
High performance mining of social media data

Judith Gelernter
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh PA 15213

gelern@cs.cmu.edu

Gang Wu
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213

winston.gwu@gmail.com

ABSTRACT
News and disaster-related applications may benefit from real-time
processing of large-volume, up-to-the-minute social media data.
Our geo-mining algorithm finds local place references (of street,
building, toponym and place abbreviation) in Twitter messages so
that those messages can be put on a map. The ability to map is
significant because it can present a timely overview of a situation.
Our current research demonstrates that our prototype desktop
algorithm that geo-locates Twitter messages with an F statistic of
.90 accuracy for location identification will be viable on a large
scale and in real time, for actual applications. We present
methods of managing external resources, threading the algorithm
and balancing the data load, that allow us to scale up the
application without significantly re-writing the code.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems.] Real-time
and embedded systems.

General Terms
Algorithms, Performance, Experimentation

Keywords
Real time, data stream, multicore, multiprocessor parallel
computing, Twitter, geo-location, geo-parsing

1. INTRODUCTION
Social media data may supplement traditional journalistic sources
of information about events and crises. Twitter, in particular, has
been mined for information about earthquakes [1], and about
other emergencies [2],[3],[4].

Our earlier research demonstrated a prototype application that
associated street, building, toponym and location abbreviation
within Twitter messages to a high degree of accuracy [5]. Our
current research experiments with methods to scale up that

application with the help of greater computing resources so that it
might be deployed in real time with much larger data volume.

Other geo-location algorithms rely on superficial methods that
filter the Twitter data stream directly. This requires less data
processing and is easily to scale. For example, the Twitter map
provided by Tweography filters GPS location, that provided by
Trendsmap filters by user-supplied location, and that provided by
Twitris filters by both GPS and user-supplied location.1 Our geo-
location algorithm, in contrast, geo-parses within a metadata field
(the tweet text), by comparison, and so requires more processing
and a more complicated scale-up strategy.

The advantages of our deep geo-parsing algorithm is that (1) it
allows the information rather than the user to be mapped, (2) it
allows for mapping messages that would not otherwise be geo-
locatable, (3) it allows for mapping at the geographical precision
of street, and even building on a street. Such precision may not
be as common in day-to-day messages as in crisis-related
messages, but in mapping particular events that precision is
useful.

Our data was pre-selected for language and disaster-potential from
the 10% of the full Twitter stream as archived for Carnegie
Mellon research. Our data set was collected during the 3-day
climax of the 2011 fire in the Texas state capital of Austin. See
Table 1 for statistics.

Table 1: Geo-locatable messages: What can our geo-parsing
algorithm add?

Austin fire tweets, N=3111

Percentage of tweets that are geo-
locatable by any means (User-supplied
location, GPS, geo-words in tweet text) 63%
Percentage of geo-locatable tweets
that have location in tweet text 32%

Percentage of geo-locatable tweets
that can be located to city scale or
more precisely via tweet text 13%
Percentage of tweets that include GPS
location 1%

1 Tweography.com; Trendsmap.com; Twitris.knoesis.org/election

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

XSEDE’12, July 16-20, 2012, Chicago, Illinois, U.S.A.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

2. ARCHITECTURE
Presently, the system takes tweets selected by keyword and date
(from the Austin fire), and outputs only those tweets that have
associated locations. This is because it has been found that tweets
that do not have locations are less informative [6]. Geo-coding by
gazetteer look-up, supplemented by API calls to GoogleMaps,
will allow those tweets to be placed on a map.

3. METHOD to SCALE UP
Our work follows the applicable requirements of real-time stream
processing set out by [7]. Our goal was soft real-time processing.
Our method was to (1) re-structure the algorithm and re-organize
external resources, (2) thread the algorithm among the 16 cores of
our supercomputer allotment, and (3) balance the data load among
threads to the cores.

3.1 Re-structure the algorithm and resources
We have re-structured our desktop geo-parse algorithm by
combining the formerly separate abbreviation identification
module with the street, building and toponyn module.

Our external resources consisted initially of API calls to the
Named Entity Recognizer OpenCalais, and the use of a third party
spell check algorithm. We substituted the Stanford NER program
which we could download into the resource library, and removed
the spell-checker altogether, which caused us to lose some
accuracy but gain immensely in speed. We also re-organized the
gazetteer into an inverted list to improve efficiency.

Initializing external resources is time-consuming. However, that
relative initialization time decreases proportionally with the
volume of data to be processed. In our Austin tweet set, we
found that 55% of the run time was dedicated to actual geo-
parsing, but when we processed ten times the tweet set (about
30,000 tweets), the relative time for initialization diminished and
91% of the time was dedicated to geo-parsing.

