15-712 Systems Final Report

Methods for Recognizing Service Quiescence

Gregory Hartman Jack Lin Michael Merideth

December 12, 2002

Abstract e Bytes sent over the network
Our motivation for this project is evaluating our hypoth- ® Packets sent over the network
esis that if we had a varit_aty of statistics concerning pro-, Number of page faults

cess resource consumption, we would be able to deter- _

mine whether and when a process is quiestewe in- ® Number of disk blocks touched

strument the Linux operating system to allow us to gather L e
In some applications, resource utilization fluctuates

relevant statistics, and write a second program, which Sven in the case where the application truly is quiescent
call QAnalyzer, that allows us to analyze these statisti PP yIsdg '

looking at variations in process resource consumption to tit;?;slér iﬁ!i{twfi’tiﬂeti:gﬂ?elliizggn; pol'iggsti\évr"tg tcr):;rt
determine whether and when a process is quicescent. Fi- y 9 PP

. . nsume one or more system resources. We then explore
nally, to evaluate our hypothesis, we perform experimen nsur ystem re b
etection of garbage collection in Java, and regular X11

in which we vary the behavior of the process under obser= """ : ; .

. . application resource usage with emacs running against

vation. Our results show both that we can determine whén X server. These applications Consume resources even
a process is not quiescent, and that certain classes of r%) ' S€ app
n they are quiescent.

cesses do post-processing when they would be expec e§erformance and resource consumption is a concern
to be quiescent. P

in nearly all operating system and distributed system re-
search. The tools we have created to identify quiescent
states may have broader application in characterizing the
resource requirements of various servers. In turn, this

could allow system administrators or automated systems

Before safely checkpointing the state of a service (thatfg’identify combinations of processes that would run well
a server process providing an interface to an indetermingﬁea single server

numper of clients), it must be ascertained '_[hat the SEIVIC e ask the following questions during the evaluation:
is quiescent. Without knowledge of the internal struc-

ture of a service, one would have difficulty in determin- e Using our technigques, can we see a significant differ-
ing points of quiescence. For example, consider a simple ence between active and inactive applications?
client-server application, in which we treat the service as o)

a black box. We might propose that the service would be® Can we detect post-processing in any of the applica-
quiescent when there are no outstanding client requests. 1ONS?

For the purpose of simplifying this example, letus assume, gection 2 we survey related work. In Section 3 we

itis true that every client request is followed by a SerViQﬁscuss our system design. Section 4 describes our testing
response. Thus, we might propose monitoring the nete

K) h ice for |) 6?thodology. Section 5 gives the results of our tests. Sec-
work connection at the service for incoming requests, apt, g enumerates deficiencies in our current design and

pairing these requests with responses. We might assyjpe.c plans for future work. Section 7 concludes.
then that as soon as the service sent a response, if upon

pairing this response with its request we determined that

there were no additional requests outstanding, the sen®e Related \Work
would be quiescent. However, this is an unsafe assump-

tion. The service might, for example, issue aresponse ghd Quiescence
then do internal post processing of data it accessed.

In this paper we evaluate the hypothesis that by péﬁr_am'er and Magee [13] provide afundament.al definitiqn
forming analysis on statistics of server utilization of a v&f duiescence as the property that “[a] node is not within
riety of resources, we could greatly increase our Conﬁ_transa_ctlon and will neither receive nor initiate any new
dence that a service is indeed quiescent. transactions". They rely on application nodes to become

To gather the necessary statistics, we modify the ke”qélliescentwhen instructed to, and provide an algorithm for

to track resource utilization on a per process basis. Wwieving a grqup of podes into a quiescent state within a
gather the following information: bounded period of time. However, they cannot guarantee

at runtime that any particular node has in fact complied
with instructions.

Bidan et. al. [3] follow [13], but attempt to minimize
1we define a quiescent process as one that is doing no processingnpact on concurrency by reducing the number of nodes

1 Introduction

e CPU utilization

that must be made quiescent at any one time. They a@le interested in quiescent threads in order to construct a
this by restricting their technique to systems built frorightweight locking policy for shared data. However, they
multi-threaded nodes, and passivating only a part of eanbre narrowly define a quiescent state of a thread as one
node. Their technique additionally loses some degreeimfvhich the thread holds no locks for any shared data ob-
generality by ignoring problems that would be caused Bcts.
the presence of procedure call cycles.

