Feb 22, 2017

Multi-level scheduling
15-719

Greg Ganger
Garth Gibson

Majd Sakr

15719 Advanced Cloud Computing

Context: many execution frameworks

® There are many cluster resource consumers
- Big Data frameworks, elastic services, VMs, ...

- Number going up, not down: GraphLab, Spark, ...

Dryad

Hypertable Cassandra OM)I

({ N y Pr'ege‘ :iAT\TpF’IAS?RWEER
GraphlLa b\

Traditional: separate clusters

® There are many cluster resource consumers

- Big Data frameworks, elastic services, VMs, ...

- Number going up, not down: GraphLab, Spark, ...
* Historically, each would get its own cluster

o and use its own cluster scheduler

- and hardware/configs could be specialized

T

Preferred: dynamic sharing of cluster

* Heterogeneous mix of activity types

- Some long-lived HA services; others short-lived batch jobs w/ lots of tasks

e Each grabbing/releasing resources dynamically

- Why? all the standard cloud efficiency story-lines

Source: Alexey Tumanov (2011)

And, INTRA-cluster heterogeneity

* Have a mix of platform types, purposefully
- Providing a mix of capabilities and features

o Then, match work to platform during scheduling

Source: Alexey Tumanov (2011)

___—

Could (try to) do with a monolithic scheduler

Organization policies—>
Resource availability—>
Job requirements—>

* Response time
* Throughput
* Availability

Monolithic
Scheduler

Source: lon Stoica (2012) 6

_— e

Could (try to) do with a monolithic scheduler

Organization policies—>
Resource availability—>
Job requirements—>

Job execution plan—>

* Task DAG
* |nputs/outputs

Monolithic
Scheduler

Source: lon Stoica (2012) 7

B

Could (try to) do with a monolithic scheduler

Organization policies—>
Resource availability—>

Job requirements—>
Job execution plan—>

Estimates—>

 Task durations
* |nput sizes
* Transfer sizes

Monolithic
Scheduler

Source: lon Stoica (2012) 8

< —

Could (try to) do with a monolithic scheduler

Organization policies—>
Resource availability—>

Job requirements— >
Job execution plan—>

Estimates—>

Monolithic

Scheduler —— Task schedule

®* Advantages: can (theoretically) achieve optimal schedule
®* Disadvantages:

o Complexity = hard to scale and ensure resilience of scheduler

o Hard to anticipate future frameworks’ requirements
* Scheduler can only consider what it is programmed to consider

o Need to refactor existing frameworks to yield control to central scheduler

Source: lon Stoica (2012) 9

_—

One alternative: two-level schedulers

Organization
policies

Resource
availability

—>
—>

®* Advantages:

“Global”
Meta-Scheduler

E—

FmWork

Framework
Scheduler

[
resources’

(when/how many)

o Simple = easier to scale and make resilient

o Easier to port existing frameworks, support new ones

* Disadvantages:

o Distributed scheduling decision = may be suboptimal

o Need to balance awareness with coordination overhead
Source: lon Stoica (2012)

Task
Schedule

(what in
which)

10

Two-level allocation decisions (how they can work)

* Framework - meta-scheduler interaction
o meta-scheduler: determines when and how much
o framework: chooses which (and what to do where)
* One step: resource offers

o Mesos [NSDI'2011] resource§
offer :

S M resource
1 request

Source: Alexey Tumanov (2011) 11

T

Resource offer mechanics
® Unit of allocation: resource offer

o Vector of available resources on a node
o E.g., nodel: <1CPU, 1GB>, node2: <4CPU, 16GB>

® Meta-scheduler sends resource offers to frameworks

®* Frameworks select which (if any) offers to accept and which tasks to run

Keep task scheduling in frameworks

12

T

Challenges with two-level schedulers

* Allocation changes

- When circumstances change, the right decisions might too
» e.g., new requests with higher priority or with restrictive constraints

- How does the meta-scheduler arbitrate among framework schedulers?
* Planning ahead

» lack of central planning of schedule can lead to distributed hoarding
* Limited visibility for frameworks into overall cluster state

> this one is more easily fixed, by just making frequent requests

o but, there’s a performance cost

Feb 22, 2017 15719 Advanced Cloud Computing 13

—_—

Alternate distributed scheduler arch: shared state

* Expose cluster state and schedule to all framework schedulers
- Update their views when it changes
* Let each framework make decisions independently
> Use optimistic concurrency control when trying to change schedule
* Allow scheduling into future
> So, a hard-to-schedule job can be scheduled without distributed hoarding

o Other schedulers can fill in the schedule before the one that is later
 This is sometimes called “back filling” in scheduling

Feb 22, 2017 15719 Advanced Cloud Computing 14

__—

Challenges with shared state schedulers

* Performance overheads in maintaining shared state

- May not be too much, but “it depends”
 note that requesting offers is “pull-based” and shared state is “push-based”

* (Can repeat work
- Due to the optimistic concurrency control... may or may not be too bad
* Allocation changes

- how does one arbitrate/negotiate among separate schedulers?

