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ABSTRACT 
News and disaster-related applications may benefit from real-time 
processing of large-volume, up-to-the-minute social media data.  
Our geo-mining algorithm finds local place references (of street, 
building, toponym and place abbreviation) in Twitter messages so 
that those messages can be put on a map.  The ability to map is 
significant because it can present a timely overview of a situation.  
Our current research demonstrates that our prototype desktop 
algorithm that geo-locates Twitter messages with an F statistic of 
.90 accuracy for location identification will be viable on a large 
scale and in real time, for actual applications.  We present 
methods of managing external resources, threading the algorithm 
and balancing the data load, that allow us to scale up the 
application without significantly re-writing the code.  

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-based Systems.]  Real-time 
and embedded systems.   

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Real time, data stream, multicore, multiprocessor parallel 
computing, Twitter, geo-location, geo-parsing  

1. INTRODUCTION 
Social media data may supplement traditional journalistic sources 
of information about events and crises.  Twitter, in particular, has 
been mined for information about earthquakes [1], and about 
other emergencies [2],[3],[4].   

Our earlier research demonstrated a prototype application that 
associated street, building, toponym and location abbreviation 
within Twitter messages to a high degree of accuracy [5].  Our 
current research experiments with methods to scale up that  

application with the help of greater computing resources so that it 
might be deployed in real time with much larger data volume.   

Other geo-location algorithms rely on superficial methods that 
filter the Twitter data stream directly.  This requires less data 
processing and is easily to scale.  For example, the Twitter map 
provided by Tweography filters GPS location, that provided by 
Trendsmap filters by user-supplied location, and that provided by 
Twitris filters by both GPS and user-supplied location.1  Our geo-
location algorithm, in contrast, geo-parses within a metadata field 
(the tweet text), by comparison, and so requires more processing 
and a more complicated scale-up strategy.  
 
The advantages of our deep geo-parsing algorithm is that (1) it 
allows the information rather than the user to be mapped, (2) it 
allows for mapping messages that would not otherwise be geo-
locatable, (3) it allows for mapping at the geographical precision 
of street, and even building on a street.  Such precision may not 
be as common in day-to-day messages as in crisis-related 
messages, but in mapping particular events that precision is 
useful. 

 
Our data was pre-selected for language and disaster-potential from 
the 10% of the full Twitter stream as archived for Carnegie 
Mellon research.  Our data set was collected during the 3-day 
climax of the 2011 fire in the Texas state capital of Austin.   See 
Table 1 for statistics.  
 

Table 1: Geo-locatable messages: What can our geo-parsing 
algorithm add?  

Austin fire tweets, N=3111 

Percentage of tweets that are geo-
locatable by any means (User-supplied 
location, GPS, geo-words in tweet text) 63% 
Percentage of geo-locatable tweets 
that have location in tweet text 32% 

Percentage of geo-locatable tweets 
that can be located to city scale or 
more precisely via tweet text 13% 
Percentage of tweets that include GPS 
location 1% 

 

                                                                 
1 Tweography.com; Trendsmap.com; Twitris.knoesis.org/election 
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2. ARCHITECTURE  
Presently, the system takes tweets selected by keyword and date 
(from the Austin fire), and outputs only those tweets that have 
associated locations.  This is because it has been found that tweets 
that do not have locations are less informative [6].  Geo-coding by 
gazetteer look-up, supplemented by API calls to GoogleMaps, 
will allow those tweets to be placed on a map.  

3. METHOD to SCALE UP 
Our work follows the applicable requirements of real-time stream 
processing set out by [7].  Our goal was soft real-time processing.  
Our method was to (1) re-structure the algorithm and re-organize 
external resources, (2) thread the algorithm among the 16 cores of 
our supercomputer allotment, and (3) balance the data load among 
threads to the cores.  

3.1 Re-structure the algorithm and resources 
We have re-structured our desktop geo-parse algorithm by 
combining the formerly separate abbreviation identification 
module with the street, building and toponyn module.   

Our external resources consisted initially of API calls to the 
Named Entity Recognizer OpenCalais, and the use of a third party 
spell check algorithm.  We substituted the Stanford NER program 
which we could download into the resource library, and removed 
the spell-checker altogether, which caused us to lose some 
accuracy but gain immensely in speed.  We also re-organized the 
gazetteer into an inverted list to improve efficiency.  

Initializing external resources is time-consuming.  However, that 
relative initialization time decreases proportionally with the 
volume of data to be processed.   In our Austin tweet set, we 
found that 55% of the run time was dedicated to actual geo-
parsing, but when we processed ten times the tweet set (about 
30,000 tweets), the relative time for initialization diminished and 
91% of the time was dedicated to geo-parsing.   

3.2 Threading 
Threading creates sub-processes that run in parallel.  The number 
of threads possible is application specific.  The upper limit for 
thread efficiency is a function of the way the threads cross-
communicate, and the generation of each thread, as well as 
allocating resources (shared among threads), and scheduling.  We 
time-tested processing from 1 to 12 threads.   Run time per thread, 
that is, the time it takes for the data to be processed and for the 
thread to terminate, is the lowest when we have 10 threads.   

3.3 Load balancing  
We defined two load strategies based on the length of a tweet file.   
We tested processing all the short tweet first (which we call 
“EasyFirst”), and balancing short with long tweets (which we call 
“Balanced”) with three trials per option (Table 2).  Tests showed 
that the Balanced processed at about the same speed as the 
EasyFirst, even up to 16 threads (Table 2 shows only up to 5 
threads).  The advantage of the EasyFirst is that some results are 
returned as soon as they are processed, which improves response 
time for users.      
  
 
 

Table 2: Three runs for each load strategy, showing how number 
of threads influences processing time.  

Load 
strategy 1 

Thread—
time in 
millisec 

3 
Threads— 
time in 
millisec 

5 
Threads—
time in 
millisec 

EasyFirst 3182 7812  
 

Average 
time 25662 EasyFirst 5039 11120 

EasyFirst 3159 7639 
Balanced 7561 8334  

 
Average 

time 26563 Balanced 16031 16428 
Balanced 16593 17337 

 

4. DISCUSSION 
Methods presented here allow us to process about 375 tweets per 
second.  The Twitterverse as of March 2012 produced about 4000 
tweets per second, according to TNW Social media.  Of these, 
only about 2000 are in English, and tweets input into our geo-
parse algorithm would be only those that contain specified 
keyword(s), leaving only a minor subset of that 2000.  We 
therefore are approaching the speed that our algorithm would 
require to geo-locate tweets in real time.  

Further experimentation directions might include altering the data 
structure of external resources in addition to the gazetteer, pre-
processing of tweets to tag individual words such as stop words 
and prepositions for improved accuracy,  as well as implementing 
more syntactic methods for geo-parsing that would be likely to 
hold across languages.  Continuing testing of algorithm accuracy 
on large scale data sets will use for validation GPS location and 
user-supplied location metadata.   

5. CONCLUSION 
We have experimented on Blacklight, an Altix UV  
supercomputer, to scale up a desktop geo-parsing algorithm for 
faster service in real time.  Algorithm restructuring and resource 
re-organization, threading and load balancing contribute to 
improving output performance.   
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