Both PODUS [18] and ABACUS [1], which operate a .
the procedure granularity level, recognize quiescence%y2 Resource Consumption

determining when a procedure is inactive. This method(i%ang et. al. [4] propose user-level sand-boxing to con-

not directly comparable to ours as it is more fine grainggl -;, application resource consumption. They use a com-
than our process based approach. bination of API interception and existing kernel statistics
Gagliardi, et. al., [9] require that a module send ngo |imit the application’s CPU, memory, and network us-
tification, to a third party component, of any IPCs it igge. This paper also describes an algorithm to quickly de-
issuing. In this way, the third party can determine at afyrmine that a process is waiting. This algorithm may be
point in time which of the modules itis managing are quipble to discover quiescent processes. We will be adding
escent. This system works on the assumption that whegegnel statistics to track many network and disk resource
module has no outstanding IPCs, it is indeed quiescenieonsumption on a per application basis. This should re-
Tewksbury and Moser et. al., [19] [15] [16] define obduce the need for API interception. In addition, our ap-
ject quiescence as any state in which the object is qwbach will allow system administrators to track resources
executing any of its methods. They outline two reasofer all of the applications on a system, not just the ones
why they need object quiescence in their system for pénat are running in a sand-box.
forming live upgrades. First, their method involves object Chang and Karamcheti [5] propose using these sand-
replication and consistent extraction of the state from mioxes to gather information to allow automatic run-time
tiple copies of a replicated object. Second, their methadaptation of applications. By gathering statistics for all
provides the ability to perform arbitrarily complex upof the processes on the system and making these statistics
grades in which multiple objects are changed. They guakailable to all applications, we may allow these applica-
antee consistency by providing an atomic switch-over ofions to make better decisions.
eration, which mandates the quiescence of all objects inDruschel and Banga [7] point out that the CPU re-
volved in the switch-over. They might benefit from ougources consumed by network traffic are generally not as-
method of determining quiescence, as they state explicélyciated with the application that caused the traffic. They
that they “cannot ensure the quiescence of an object Whigfiapose a systems, called lazy receiver processing, to cor-
contains one-way, or asynchronous, operations unlessyi& this problem and to provide better server throughput
completion of a one-way operation is signaled somewhefieder high loads. We will not be able to address this con-
to the infrastructure”. cern in our implementation. As a result, we may over-
Hauptmann and Wasel [10] require that the prastimate the CPU utilization of some processes on sys-
grammer specify points of quiescence explicitly. Items that are experiencing high network traffic.
POLYLITH, Hofmeister and Purtilo [11] provide addi- Banga et. al. [2] point out that many server systems
tional mechanisms for exporting the state of a processed to track resources at a finer granularity than the pro-
even if it is in the midst of a procedure call and even dess and thread level. They propose a new operating sys-
procedure calls can be nested to arbitrary levels of debm abstraction called a resource container. They extend
By not requiring that that programmer identify points ithe lazy receiver approach to associate the kernel pro-
the code where a process is quiescent they reduce the eessing for network traffic with the appropriate container.
ceptual burden. However, in order so that POLYLITH caBince quiescence happens at a process level, we do not
restore the state of the process in another location, the pieed the fine-grained resource tracking that resource con-
grammer still must name explicit reconfiguration pointstainers provide. However, we may be able to use resource-
Our concept of quiescence is closely related to thosentainers in the future to discover which clients are pre-
just discussed, i.e., a point in which it is safe to exporenting processes from entering a quiescent state.
the state of some module, thread, or procedure, etc. HowdJones et. al. [12] have implemented a system that tracks
ever, it is important to note that different authors in varioussources at the provider. Applications contact a planner
communities may use the term quiescence in very difféo- reserve resources. The planner, in turn contacts the
ent lights. For example, McKenney and Slingwine [14jrovider. The provider tracks the actual resource utiliza-

tion, and contacts the planner when activities exceed their
allocations. Our system does not need to reserve or al- dskblks ~ Number of disk blocks accessed
locate resources. However, we will be instrumenting the cdskblks Number of disk blocks accessed by

Linux kernel near the resource providers to track resource children

utilization. By tracking the extent of these modifications roctnet ~ Number of octets (bytes on most

we could estimate the difficulty of porting this planning systems) received for this process

system to the Linux kernel. rpktnet Number of packets received for this
process

Compton and Tennenhouse [6] attempt to gather CPU

statistics to allow individual applications to shed load. soctnet Number of octets sent for this pro-

