

15-719/18-847b Advanced Cloud Computing

Garth Gibson Greg Ganger Majd Sakr

Security readings

- Req: *The state of Public Infrastructure-as-a-Service Cloud Security*, Huang, Ganjali, Kim, Oh, and Lie, ACM Computing Surveys, 2015.
- Opt: Hey, you get off of my cloud: exploring information leakage in third-party compute clouds, Ristenpart, Tromer, Shacham, Savage, ACM Computer and Communications Security, 2009.
- Opt: *Security in the cloud*, Anthes, Communications of the ACM, 2010.

Public Infrastructure Cloud Services

Table II. Cloud Service Providers Surveyed

- > \$130B?
- < 10 years
- Little VMM or stack diversity
- Data derived from Gartner2013

Service Provider	Launch Year	Hypervisor(s)
Verizon Cloud	2014	Xen/VMware
Google	2013	KVM
Savvis Direct	2012	Xen/VMware
HP Public Cloud	2012	KVM
Dimension Data	2011	VMware
Tier 3	2011	VMware
Microsoft Azure	2010	Custom(Hyper-V)
Fujitsu Trusted Public S5	2010	Xen
GoGrid Cloud Platform	2009	Xen
Joyent Compute/Manta Storage	2009	SmartOS
Amazon EC2/S3	2008	Xen
Rackspace Public Cloud	2008	Xen
SoftLayer	Unknown	Xen

[Huang15]

Survey state of art in IaaS security

- Consider IaaS cloud services, based on hypervisors & cloud environment software stacks (e.g. AWS, OpenStack)
- Consider attackers to be of two types:
 - Attacker runs on same machine, but not in cloud service provider (CSP)
 - Attacker has breached CSP on same or other machines in cloud services
- Security issues (Confidentiality, Integrity, Availability)
 - Customer/user data is protected, plus its existence & access patterns
 - Cloud service provider (CSP) provides correct and honest functions
 - Failure to meet Contract SLA (CS) is a security issue (some SLA goals are hard to verify, e.g. how reliable is my cloud data storage?)

Survey of Public IaaS CSP Offerings

Table III. Summary of Areas where the laaS Industry has Established Best-Practices

[Huang15]

	Hyper-	Fire-	Data-	Dedicated	Segre-	Crypto-	Crypto-		Delegation/	CSP	Location		
CSP	visor	wall	center Op.	VM	gation	Transit	Rest	Auth	ACL	security	Constraints	SLA	Bill
Amazon	✓	✓	✓	√	✓	✓	Object	2 factor passwords SSO	Role-based	No spoofing	✓	✓	×
Verizon	✓	1	√	✓	✓	✓	Object	2 factor passwords, PIN	Role-based	Not mentioned	✓	✓	×
SavvisDirect	✓	√	✓	×	✓	√	Object	Passwords Keystone (SSO)	Access with tokens	Not mentioned	✓	✓	×
Rackspace	✓	✓	✓	×	✓	✓	Block	Passwords Keystone (SSO)	Role-based	Not mentioned	✓	✓	×
Azure	✓	~	✓	×	✓	✓	Block	Passwords Keystone (SSO)	Rest-API	Some	✓	✓	×
DimensionData	✓	✓	✓	×	✓	✓	Object	Passwords	Role-based	Not mentioned	✓	✓	×
Tier 3	✓	✓	✓	×	✓	✓	Object	Passwords REST	Create users	Not mentioned	✓	✓	×
Joyent	X	✓	✓	×	✓	✓	×	Password SSH Key	Sub users	Not mentioned	✓	✓	X
Fujitsu	✓	✓	✓	✓	✓	✓	Block	Certificate based	Sub users	Mentioned as risk	✓	✓	X
GoGrid	✓	✓	✓	✓	✓	✓	Block	Password/ API key	×	Prevent spam	✓	✓	X
SoftLayer	✓	✓	✓	×	✓	✓	Block	Password, API key	Sub users Sub accounts	Not mentioned	✓	✓	×
НР	✓	✓	✓	×	✓	√	Block	Password Keystone (SSO)	Sub users Sub accounts	Not mentioned	✓	✓	X
Google	✓	✓	✓	×	✓	✓	Block	Passwords, OAuth2	via OAuth2	Prevent spam	✓	✓	X

CSP Security Mechanisms (inherited from pre-cloud)