Sept 29, 2014 15719 Advanced Cloud Computing 15

Wrap-up for this part

* So, schedulers can be centralized or distributed

> Which do you think is the most common? Why?

* Hey, we're not done today yet!

* Next up: Majd on YARN, as a concrete example

Sept 29, 2014 15719 Advanced Cloud Computing

16

Apache Hadoop YARN:
Yet Another Resource Negotiator

Majd Sakr, Garth Gibson, Greg Ganger

15-719/18-849b Advanced Cloud Computing
Spring 2017

February 22, 2017

Apache Hadoop MapReduce

* MapReduce jobs

* Single master for all jobs, JobTracker
— Resource allocator and job scheduler

* One or many slaves, TaskTrackers
— Configurable number of Map task slots and Reduce task slots

Core Switch
A Map Slot Where a Map Task Can Run l A Reduce Slot Where a Reduce Task Can Run
. | l
Rack Switch 1 Rack Switch 2
i] l]
TaskTrackerl TaskTracker2 TaskTracker3 TaskTracker4 TaskTra cker§"
V b JobTracker
A | (S | (| o | I}
! E Sending a Heartbeat 0

..

--

Apache Hadoop MapReduce

* Designed to run large MapReduce jobs
* Limitations:
— Single Programming Model (MapReduce)
— Centralized handling of jobs

e SPOF, JobTracker failure kills all running & pending jobs

 Scalability concerns
— Bottleneck for ~10K jobs

— Resources (task slots) were specific to either
* Map tasks
* Reduce tasks

Apache Hadoop YARN

e Supports multiple programming models
— Dryad, Giraph, MapReduce, REEF, Spark, Storm

e Two-Level Scheduler

— Cluster resource management detached from job
management (meta-scheduler)
* Cluster resource manager

— One master per job (framework-scheduler)

* Application lifecycle management

* Dynamic allocation of resources to run any tasks

YARN Requirements

1. Scalability

2. Multi-tenancy

3. Serviceability

4. Locality awareness
5. High cluster utilization
6
7
8
9

Reliability/Availability
. Secure and auditable operation
. Support for programming model diversity
. Flexible resource model

10.Backward compatibility

YARN Architecture

 Resource Manager (RM)

(ResourceManager RM - NodeManager
— Cluster resource scheduler @ e —am_"| | Scheduler | |3)
. . AMServi
e Application Master (AM) | —)
— One per job RM - AM T
— Job life-cycle management l v
MP1 |~ Contaner MR Umbilical q Container
* Node Manager (NM) v) .
— One per node [Node Manager] ‘ Node Manager | . [Node Manager 1
t : t
— Container life-cycle (=

management Figure 1: YARN Architecture (in blue the system components,
— Container resource and in yellow and pink two applications running.)
monitoring

Vavilapalli, et al., “Apache Hadoop YARN: yet another resource negotiator.”
SOCC '13 http://doi.acm.org/10.1145/2523616.2523633

Application Manager

Scheduler: Manages and enforces the :
Manages running the AM:

resource scheduling policy (Fair and

Master Node

MapReduce Clet *Restarting Falled AM

Application Manager

Resource Manager

MPI Client

e e e Eee e es e EreeeErreesEEeseeNNsreesenssItNRREIIsRRERRIIRRRRIIRRREY

Slave Node Slave Node Slave Node

T |
Container

Application
ES Gl Container |
| | Master

LM | \ode Manager | R [Node Manager | [Node Manager | E Node Manager
RM

--

: Shared File System DES DFS DES DFS
(e.g. HDFS)

LR R R L L

Resource Manager

One per cluster
Request-based scheduler
Tracks resource usage and node liveness
Enforces allocation and arbitrates contention among competing
jobs
— Fair, Capacity
— Locality
Dynamically allocates leases to applications
Interacts with NodeManagers to get to assemble a global view
Can reclaim allocated resources by
— Collaborating with AMs
— Killing containers directly through the NM

Application Master

* One per job
— Manages lifecycle of a job
— Creates a logical plan of the job
— Requests resources through a heartbeat to the RM
— Receives a resource lease from the RM
— Creates a physical plan
— Coordinates execution
— Plans around faults

Application Master

At any given time, there will be as many running AMs as jobs
Each AM manages the job’s individual tasks

— Starting, monitoring, and restarting tasks

— Each task runs within a container on each NM

e Containers can be compared to slots in Hadoop MapReduce
— Static allocation of slots vs. dynamic allocation of containers
— Slots were for specific tasks (map or reduce) vs. containers

The AM acquires resources dynamically in the form of containers
from the RM’s scheduler before contacting corresponding NMs to
start a job’s tasks

— Each container has a number of non-static attributes
« CPU
* Memory

Node Managers & Containers

* Node Manager manages container lifecycle and

monitors containers
— One per node

— Authenticates container leases

— Monitors container execution

— Reports usage through heartbeat to RM
— Kills containers as directed by RM or AM

