
15-888 Computational Game Solving (Fall 2021) Thu, September 30th 2021

Lecture 8

Predictive Blackwell approachability

Instructor: Gabriele Farina∗

In Lecture 4 we constructed a regret minimizer, called Regret Matching, by solving a suitable Blackwell
approachability game. In this lecture, we will do the opposite: we will investigate how regret minimization
algorithm can give rise to Blackwell approachability algorithms. From there, we use predictive regret
minimization algorithms to arrive at predictive Blackwell approachability algorithms.

1 Using regret minimization to solve Blackwell approachability games
Recall that a Blackwell approachability game is a tuple (X ,Y,u, S), where X ,Y are closed convex sets,
u : X × Y → ℝd is a biaffine function, and S ⊆ ℝd is a closed and convex target set. A Blackwell
approachability game represents a vector-valued repeated game between two players. At each time t, the two
payers interact in this order:

• first, Player 1 selects an action xt ∈ X ;

• then, Player 2 selects an action yt ∈ Y, which can depend adversarially on all the xt output so far;

• finally, Player 1 incurs the vector-valued payoff u(xt,yt) ∈ ℝd, where u is a biaffine function.
Player 1’s objective is to guarantee that the average payoff converges to the target set S. Formally, given target
set S ⊆ ℝd, Player 1’s goal is to pick actions x1,x2, . . . ∈ X such that no matter the actions y1,y2, . . . ∈ Y
played by Player 2,

min
ŝ∈S

∥∥∥∥∥ŝ− 1
T

T∑
t=1

u(xt,yt)
∥∥∥∥∥

2

→ 0 as T →∞. (1)

As we discussed in Lecture 4, Blackwell’s theorem states that goal (1) can be attained if and only if any
halfspace H ⊇ S is forceable, where forceability is recalled next.

Definition 1.1 (Forceable halfspace). Let (X ,Y,u, S) be a Blackwell approachability game and let
H ⊆ ℝd be a halfspace, that is, a set of the form H = {x ∈ ℝd : a>x ≤ b} for some a ∈ ℝd, b ∈ ℝ. The
halfspace H is said to be forceable if there exists a strategy of Player 1 that guarantees that the payoff is
in H no matter the actions played by Player 2, that is, if there exists x∗ ∈ X such that

u(x∗,y) ∈ H ∀y ∈ Y.

When that is the case, we call action x∗ a forcing action for H.

Abernethy et al. [2011] showed that it is always possible to convert a regret minimizer into an algorithm
for a Blackwell approachability game (that is, an algorithm that chooses actions xt at all times t in such
a way that goal (1) holds no matter the actions y1,y2, . . . played by the opponent).(Gordon’s Lagrangian
Hedging [Gordon, 2005, 2006] partially overlaps with the construction by Abernethy et al. [2011].)
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1.1 A couple preliminaries on convex cones
For simplicity, we will only be interested in Blackwell games whose target sets are (nonempty) closed convex
cones S ⊆ ℝn.

Definition 1.2. A cone is a set such that for any point s ∈ S, the rescaled point λs belongs to S for any
λ ∈ ℝ≥0. In particular, 0 ∈ S for any nonempty cone.

Cones have a very regular geometry that will make constructing approachability algorithms simpler. This
simplicity actually doesn’t come at a generality cost: one of the contributions of Abernethy et al. [2011] is to
show that any Blackwell approachability game with non-conic target set can be studied and solved by first
transforming the problem into a slightly larger Blackwell approachability game with conic target set.

A standard concept in conic geometry is that of the polar cone, which we now define.

Definition 1.3. The polar of cone S, denotes S◦, is defined as the set of all vectors that form an obtuse
angle with the cone S, that is,

S◦ := {w ∈ ℝn : w>s ≤ 0 ∀ s ∈ S}.

The polar S◦ is itself a closed and convex cone provided that S is a closed and convex cone.
The reason we care about the polar of S is that it gives a characterization of important halfspaces H ⊇ S,

which are so crucial to Blackwell’s theorem.

Lemma 1.1. Let θ ∈ S◦ and consider the halfspace Hθ := {x ∈ ℝn : θ>x ≤ 0}. Then, Hθ ⊇ S.

Proof. Take any s′ ∈ S; we will show that s′ ∈ Hθ. Since θ ∈ S◦, by definition of polar cone we have that
θ>s ≤ 0 for all s ∈ S, including in particular s = s′. So, s′ ∈ Hθ as we wanted to show.

1.2 Abernethy et al. [2011]’s idea
Blackwell’s algorithm described in Lecture 4 worked by playing, at every time t, a forcing actions for the
halfspace tangent to S at the projection point ψt ∈ S of the current average payoff φ̄t := 1

T

∑t−1
τ=1 u(xt,yt).

Abernethy et al. [2011]’s idea is to generalize this construction by letting a regret minimizer decide which
halfspace to force.

Specifically, let RS be a regret minimizer that outputs strategies θt ∈ S◦ that observes as utilities the
Blackwell payoffs `t := u(xt,yt). At every time t, we will force the halfspace

Hθt := {x ∈ ℝn : (θt)>x ≤ 0},

which, as we discussed in Lemma 1.1, is a superset of the target set S (see also Figure 1).
The proof of correctness for Algorithm 1 relies on this lemma that shows that the problem of minimizing

distance to a cone is equivalent to the problem of maximizing the inner product on the polar of the cone.