Systems

- Hypervisor Xen, KVM, VMWare, Hyper-V maturing through use and abuse
- Firewall separate from VM to emulate separate hardware
- Data center operations best practice human/physical practices from hosting market
- Dedicated VMs virtual but not shared, sometimes offered (vs private cloud)
- Corporate Segregation usually protected from CSP's other business/staff

Cryptographic

- In transit SSL/TLS, riding Web 2.0 technology (e.g. certificates)
- At rest does encryption at rest by CSP offer real protection? CSPs disagree

Access control

- Authentication single sign on (SSO) service diversity (Oauth, Keystone, SAK, IAM)
- User creation and ACLs "file system like" plus time, IP address controls;
 disagreement on how constrained/delegatable/revocable?

Security Mechanisms con't

- CSP Security how transparent is CSP security of themselves?
 - Eg. IP address management; banned/blacklist of CSP IP protected
- CSP contract
 - Location of VM country restrictions, geo-replication for avail/latency
 - SLAs all vary price based on SLA availability, but few other properties
 - _o Billing bytes/hours verify easily, compute quality not so much
 - Project 2 multiple AZ when you didn't ask for costs more

Survey of Public IaaS CSP Offerings

[Huang15]

Table III. Summary of Areas where the laaS Industry has Established Best-Practices

	Hyper-	Fire-	Data-	Dedicated	Segre-	Crypto-	Crypto-		Delegation/	CSP	Location		
CSP	visor	wall	center Op.	VM	gation	Transit	Rest	Auth	ACL	security	Constraints	SLA	Bill
Amazon	✓	✓	√	✓	✓	✓	Object	2 factor passwords SSO	Role-based	No spoofing	√	✓	X
Verizon	✓	✓	√	√	✓	✓	Object	2 factor passwords, PIN	Role-based	Not mentioned	√	✓	X
SavvisDirect	✓	√	√	×	√	✓	Object	Passwords Keystone (SSO)	Access with tokens	Not mentioned	√	✓	X
Rackspace	✓	✓	√	×	✓	1	Block	Passwords Keystone (SSO)	Role-based	Not mentioned	√	✓	×
Azure	✓	√	√	×	√	✓	Block	Passwords Keystone (SSO)	Rest-API	Some	√	✓	×
DimensionData	✓	✓	✓	×	✓	✓	Object	Passwords	Role-based	Not mentioned	✓	✓	×
Tier 3	✓	✓	✓	×	✓	✓	Object	Passwords REST	Create users	Not mentioned	✓	✓	×
Joyent	X	✓	✓	×	✓	✓	×	Password SSH Key	Sub users	Not mentioned	✓	✓	×
Fujitsu	✓	✓	✓	✓	✓	✓	Block	Certificate based	Sub users	Mentioned as risk	✓	✓	×
GoGrid	✓	✓	✓	✓	✓	✓	Block	Password/ API key	×	Prevent spam	✓	✓	X
SoftLayer	✓	✓	✓	×	✓	✓	Block	Password, API key	Sub users Sub accounts	Not mentioned	✓	✓	X
НР	✓	√	√	×	✓	√	Block	Password Keystone (SSO)	Sub users Sub accounts	Not mentioned	✓	✓	X
Google	✓	✓	✓	×	✓	✓	Block	Passwords, OAuth2	via OAuth2	Prevent spam	✓	✓	X

Broader academic issues

Attack targets

- Cache channel measure cache access time to deduce what data a coresident victim code is touching (Ristenparto9)
- Storage channel even encrypted, shared storage access pattern can be inferred, unless real data "moves around"
- Covert channels conspiring VMs can hide communication using above
- Image sharing shared VM root images very useful, so dangerous
- Leak prevention hybrid apps split over different CSP/private clouds

Broader academic issues con't

- Integrity, Availability Issues
 - Proof of Possession/Retrieval challenge/response statistical sampling
 - Storage Integrity digital signature, P2P tests of mutation ordering
 - Compromised VMM TPM HW hash of running code,
 - Hardened VMMs reduce complexity/size of VMM code/API
 - Coping with VMMs verifiable computation or homomorphic encrypt
- Contractual Issues trusted auditors, proof of location by latency