; . e cess
Whe_n the system was implemented, !t was difficult for spktnet Number of packets sent for this pro-
applications to obtain system load statistics and the CPU cess

utilization for the current process. In addition, when mul-

tiple applications were running on a system one applica-
tion tended to consume the majority of the resources. At
the end of the paper, they list information that would help

the applications to make better decisions. We will gather
statistics for many of the items on this list.

croctnet Number of octets received for the
children of this process

crpktnet Number of packets received for the
children of this process

csoctnet Number of octets sent for the chil-
dren of this process

cspktnet Number of packets sent for the chil-
dren of this process

We encountered several issues as we added the new

3 Design counters to the kernel. The c* counters in the parent pro-

cess are updated when the child exits: parent->cminfit

= child->minflt + child->cminflt. The man page for the
Our test system can be divided into three primary corfproc filesystem implies slightly different behavior. We
ponents: the kernel modifications to implement resourggve elected to implement the new counters so that they
counters, the process that gathers these counters at fixgigave like the existing counters in the kernel.
interyals (QAr_laIyzer), and the test applipations. In this We have added a new file, called “resuse”, into the di-
section, we discuss the kernel modifications and QA%-

. : cEtories for each process. resuse contains the PID, min-
'yzef- “? the next section, we describe the tests and tﬁts majflt, utime, and stime parameters, along with the
applications.

new parameters mentioned in the table above. All of these
parameters are represented as space delimited 32 bit un-
signed integers encoded in the ASCII character set. A
single newline comes after the last parameter. We dupli-
3.1 Kernel Enhancements cate some of the parameters that are found in other proc
files to make the implementations of QAnalyzer easier to
. build. Seeking resuse to offset 0 will cause the kernel to
We discovered that there are several useful resource COUR- o resuse with new data
tersin the current Linux kernel. The number of page faults)
is already available through /proc/<PID>/stat. The minflt Threads in Linux are assigned PIDs. As a result, each
parameter gives the number of page faults that didn’t ﬁ@read may have its own task structure in the kernel. There
sult in a page being loaded into memory, and the majfitno easy way to distinguish threads and regular processes
parameter gives the number of faults that required paifem user space. Thes application does suppress threads

loading. The CPU time is also available through this iy comparing the command line arguments and virtual
terface in the utime and stime parameters. memory size of each process to its parent. When all of

. these parameters match, ps assumes that the process is a
These parameters are stored in the_ task_struct. Ther ad. QAnalyzer should not have to duplicate this hack,
are no parameters for the numb_er of disk blocks touchg 'we added code to place the statistics for child threads
number of bytes of network.trafflc, or the number of N€6n additional lines in the resuse file, following the line for
work packets sent and received. the parent. However, there is a 4k limit on the file size in
We have added the following values into théhe kernel. This effectively limits the number of threads
task_struct: that can be returned to about 16. When this happens, the

last line of the file is "*". QAnalyzer can detect this condi-

tion by examining the return value from scanf. This mod- fs/proc/array.c Add code to return the val-

ification causes the proc filesystem code to lock the task ues of the counters

list and scan every task in the list to discover the threads. include/linux/sched.h Add the new counters to

Other code in the Linux kernel uses the same approach to the task structure

locate threads. kernel/exit.c Increment the parent’s

statistics when a task exits
kernel/fork.c Initialize the new statistics
These modifications allow QAnalyzer to total the re- to zero

sources used for the process. The resources consumednm/filemap.c Increment the counters for

by threads are counted as resources used by children, so file operations

QAnalyzer can accurately measure resource consumptionnet/socket.c Increment the counters for

for processes with many short-lived threads by examining network operations

the c* values of the initial thread of the process.

We discovered a bug in the counter handling in the2 QAnalyzer

Linux kernel. If a process is killed, the process’s coun- : . .
ters are added to its parents as expected. However, if?@chave implemented QAnalyzer in C. QAnalyzer peri

A o ally gathers and accumulates observations, which it
process has threads, only the time for the initial thread,is y 9

added to the parent: the other threads are added iathe builds from the kernel enabled statistics. QAnalyzer em-

. . . loys interval timers to ensure that delays in sampling do
task. This problem does not occur if threads exit befo[r:r])%t ccumulate as QAnalyzer runs.

the parent process dies. We suspect that this bug is caus . .
P P P g Analyzer records timestamps in its logs, and many

by the order of operations in Linux: when the signal is de-, test applications write outout messages indicatin
livered to the parent, the threads are re-parented to the LY pplical write outpu ages Indicating
en they are active and when they are idle. Since both

process. When the signal is delivered to the threads, t}){é cesses use the same clock. we are able to Compare our
die and add their time to the init process. This bug shodi ' P

be fixed to make the c* counters more reliable, but we q"f‘(ﬁ; %lr'ﬁ?'gn _T_rggw(\ﬁl’; \g;g(') t2||eo:,cf8;n:§t(lj%?£tt\r,]\,ﬁg]Ar:ﬁ;
not attempt to fix it during the duration of this project. YyZ€r 10gs. . . .
tiple intervals collapse into a single observation, though

this has not occurred during our testing.