Lemma 1.2. Let S ⊆ ℝn be a cone and z be a generic point in ℝn. Then,

min
ŝ∈S
‖ŝ− z‖2 = max

θ̂∈S◦∩Bn
2

z>θ̂,

where Bn2 := {x ∈ ℝn : ‖x‖2 ≤ 1} denotes the unit ball in ℝn with respect to the Euclidean norm.
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Algorithm 1: From regret minimization to Blackwell approachability
Data: RS regret minimizer for S◦

1 function NextStrategy()
2 θt ← RS.NextStrategy()
3 return xt forcing action for Hθt := {x : (θt)>x ≤ 0}

4 function ReceivePayoff(u(xt,yt))
5 RS.ObserveLoss(`t := u(xt,yt))

S

S◦

θt

Hθt

Figure 1: Pictorial depiction of Algorithm 1’s inner working: at all times t, the algorithm plays a forcing
action for the halfspace Ht induced by the last decision output by L.

Proposition 1.1. Denote the regret of RS compared to any θ̂ as

RTS (θ̂) :=
T∑
t=1

(`t)>θ̂ −
T∑
t=1

(`t)>θt.

Then, at all times T , the distance between the average payoff cumulated by Algorithm 1 and the target
cone S is upper bounded as

min
ŝ∈S

∥∥∥∥∥ŝ− 1
T

T∑
t=1

u(xt,yt)
∥∥∥∥∥

2

≤ 1
T

max
θ̂∈S◦∩Bn

2

RTS (θ̂),

where Bn2 denotes the unit ball in ℝn with respect to the Euclidean norm, just like in Lemma 1.2.

Proof. Using Lemma 1.2,

min
ŝ∈S

∥∥∥∥∥ŝ− 1
T

T∑
t=1

u(xt,yt)
∥∥∥∥∥

2

= max
θ̂∈S◦∩Bn

2

(
1
T

T∑
t=1

u(xt,yt)
)>
θ̂ = max

θ̂∈S◦∩Bn
2

(
1
T

T∑
t=1

`t

)>
θ̂

= 1
T

max
θ̂∈S◦∩Bn

2

{
T∑
t=1

(`t)>θ̂
}

(2)

where the second step uses `t := u(xt,yt). By substituting the definition RTS (θ̂) into (2), we then find

min
ŝ∈S

∥∥∥∥∥ŝ− 1
T

T∑
t=1

u(xt,yt)
∥∥∥∥∥

2

= 1
T

max
θ̂∈S◦∩Bn

2

{
RTS (θ̂) +

T∑
t=1

(`t)>θt
}

= 1
T

max
θ̂∈S◦∩Bn

2

{
RTS (θ̂)

}
+ 1
T

T∑
t=1

(`t)>θt.

Now, by construction xt is a forcing action for the halfspace Hθt = {x ∈ ℝn : (θt)>x ≤ 0}, and so
(θt)>u(xt,yt) = (`t)>θt ≤ 0. Hence,

1
T

T∑
t=1

(`t)>θt ≤ 0. (3)
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Plugging (3) into (2) yields the statement.

Proposition 1.1 immediately implies that if the regret minimizer RS is able to guarantee that the regret
on the subset S◦ ∩ Bn2 of its domain S◦ grows sublinearly, then goal (1) can be attained.

Algorithms that are able to guarantee that maxθ̂∈S◦∩Bn
2
RTS (θ̂) = o(T ) exist. For example, if RS is set to

OMD or FTRL with Euclidean regularization, then it can be shown that

max
θ̂∈S◦∩Bn

2

RTS (θ̂) ≤

√√√√2
(

T∑
t=1
‖`t‖2

2

)
,

which clearly grows at a sublinear rate of O(
√
T ).

2 Predictive Blackwell Approachability
Predictive Blackwell approachability is a natural extension of Blackwell approachability [Farina et al., 2021].
Similarly to how we defined predictive regret minimization, in predictive Blackwell approachability the
environment provides Player 1 with a prediction vt of the next utility u(xt,yt).

It is immediate to extend the construction of Abernethy et al. [2011] (Algorithm 1) to take into account
predictions: since the utility observed by RS (Line 5) is exactly ut(xt,yt), we can simply use a predictive
regret minimization algorithm RS and provide vt as the prediction of the next utility. The predictive version
of Algorithm 1 is given in Algorithm 2.

The analysis in Proposition 1.1 holds verbatim. In fact, it can be shown that when RS is set to predictive
OMD or FTRL with Euclidean regularization, then

max
θ̂∈S◦∩Bn

2

RTS (θ̂) ≤

√√√√2
(

T∑
t=1
‖`t − vt‖2

2

)
,

which clearly grows at a sublinear rate of O(
√
T ) and can be very small if the predictions vt are accurate.

Algorithm 2: Predictive Blackwell approachability algorithm
Data: RS predictive regret minimizer for S◦

1 function NextStrategy(vt)
[. vt is the prediction of the next Blackwell payoff u(xt,yt) ∈ ℝn]

2 θt ← RS.NextStrategy(vt)
3 return xt forcing action for Hθt := {x : (θt)>x ≤ 0}

4 function ReceivePayoff(u(xt,yt))
5 RS.ObserveLoss(`t := u(xt,yt))
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