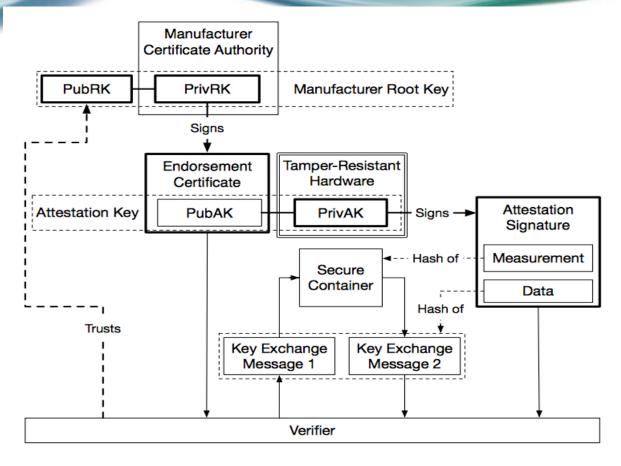
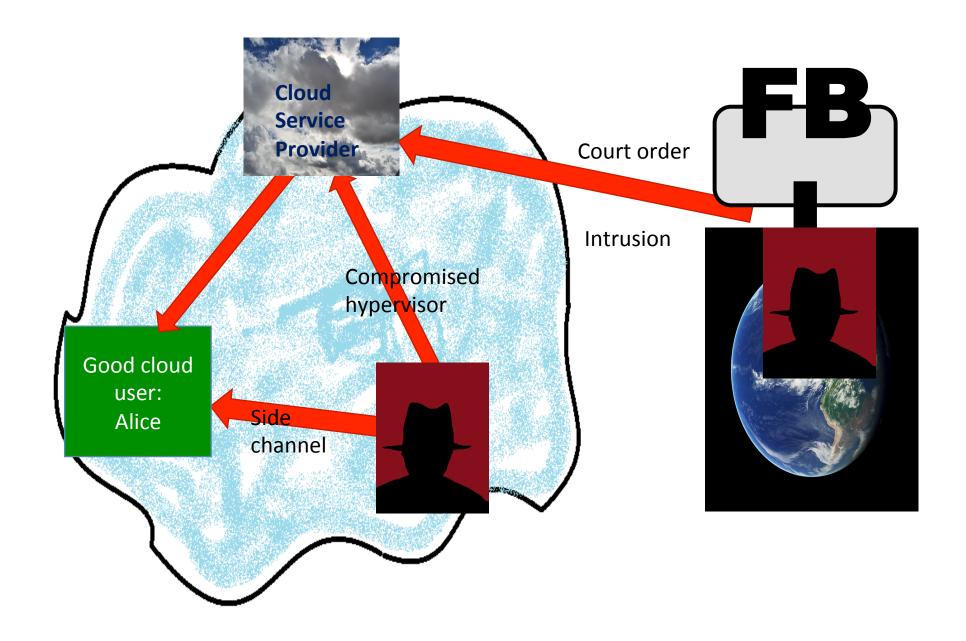

Discussion of academic vs industry defenses [Huang15]

Table IV. Summary of comparison between academic and industry cloud security solutions.

Problem	Current Solutions and Results	Summary
Malicious or com- promised CSPs	Academia: POR/PDP, hypervisor integrity, auditing Industry: Marketing	CSPs assume they are trusted and dis- claim liability for damages due to securi- ty compromises. Academia serves an im- portant role for identifying weaknesses in CSP security that would be hard for CSPs themselves to talk about publicly.
Cross-VM leak- age, cache timing channels, covert channels	Academia: Evaluation of feasibili- ty of attack, memory placement, de- terministic execution Industry: Dedicated instances	Industry proposes dedicated instances. Main question is the value of this solution since it costs more for a dedicated instance. Academia could help by definitively establishing the feasibility of such attacks and the associated costs with mounting the attack.
Malicious VM im- ages and leakage through VM im- ages	Academia: Demonstrated the size and scope of the problem through measurement. Industry: Provide documentation and warnings to users.	A simple tool to detect leakage and ma- licious VMs has been constructed in a- cademia. There is potential for a more comprehensive solution to solve this problem.
Hypervisor in- tegrity and compromised hypervisors	Academia: Hypervisor hardening, using untrusted hypervisors, TPM-based remote attestation by customers. Industry: Hypervisor customizations and keeping hypervisor patched.	Direct TPM-based remote attestation by customers is of limited use due to use of industry use of customized hypervisors. Protecting against an untrusted hypervi- sor is the only viable solution against a malicious CSP.
Billing Integrity	Academia: Demonstrate attack- s against billing integrity, audit- ing techniques to ensure that diffi- cult to verify security properties of cloud service are upheld. Industry: Bill based on easily ver- ifiable quantities.	Unfortunately, industry billing practice multiplies easily verifiable quantities with rates based on difficult to verify properties. There is potential for research into better auditing and metering techniques.

