return;

}

Figure 10: Code from the Java program that elicited post-processing in the garbage collector. We allocate a large
number (100,000) of small objects and chain them together, finally creating a circular linked-list. We print out the
time the program goes to sleep, so that we can determine which of the QAnalyzer observations occur while we are
quiescent. In our test we limited the JVM maximum heap size to 1 megabyte, using theXmxnflag.

11



References

[1] A MIRI , K., PETROU, D., GANGER, G. R., AND

GIBSON, G. A. Dynamic function placement for
data-intensive cluster computing. InProceedings
of the USENIX 2000 Annual Technical Conference
(2000), pp. 307–322.

[2] BANGA , G., DRUSCHEL, P., AND MOGUL, J. C.
Resource containers: A new facility for resource
management in server systems. InOperating Sys-
tems Design and Implementation(1999), pp. 45–58.

[3] B IDAN , C., ISSARNY, V., SARIDAKIS , T., AND

ZARRAS, A. A dynamic reconfiguration service
for CORBA. In Proceedings of the Fourth Interna-
tional Conference on Configurable Distributed Sys-
tems(1998), IEEE Computer Society Press, pp. 35–
42.

[4] CHANG, F., ITZKOVITZ , A., AND KARAMCHETI ,
V. User-level resource-constrained sandboxing. In
Proceedings of the 4th USENIX Windows Systems
Symposium(2000).

[5] CHANG, F., AND KARAMCHETI , V. Automatic
configuration and run-time adaptation of distributed
applications. InHPDC (2000), pp. 11–20.

[6] COMPTON, C. L., AND TENNENHOUSE, D. L.
Collaborative load shedding for media-based appli-
cations. InInternational Conference on Multimedia
Computing and Systems(1994), pp. 496–501.

[7] DRUSCHEL, P., AND BANGA , G. Lazy receiver
processing (lrp): A network subsystem architecture
for server systems. InOperating Systems Design and
Implementation(1996), pp. 261–275.

[8] ECKEL, B. Thinking in Java Excerpt : A
bit about garbage collection. http://www.
javacoffeebreak.com/articles/
thinkinginjava/abitaboutgarbage%
collection.html , December 2002.

[9] GAGLIARDI , M., RAJKUMAR , R., AND SHA , L.
Designing for evolvability: Building blocks for
evolvable real-time systems. InProceedings of the
IEEE Real-Time Technology and Applications Sym-
posium(1996), pp. 100–109.

[10] HAUPTMANN , S., AND WASEL, J. On-line main-
tenance with on-the-fly software replacement. In
3rd International Conference on Configurable Dis-
tributed Systems(1996), pp. 70 – 80.

[11] HOFMEISTER, C., AND PURTILO, J. Dynamic re-
configuration in distributed systems: Adapting soft-
ware modules for replacement. InProceedings the
13th International Conference on Distributed Com-
puting Systems(1993), pp. 101–110.

[12] JONES, M., LEACH, P., DRAVES, R., AND

J.S. BARRERA, I. Modular real-time resource man-
agement in the Rialto operating system. InProc.
5th Workshop on Hot Topics in Operating Systems
(1995), pp. 12–17.

[13] KRAMER, J., AND MAGEE, J. The evolving
philosophers problem: Dynamic change manage-
ment. IEEE Transactions on Software Engineering
16, 11 (1990), 1293–1306.

[14] MCKENNEY, P., AND SLINGWINE , J. Read-copy
update: Using execution history to solve concur-
rency problems. In10th IASTED International Con-
ference on Parallel and Distributed Computing Sys-
tems. (PDCS.98)(1998).

[15] MOSER, L., MELLIAR -SMITH , P., NARASIMHAN ,
P., TEWKSBURY, L., AND KALOGERAKI , V. Eter-
nal: Fault tolerance and live upgrades for distributed
object systems. InProceedings of the DARPA In-
formation Survivability Conference(2000), pp. 184–
196.

[16] MOSER, L. E., MELLIAR -SMITH , P. M.,
NARASIMHAN , P., TEWKSBURY, L., AND

KALOGERAKI , V. The eternal system: An archi-
tecture for enterprise applications. InInternational
Enterprise Distributed Object Computing Confer-
ence (University of Mannheim, Germany, 1999),
pp. 214–222.

[17] NAGARAJAYYA , N., AND MAYER, S. Im-
proving Java[tm] Application Performance and
Scalability by Reducing Garbage Collection
Times and Sizing Memory Using JDK 1.4.1.
http://wireless.java.sun.com/midp/
articles/garbagecollection2/ , Decem-
ber 2002.

[18] SEGAL, M., AND FRIEDER, O. On-the-fly program
modification: Systems for dynamic updating.IEEE
Software 10, 2 (1993), 53– 65.

[19] TEWKSBURY, L., MOSER, L., AND MELLIAR -
SMITH , P. Live upgrades of CORBA applications
using object replication. InProceedings of the IEEE
International Conference on Software Maintenance
(2001).

12