3.2 Threading
Threading creates sub-processes that run in parallel. The number
of threads possible is application specific. The upper limit for
thread efficiency is a function of the way the threads cross-
communicate, and the generation of each thread, as well as
allocating resources (shared among threads), and scheduling. We
time-tested processing from 1 to 12 threads. Run time per thread,
that is, the time it takes for the data to be processed and for the
thread to terminate, is the lowest when we have 10 threads.

3.3 Load balancing
We defined two load strategies based on the length of a tweet file.
We tested processing all the short tweet first (which we call
“EasyFirst”), and balancing short with long tweets (which we call
“Balanced”) with three trials per option (Table 2). Tests showed
that the Balanced processed at about the same speed as the
EasyFirst, even up to 16 threads (Table 2 shows only up to 5
threads). The advantage of the EasyFirst is that some results are
returned as soon as they are processed, which improves response
time for users.

Table 2: Three runs for each load strategy, showing how number
of threads influences processing time.

Load
strategy 1

Thread—
time in
millisec

3
Threads—
time in
millisec

5
Threads—
time in
millisec

EasyFirst 3182 7812

Average
time 25662 EasyFirst 5039 11120

EasyFirst 3159 7639
Balanced 7561 8334

Average

time 26563 Balanced 16031 16428
Balanced 16593 17337

4. DISCUSSION
Methods presented here allow us to process about 375 tweets per
second. The Twitterverse as of March 2012 produced about 4000
tweets per second, according to TNW Social media. Of these,
only about 2000 are in English, and tweets input into our geo-
parse algorithm would be only those that contain specified
keyword(s), leaving only a minor subset of that 2000. We
therefore are approaching the speed that our algorithm would
require to geo-locate tweets in real time.

Further experimentation directions might include altering the data
structure of external resources in addition to the gazetteer, pre-
processing of tweets to tag individual words such as stop words
and prepositions for improved accuracy, as well as implementing
more syntactic methods for geo-parsing that would be likely to
hold across languages. Continuing testing of algorithm accuracy
on large scale data sets will use for validation GPS location and
user-supplied location metadata.

5. CONCLUSION
We have experimented on Blacklight, an Altix UV
supercomputer, to scale up a desktop geo-parsing algorithm for
faster service in real time. Algorithm restructuring and resource
re-organization, threading and load balancing contribute to
improving output performance.

6. ACKNOWLEDGMENTS
Our thanks to our Department Head, Professor Jaime Carbonell,
as well as Nick Nystrom, Sergiu Sanielevici and Joel Welling
from the Pittsburgh Supercomputing Center who have supported
this research. Our development team includes Shuguang Han and
Wangzi He, with past members Shilpa Balaji, and Nikolai
Mushegian. Our data set obtains from the generosity of Carnegie
Mellon Twitter data curator, Brendan O’Connor. Supercomputer
time was allocated through a PSC grant, and continued research is
funded by DARPA.

7. REFERENCES
[1] Sakaki, T., Okazaki, M., Matsuo, Y. (2010). Earthquake

shakes Twitter users: Real-time event detection by social
sensors, Proceedings of the 19th international conference on
world wide web, 851-860.

[2] Yin, J., Lampert, A., Cameron, M., Robinson, B., and Power,
R. (2012). Using social media to enhance emergency situation
awareness. IEEE Intelligent Systems, Retrieved June 14, 2012
from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=0614819
6

[3] Sreenivasan, N. D., Lee, C.S. and Goh, D. H-L (2011). Tweet
me home: Exploring information use on Twitter in Crisis
Situations. A.A. Ozok and P. Zaphiris (Eds): Online
Communities, HCII 2011, LNCS 6778, 120-129.

[4] Maxwell, D., Raue, S., Azzopardi, L, Johnson, C. and Oates,

S. (2012) Crisees: Real-time monitoring of social media
streams to support crisis management. R. Baeza-Yates et al
(Eds.) ECIR 2012, LNCS 7224, 573-575.

[5] Gelernter and Balaji, (2012). An algorithm for local
geoparsing of microtext. Under review for GeoInformatica.

[6] Munro, Robert. 2011 Subword and spatiotemportal models for
identifying actionable information in Haitian Kreyol.
Fifteenth Conference on Computational Natural Language
Learning (CoNLL 2011), Portland.

[7] Stonebraker, M., Cetinemel, U., Zdonik, S. (2005). The 8
requirements of real-time stream processing. SIGMOD
Record 34(4), 42-47.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

	1. INTRODUCTION
	2. ARCHITECTURE
	3. METHOD to SCALE UP
	3.1 Re-structure the algorithm and resources
	3.2 Threading
	3.3 Load balancing

	4. DISCUSSION
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