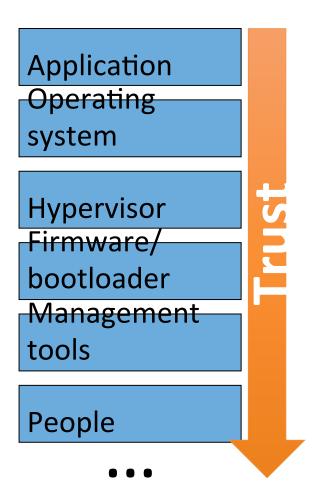
Attestation

• If you control original code in secure container and secure container signs a computation in secure container, then you are trusting manufacturer


Figure 53: The chain of trust in software attestation. The root of trust is a manufacturer key, which produces an endorsement certificate for the secure processor's attestation key. The processor uses the attestation key to produce the attestation signature, which contains a cryptographic hash of the container and a message produced by the software inside the container.

[Costan16, IACR Cryptology]

Next day plan


- Monday: Greg will talk about learning to love spot pricing
- Wednesday: Guest lecture on formal verification of cloud services
 - Bryan Parno, CMU
- Monday after: TBD
- Wednesday after: second midterm
 - Closed book, no electronics, one 8.5x11" cheat sheet allowed
 - In-class, sit with an empty sit on both sides of you
 - o Topics covered include project 3 (scheduling) and all lectures after exam 1

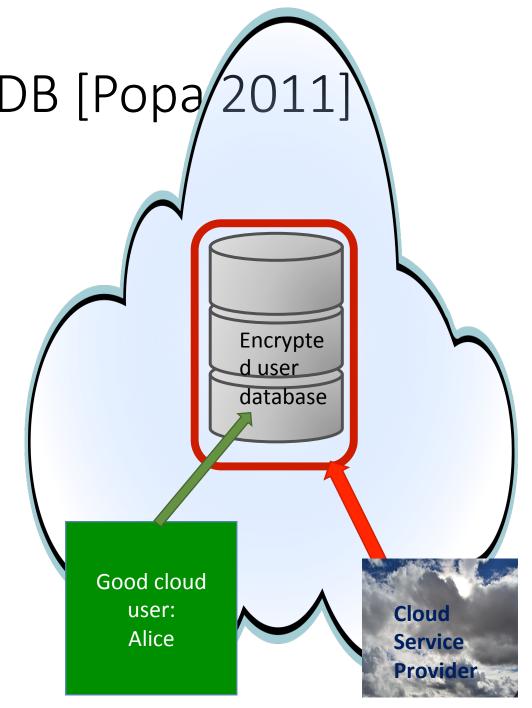
Can you trust the cloud?

- Huge trusted computing base
 - Privileged software
 Hypervisor, firmware, ...
 - Management stack
 - Staff
 Sysadmins, cleaners,
 security, ...
 - Law enforcement
- Hierarchical security model
 - Observe or modify any data
 - Even if encrypted on disk / net

Homomorphic Encryption: Toy Example

• RSA encryption: $E(x)=x \uparrow e \mod m$

• $E(x)\cdot E(y)=(x\uparrow e \mod m)\cdot (y\uparrow e \mod m)=(xy)\uparrow e$ $mod\ m=E(xy)$


 We can multiply on encrypted data! Multiply Upload Encrypted encrypted User encrypted **Encrypt data** User data data VM vata into the on premise cloud Can read only encrypted data Good cloud user: Alice Cloud **Service**

Fully Homomorphic Encryption (FHE)

- Can we do more than just multiply?
- Yes. FHE systems can perform arbitrary operations on encrypted data [Gentry 2009].
- But they are very slow (at present)
 - Orders of magnitude slowdown
- Research directions
 - Can we reduce the overhead? (Crypto research)
 - Can we trade off functionality and security for speed?

Example: CryptDB [Popa/2011]

- SQL database that runs on encrypted data.
- DB systems
 perform only a
 limited set of
 operations on the
 data.
- Weaken encryption for some DB columns to enable interesting queries.