We wanted to be certain that our patches were localizedVNilé refining our test plan, we realized that our
to a small set of files in the kernel. We especially wanté{gnned statistical model could be implemented as a con-
to avoid patching specific device drivers and filesystefifience interval for each of the resources we are monitor-
since patching in these areas may cause the counter'&(Perhaps with an additional overall model to evaluate
fail when the configuration of the test system changed. significance of multiple resources varying together).

a result, we have placed the increments for the disk baddtS Would be less expensive than, but equivalent to, hy-
counters in the generic_file_read and generic_file_ wrR8tNesis testing for each observation, and would allow
functions. us to run our quiescence analysis in real time in QAna-

lyzer. The reason for the efficiency improvement is that
the components of each observation would merely need

Some specific filesystems do not use the generic {mbe checked against their respective resource confidence

routines. As a result, we will not see operations to the&§ierval-

filesystems. In the 2.4.19 kernel, the following filesystem

are affected: pipe, coda, devfs, hfs, ncpfs, ntfs, proc, in- .

termezzo, jod, and the openpromfs. In the last three, e Evaluation Framework

will detect reads, but not writes. We suspect that some of

these filesystems do not support writing. From the outset we had planned to empirically model the
resource consumption of a quiescent process. We had ex-
pected that a process’s resource consumption would fluc-

We made small changes to the following files to impléuate even while the process idled. This modeling stage
ment the new counters: became simplified when it became clear that many UNIX

processes consume no resources while idle. See thede- Results
sults section for a discussion of this topic.

We have written a suite of four test applications to cofUr experimental results show that certain quiescent pro-
sume specific resourcespinner consumes user modeC€sSses consume no measurable quantities of the resources
CPU time by looping over an increment operation on'4€ track. For example, we were unable to detect any re-
variable. client continually sends data via a socket corfiource consumption in an idle UNIX tcsh shell process.
nection toserver which reads the datareader reads a However, this fact increases our confidence that when we
large file from disk. By monitoring the resource consum@bserve fluctuations in resource consumption, we are, in
tion of each of these programs, we are able to confirm tfi@¢t. viewing an active process.
the resource counters in the kernel are working. We present the results of controlled tests, in which we

We also monitor the resource consumption of a numg8pPnitor the resource consumption of programs we wrote
of real-world applications, including tcsh, emacs runnirﬁj)ecifically to test our ability to track individual resource

against an X server, and the Java Virtual Machine (JVMJS€: S _ .
In doing so, we show that a single simple model of quies-We are able to distinguish between periods of activity

cence is not sufficient for every class of application. ~ @nd periods of quiescence in a Java process we wrote.

Our JVM tests are an attempt to validate whether e were also able to find an example of process post-

can detect offline or post-processing activity not directﬁ;ocessmg, in the concurrent garbage collector of Sun’s

initiated by our own programs. By testing this, we demo ava Runtime Environment (JRE), version 1.4.1.

strate that internal knowledge of program behavior is not

necessarily enough to determine quiescence if, forexa®)1 Correctness of Method - Targeted Tests
ple, the program is tied to other processes.

The QAnalyzer timestamps aid us in evaluating the éﬂg_ures [1,2,3,4] show the results of our test suite of appli_-_
fectiveness of our approach by allowing us to compa‘?g‘t'ons' Each of these tests was designed to test a specific
observations with known points of quiescence, which e of of resource; our results show that we are able to

have our test programs signal upon entry and exit. detSec;i-thls retsputrlsg con;urpptloa. thesized that qui
All along it has been an important goal to ensure the re- eting out In this project we hypothesized that quies-

I) cent UNIX processes exhibit a low, but non-zero, level of
producibility of our results. For this reason we collecte) : .
: uctuating resource consumption. As can be seen in the
multiple datasets for test run of each process we monj- L2 : .
: , . charts in this section, the quiescent shell procésshj,
tored, and we varied QAnalyzer’s sampling frequency for
consumes none of our tracked resources at any rate we
each of the many test runs we performed.