Encrypte d Databas es

SSN	Patient Name	Age	diagnosis	doctor's comments
xz6f73bdfk	4jruaiu B4ur8w	kjewh	dsasdfs	kljaenfja al ksdfisegj iooi aoeiwrg ioj[erg jioaergj io
45geio809d	jdjncks 7832ibhe	;kds	ghfgh	df,adsmkladfkl slkjdn lkjdf ndkfu isdfdiufuiasds sd
kf9sh23kdfb	kwjek 9e89cjf	rur8f	dsfadf	df,adsmkladfklsfg slkjdn lkjdf ndkfu isdfdiufuiasds sd
8dnklsdjfb3	9r09f 90sd9f	98udc	hghj	tghtrstghfg rweakosaen ser wer ert24rt gwyew5y
dwom58anb	0j98fi0f ikdfm90er	;kds	fgdfg	w545425 456 567 56g wrt bgh rt ert bw5b th wey55by
h698sab4kld	pwoe09fuwe	890uefw	ythhgfdg	eoir vwer wrety 67 7iwt w454 34 74t t drjksd fg re ge

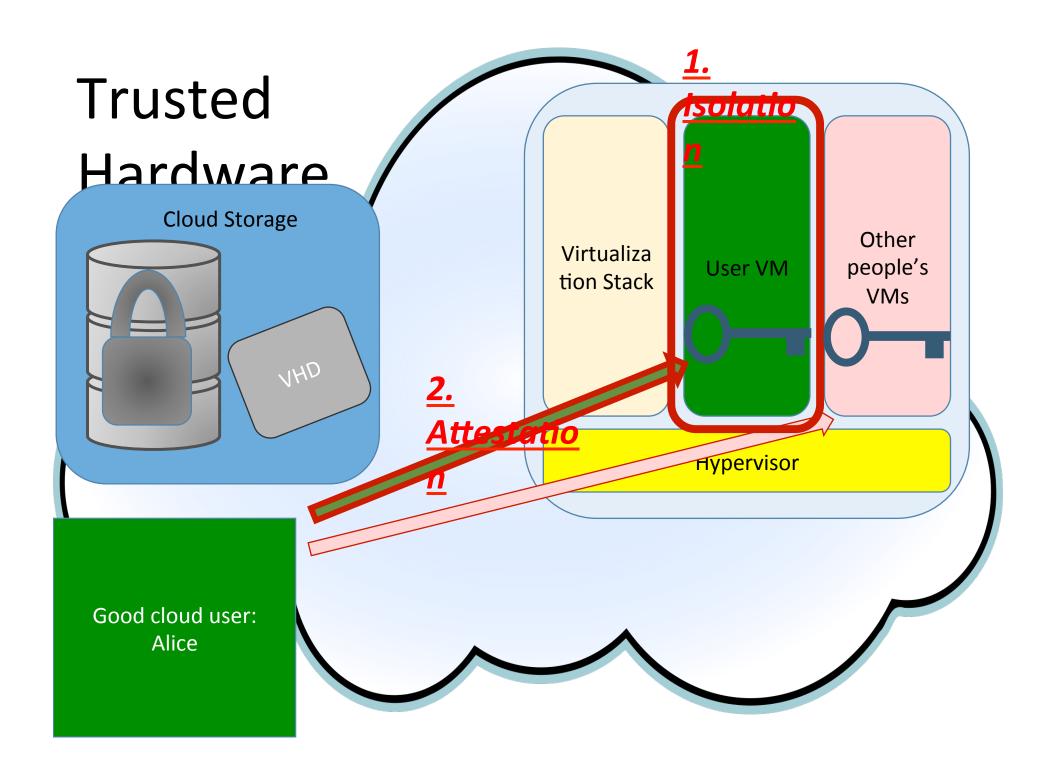
Select * from
PatientRecords
where <u>SSN =</u>
<u>dwom58anb</u>

Need <u>deterministic</u> <u>encryption</u> for columns used in simple filters.

This may leak some information.

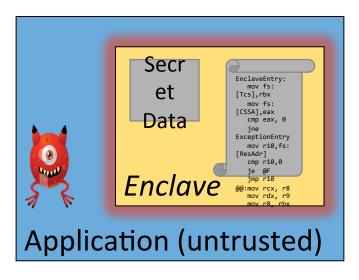
Select * from
PatientRecords
where **Age > rur8f**

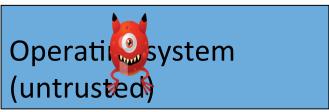
Need <u>order-preserving</u> <u>encryption (OPE)</u> for columns used in range queries.

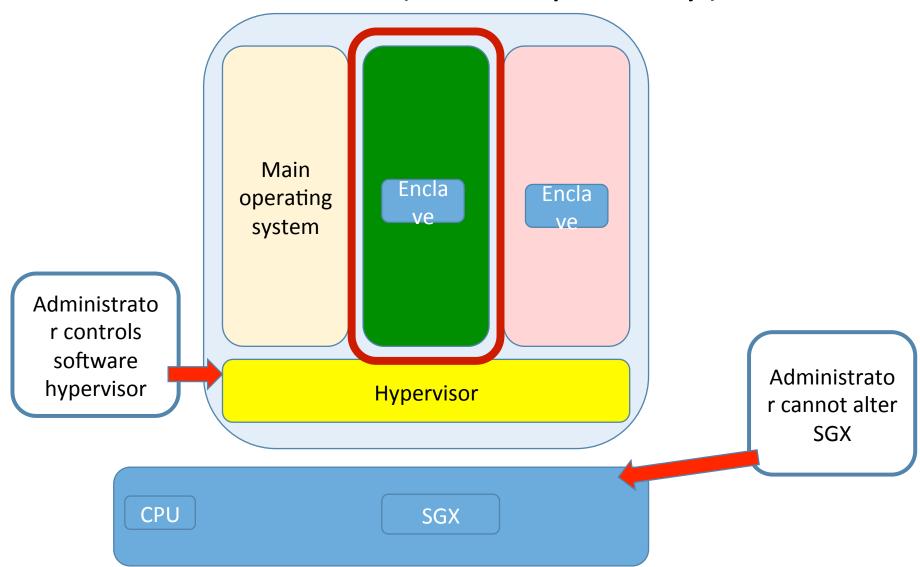

This leaks more information.

Select * from PatientRecords

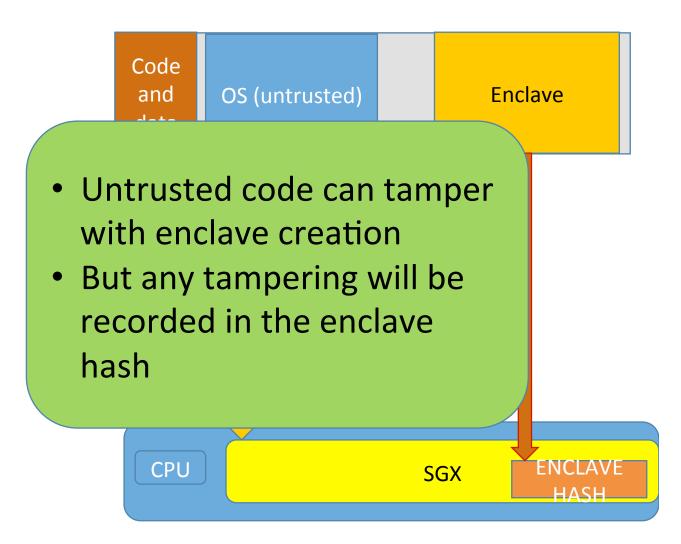
If no query depends on a column then we can encrypt it at full strength.


Trusted Hardware


- Assume special hardware features.
- Then we can run regular programs at native speed.
- And the CSP cannot access our data.


Intel SGX

- Hardware isolation for an enclave
 - New instructions to establish, protect
 - Call gate to enter
- Attestation
- Available in the most recent Intel CPUs (Skylake).
 - Only client processors



SGX: Isolation (conceptually)

Initialization: Building an Enclave

- Enclaves are built by untrusted code.
 - Enclave code
 - Enclave data
- CPU/SGX records enclave hash.

Enclave Software

- Can run arbitrary code in enclaves.
- Challenges:
 - External dependencies: Cannot trust the system beyond the enclave boundaries.
 - Only Ring 3 (user mode): Hard to run a VM/OS this way.
- First results:
 - Haven [Baumann 2014]: Arbitrary Windows applications.
 - VCCC [Schuster 2015]: Hadoop

Trusted Hardware: Problems

- No SGX hardware available
- SGX does not support VMs
- Limitations
- Still have to trust
 - An entire CPU
 - Intel Corporation
 - Manufacturing plant
- Compromised attestation keys
- Hardware attacks