. .can detect. The result of this realization is that our model
We ran these tests on RedHat Linux 8.0 and a modifi %

65Fa quiescent process is very simple: if we detect that a
2.4.19 kernel. Th_e test system had one 200 MHZ Penti cess is consuming any amount of resources, it is not
Pro processor, with 8k of Level 1 | cache, 8k of Level 1 uiescent; if a process is not consuming resources, is it
cache, 256K of Level 2 cache, and 256MB of 70ns RA Uiescent.
ECC and write-back caching are enabled. The disk was
a 4G Seagate ST34371W, connected to an Adaptec 2940
UW SCSiI controller. The drive was partitioned with a 1&.2 Quiescent Processes that Consume Re-
swap partition and 3G ext3 partition which is mounted as sources

the root. The system was connected to the network, but is))
sitting behind a NAT/router. When we expanded our tests to include an idle emacs pro-

This system initially exhibited some stability problemsc.ess’ we discovered that it did consume resources. First, it

When we ran non-stop kernel compiles with the unmog“(_-at_nt pgtr|od|c_tra;f|c to tthef server to ﬂaSht'tS curst(t)]r. In ad-
ified RedHat kernel from the 8.0 distribution, the syste on, It received events for mouse events over the emacs

spontaneously rebooted after about 12 hours. So, we dow.. . .

tested the modified kernel on a different system to avoidWe ut|I.|zed Xnee to implement our test on emacs run-
running into the known stability problems on our test syg—Ing against X server. Xnee records X11 protocol (_jata
tem. The kernel ran for 18 hours while doing constaﬁPCh as Xevents from the local X server into log files
kernel compiles and running cat /proc/*/resuse once d later, uses those recorded log files to replay those

second. No crashes, faults, or memory leaks appear%\ée.msz: The keyboard events are sent to whichever win-

Since moving the mOdiﬁe.d kernel to the test system, the2While we specified that Xnee record only the keyboard events, Xnee
test system has been entirely stable. is also capable of capturing mouse events.

shell shell

. W utime . [soctnet
spinner X spinner

W stime M roctnet

sver Ve —

client client ‘ !

0 20 40 60 80 100 1 100 10000 1000000 100000000
Jiffies/ sec octets / sec

Figure 1: The average number of jiffies per second tHégure 3: Graphs of the number of octets transmitted and
each process was scheduled. The bars are stacked inrtasived per second on a logarithmic scale.
graph. There are 100 jiffies per second on the test system.

shell

shell

e

inner @ spktnet
A M rpktnet

spinner M dskblks|

] SV

server 1
client
client T T T T
1 10 100 1000 10000 100000
1 10 100 1000 10000 100000 Packets / sec
Blocks/ sec

Figure 4: Graph of the number of packets sent and re-
Figure 2: Graph of the number of blocks / second oncgived per second on a logarithmic scale. The packet
logarithmic scale. counters currently count system calls, not network pack-
ets.

dow is in focus; in our case, we clicked on the emacs win- .
dow to bring it to the front in order to direct keyboard’v'thom even examining the (_)ther recqrded resources such
events there. In addition, we modified Xnee source co@i® (he number of bytes received or utime.
to output the system time stamps right before the keyboard
events are replayed, so that we can compare periodss%
recorded program activity against the period of resource
consumption output by the QAnalyzer. Going into our evaluation, we shared the collective hy-
Figures [5,6,7] show correspondences between knopathesis that the Java Virtual Machine (JVM) garbage col-
program activity periods and resource consumption, aledtor would run in the background, if given the chance.
illustrate the contrast between the resource consumptintest this, we designed and built a Java program that
during idle periods with consumption during typing. lallocates memory, nullifies its reference to the memory,
is interesting to note in Figure 6 that even when the prgees to sleep for a fixed interval of time, and then begins
gram is quiescent, there is small, but non-zero, netwa§ain. The program creates a time stamp when the pro-
resource consumption. The network bytes sent are d@ss goes to sleep and another when it wakes. Comparing
to the blinking cursor that appears in the emacs windowisese time stamps to the time stamps corresponding to the
Under this circumstance, it is still trivial to discern quiesQAnalyzer observations allows us to map observed activ-
cence from activity by looking at the number of bytes serity to know periods of quiescence.

Detecting Activity

——
Bl active

Bl active
[utime

[bytes sent

2000 -

1500 -

o
T

#jiffies / sec
bytes sent / sec

1000 -

500 -

. ol it [T e

0 5 10 15 20 25 30 35 40 45 10 15
time (s) time (s)

Figure 5: User mode CPU activity, showing with periodsigure 6: Sent bytes per second with activity (typing) pe-
of activity (typing) indicated. riod indicated. In is interesting to note the steady rate of
bytes per second during inactive periods. This stream cor-

)))) responds to the data required to notify the X server of the
We monitored this program using version 1.3.1 of thginking cursor.

Java Runtime Environment (JRE). Our QAnalyzer data

indicated no activity outside of time periods that could

not be accounted for by our programmed activity in our) o
Java program. Somewhat surprised by this result, we 8t the JVM will garbage collect when the application
gan to look for explanations and found an article on “jav&lread(s) is quiescent, they do validate our primary hy-
coffeebreak.com” [8] that appeared to confirm our resulfithesis that QAnalyzer can use the kernel output statis-
stating: “In the Sun literature you'll find many referencelicS t0 recognize periods of programmed process activity.
to garbage collection as a low-priority background pr&or confirmation of concurrent Java garbage collection,

cess, but it turns out that this was a theoretical experim8f€ the section of this paper concerning detecting post-

that didn’t work out. In practice, the Sun garbage colleBf0c€ssing.

tor is run when memory gets low.” Certain that someone

must have implemented a version of this “theoretical ex-

periment”, we began to search for alternate garbage col-

lectors. _ y 5.4 Detecting Post-processing
A Sun article [17] describes additional garbage collec-

tion policies added to Java version 1.4.1. Of particular in-

terest is the new concurrent garbage collector, which rifY§ created a second Java program in which we were able

in a background thread concurrently with the applicatidf catch garbage collection activity in the process dur-
thread(s). This collector must be explicitly enabled, whidR9 time in which the code we wrote was supposed to be
can be done with th¥concgauntime environment flag. slgepmg/qmescent. For this test we again used JRE 1.4.1
The results of analyzing our Java program again, usiWéth the concurrent garbage collector.
this concurrent garbage collector, are shown in Figure 8 While the post-processing activity, graphed in Figure
These results still fail to show any JVM post-processing, appears minimal, we are certain, for two reasons, that
as all observed activity can again be accounted for by tihés not an outlier. First, we repeated the test many times,
known activity of our program. Each sampling periodach time getting very similar results. Second, we en-
containing observed activityu{ime, stime, and minflts abled JVM garbage collection verbose logging with the
also contains programmed activity, as determined by therbose:gcswitch. The corresponding output showed
direct output of the Java prograractivity-start, activity- garbage collection activity continuing for many seconds
end. after the “Sleeping at.” message, seen in Figure 10, had
While these results do not confirm our hypothesizen printed.

e The network counters do not count network packets
that do not carry data.

e We should create a system that can differentiate be-
tween TLB faults that are generated by TLB over-
flow and TLB faults that are generated by new re-
quests for a page of memory. These modifications

| could be expensive in terms of system performance
| and will involve extensive modifications to the ker-
15 20 25 30H 3‘5

~

S

S
T

bytes received / sec
~ N w w
S & 1= &
8 2 3 2
T T

o
3
T

nel.

=)
S
T

The applicability of our method of detecting quiescence
may not work for certain classes of applications, particu-
larly those that consume substantial resources while qui-
time (5) N escent. One test that we looked at was running a browser

against the X server. When the browser is displaying
pages with many animated GIFs, the network resources
.]_utilization is substantial. Based on network utilization
Figure 7: Received bytes per second with activity (typin o o . :
o one, it might be difficult to discern quiescence from ac-
period indicated. -)
tual program activity. We would need to further examine
this and similar classes of applications.

o
3

o

L
4

o
o

6 Future work
This project focuses on quiescence. However there mZy Conclusions

be broader applications for the resource counters that\v/\v/e : . I
) . e have implemented simple kernel modifications that
are adding to the kernel. We have made several simplifi-

i . rqvide resource counters for unmodified user processes.
cations to the counters which would need to be addres .

C - e have also written QAnalyzer, a program that takes pe-
before broader application is practical:

riodic samples from these counters and generates a log
« We should improve the resolution of the CPU Cour§|_Ie. We demonstrate that different classes of UNIX pro-

ters in he system. The current counters have a reBE0 B, T o coumiers
olution of .01s, which may not be high enough t 9 Y

detect activity some applications. wprk, and that our method is able to detect activity in a
wide range of processes.

e We should implement LRP[7] to ensure that the pro-

cessing time for network activity is attributed to th
correct process. 8 Acknowledgments

e The disk counters should differentiate between aY)\!e would I|k¢_3 to thank Tim Halloran, who helped us 1o
cesses that hit the cache and accesses that resuﬁnﬂ and configure the test system.
a block read. This distinction is important from a
resource management perspective, but either type of
access indicates that the process is not quiescent.

e We should differentiate between network traffic that
is local to the system and network traffic between
systems.

e The packet counters currently count the number of
system calls. However, a single system call could
result in many packets being sent over the wire. Im-
plementing packet counting will greatly expand the
scope of the patches that we will make in the kernel.

40_1. 2500 v T o T H T H T v T 1 H T 1 ', ﬂt 1
= i i ! H i | H H minflts
@ 2000 - || activityrstart -+ |
x 1500 i1 activity-end -~ S
9 1000 i i é A
5 500 F L [: ’—’—‘_
2 i : T T
e 0 m 1 |r—1:—| |’:_‘ L
10 11 16 17 18
1; . T T T I-St' T
| . H ime ——— 4
. 10k 0 U activitysstart 5
o g | L activity-end ---- AR
= R H H
= B | D : : 4
o4 —
2F ;T_
0 | 1 1 151 I|| | L
10 11 16 17 18
1; L T " T H T H T " T H T " T .t_ T
- . s f : v Lo v utime A
w 10 F s i : : o L o activity-start A
o 8k i b : : ¥ ; . activity-end : .
N ¥ : ¥ : 5 S
* 4 ’—J s f - : : A
2k L Ll : l—‘ 5 : el
0 i 1 (na| 1 i 1 1 : L Ll I_I'J_|
10 11 12 13 14 15 17 18

Figure 8: Periods of designed process activity are indicated betweantthity-startandactivity-endvertical dashed

lines. The process spends more time sleeping than working, in an attempt to coax the garbage collector into motion.
However, every period of observed activity can be accounted for by the designed activity. QAnalyzer is sampling at
guarter-second intervals.

2 4 . : , — | _ |
] | | startn—;alalefgs -------]
i 2[| :]
Rt 1k | _
E 0 I I L | H l | " l
26 28 0 30 - - -
(s}
(= 4 |
S | | o | minfits]
ﬁ ol i start-sleep ——-—---- i
i i
:o1r : |]
: D I I I I : | 1 1
C
e 26 28 20 30 - - -
4 1 I I T - I I . |
£ o} : stime ——
= il i start-sleep ——-----]
#® 1Fn . | H‘ |]
D "" | “ 1 "" | H: | I " |
26 28 0 30 - - -
4 1
$ 3l . ' ! T : i | Iuﬂme — _
: il i start-sleep ——-----]
< bbby wl o ol b _
D "I" | “ 1 " | l | " |
26 28 0 30 - - -

Figure 9:Post-processingAs can be seen at approximately 38 and 39 seconds, the garbage collector causes observed
activity, despite the fact that the Java test program should be sleeping. Note the greater resource consumption before
sleeping, which is due to our programmed activity in addition to garbage collection, while consumption during sleep

is due only to non-programmed activity. QAnalyzer is sampling at one-twentieth of a second intervals.

10

private static int NUM_OBJECTS = 100000;

System.out.printin("Starting at " + (new Date()).getTime());

{

GarbageNew first = new GarbageNew();
GarbageNew recent = first;
int i =0;

try {
for (; iKNUM_OBJECTS; i++) {
recent.setNext(new GarbageNew());
recent = recent.getNext();

}
}catch (OutOfMemoryError oe) {

System.out.printin("hit memory boundry at object "+ i);

}

recent.setNext(first);

}

System.out.printin("Sleeping at " + (new Date()).getTime());

try{
Thread.sleep(5000);

}catch(InterruptedException e){
System.err.printin(“error sleeping:");
return;

Figure 10: Code from the Java program that elicited post-processing in the garbage collector. We allocate a large
number (100,000) of small objects and chain them together, finally creating a circular linked-list. We print out the
time the program goes to sleep, so that we can determine which of the QAnalyzer observations occur while we are
quiescent. In our test we limited the JVM maximum heap size to 1 megabyte, usiKgittrélag.

11

References

[1]

2]

[3]

[4]

[6]

[7]

(8]

[10]

AMIRI, K., PETROU, D., GANGER, G. R., AND
GIBSON, G. A. Dynamic function placement for
data-intensive cluster computing. Proceedings

of the USENIX 2000 Annual Technical Conferenc[ﬁ2

(2000), pp. 307-322.

BANGA, G., DRUSCHEL, P.,AND MoOGUL, J. C.
Resource containers: A new facility for resource
management in server systems. Operating Sys-
tems Design and Implementati¢t999), pp. 45-58.

BIDAN, C., ISSARNY, V., SARIDAKIS, T., AND
ZARRAS, A. A dynamic reconfiguration service
for CORBA. InProceedings of the Fourth Interna-

tional Conference on Configurable Distributed Sy 14]

tems(1998), IEEE Computer Society Press, pp. 35—
42,

CHANG, F., ITzKoVITZ, A., AND KARAMCHETI,
V. User-level resource-constrained sandboxing. In

Proceedings of the 4th USENIX Windows Systel[qg]

Symposiunf2000).

CHANG, F., AND KARAMCHETI, V. Automatic
configuration and run-time adaptation of distributed
applications. IrHPDC (2000), pp. 11-20.

ComPTON, C. L., AND TENNENHOUSE D. L.
Collaborative load shedding for media-based app
cations. Ininternational Conference on Multimedia
Computing and Systen($994), pp. 496-501.

DRUSCHEL, P., AND BANGA, G. Lazy receiver
processing (Irp): A network subsystem architecture
for server systems. I@perating Systems Design and

Implementatior{1996), pp. 261-275.

EckeL, B. Thinking in Java Excerpt : A
bit about garbage collection. http://www.
javacoffeebreak.com/articles/
thinkinginjava/abitaboutgarbage%
collection.html , December 2002.

GAGLIARDI, M., RAJKUMAR, R., AND SHA, L.

Designing for evolvability: Building blocks for
evolvable real-time systems. Froceedings of the
IEEE Real-Time Technology and Applications Sym-
posium(1996), pp. 100-109.

HAUPTMANN, S., AND WASEL, J. On-line main-
tenance with on-the-fly software replacement. In
3rd International Conference on Configurable Dis-
tributed Systemgl996), pp. 70 — 80.

12

] JONES, M.,

[13]

ol

[17]

[18]

[19]

[11] HOFMEISTER C., AND PURTILO, J. Dynamic re-

configuration in distributed systems: Adapting soft-
ware modules for replacement. Hroceedings the
13th International Conference on Distributed Com-
puting System&l993), pp. 101-110.

LEACH, P., DRAVES, R., AND
J.S. BARRERA, |. Modular real-time resource man-
agement in the Rialto operating system. Rroc.

5th Workshop on Hot Topics in Operating Systems
(1995), pp. 12-17.

KRAMER, J., AND MAGEE, J. The evolving
philosophers problem: Dynamic change manage-
ment. IEEE Transactions on Software Engineering
16, 11 (1990), 1293-1306.

MCKENNEY, P., AND SLINGWINE, J. Read-copy
update: Using execution history to solve concur-
rency problems. 110th IASTED International Con-
ference on Parallel and Distributed Computing Sys-
tems. (PDCS.99)1998).

MOSER, L., MELLIAR-SMITH, P., NARASIMHAN,

P., TEWKSBURY, L., AND KALOGERAKI, V. Eter-
nal: Fault tolerance and live upgrades for distributed
object systems. IfProceedings of the DARPA In-
formation Survivability Conferend2000), pp. 184—
196.

Moser L. E., MELLIAR-SMITH, P. M.,
NARASIMHAN, P., TEWKSBURY, L., AND
KALOGERAKI, V. The eternal system: An archi-
tecture for enterprise applications. limternational
Enterprise Distributed Object Computing Confer-
ence (University of Mannheim, Germany, 1999),
pp. 214-222.

NAGARAJAYYA, N., AND MAYER, S. Im-
proving Javajtm] Application Performance and
Scalability by Reducing Garbage Collection
Times and Sizing Memory Using JDK 1.4.1.
http://wireless.java.sun.com/midp/
articles/garbagecollection2/ ,
ber 2002.

Decem-

SEGAL, M., AND FRIEDER, O. On-the-fly program
modification: Systems for dynamic updating:EE
Software 102 (1993), 53— 65.

TEWKSBURY, L., MOSER L., AND MELLIAR-
SMITH, P. Live upgrades of CORBA applications
using object replication. IRroceedings of the IEEE
International Conference on Software Maintenance
(2001).