Node Managers & Containers

Container represents a lease for an allocated resource in the cluster

Logical bundle of resources bound to a node

The RM is the sole authority to allocate any container to
applications

The allocated container is always on a single NM and has a unique
Containerld

A container includes details such as:

Containerld for the container, which is globally unique

Nodeld of the node on which it is allocated

Resource allocated to the container

Priority at which the container was allocated

ContainerState of the container

ContainerToken of the container, used to securely verify authenticity of the allocation
ContainerStatus of the container

Visibility of the Resource Manager (RM)

l
blind
NM NM NM NM
Container Container Container
AM
Taskl1 Task?2 Task3

 When a job is submitted, the RM assigns a joblID to it and allocates a

container to run the corresponding AM.
 The AM then asks for resources to run its job. After it gets the lease, the

AM starts tasks and assigns tasks to containers.
* RMis blind to the tasks running within an application.

Visibility of the Application Master (AM)

, RM
,,,,,, 2
NV T A____NM NM NM
L P “ | Container. 1 Containerl. 2 Containerl. 3
AML_ 1 okl 1
bl indl e e R s T ¥
B N NM o NM - NM
| P/ Container Container Container :
I L) :
: A : : !

 AM is like the job tracker in Hadoop 1.0
* Creates and manages task lifecycle
* Monitors task status
 AM has no view of other running applications.

Protocols

YARN interfaces:

Client-RM Protocol: This is the protocol for the client to communicate with the
RM to launch a new job, check on the status of the job, and/or kill a job

AM-RM Protocol: This is the protocol used by the AM to register/unregister
itself with the RM, as well as to request resources from the RM scheduler to
run its tasks

AM-NM Protocol: This is the protocol used by the AM to communicate with
the NM to start/stop containers

NM-RM Protocol: This is the protocol used by the NM to communicate its
status to the RM

All client-facing MapReduce interfaces are unchanged, which
means that there is no need to make any source code changes to
run on top of YARN

Client-RM Protocol

1. New Job Request RM

Client >
<€
J. (JoblID, Cluster Resource Capabilities) A

3. Submit Job (JobID, JobName, User Info, Scheduler Queue,
Priority, Jar files, Resource Requirements, etc.,)

 When the RM receives the job submission context (i.e., request 3 in the
above example), it finds an available container (the job’s first container)
for running an AM for the requested job

RM-AM Protocol

5. Resource Allocate Response (a list of containers that satisfy the resource
allocation request)

4. Resource Allocate Request (# of containers, resource capabilities,
released containers, etc.,)

\ NM
AM
1. Start AM
> RM
NM
—

2. Register itself (RPC port, tracking URL, Job Attempt ID, etc.,)

3. Register Response (Min-Max Resource Capabilities)

RM-NM Protocol

5. Resource Allocate Response (a list of containers that satisfy the resource
allocation request)

4. Resource Allocate Request (# of containers, resource capabilities,
released containers, etc.,)

| 7. Terminate AM
: 1. Start AM

NM

RM 6. Job finishes /

>

r-)

2. Register itself (RPC port, tracking URL, Job Attempt ID, etc.,)

3. Register Response (Min-Max Resource Capabilities)

Heartbeat to report livene :

AM

NM

Resource Request: An Example

Priority (Host, Rack, *) Resource Requirements Number of
(memory in GB, # CPUs) Containers
1 Nodel2 1GB, 1CPU 5
1 Rack11 1GB, 1 CPU 8
2 * 2GB, 1 CPU 3

* Inthe MapReduce case, the MapReduce AM takes the input-splits and
presents to the RM Scheduler an inverted table keyed on the hosts, with
limits on total containers it needs in its life-time, which is subject to change

 The protocol understood by the Scheduler is
<priority, (host, rack, *), resources, #containers>

AM-NM Protocol

NM :'"'> NM
. 1
r____2_-_C9_n_t§l_n_e_r_§t9_tl_J§_i_____ Containerl
H I
! l
1 1
N ' 1. Contact the assoc-lated:____> NM
] NMs and run contalnersJu
AM H'_; _____ | Container2
. . I
‘\:____Q._C_o_n_t_a_ iner _k_1_1_1_!9_d_______'
NM ;“ W 2.Kill the contatne: NM
1}
Y e e o o o o o e e e e e e e e e e
Y 3.Assign tasks Container3
| I —————————— e)
4. Task
finished NM

NM

The Lifecycle of a MR Job in YARN

Master Node

Run job

@

Application Manager
Resource Manager

Initialize job Run task

Slave Node

input splits | MapReduce | e, . Contai
. ntainer | FEEG—G_G———
: .~ Application : :
@ Map/Reduce

.l.‘..
e
' .

task

l Node Manager ll

: Shared File System DFS DFS
: (e.g. HDFS)

The Lifecycle of a MR Job in YARN

Job submission

1. The MapReduce client uses the same APl as Hadoop version 1.0 to
submit a job to YARN.

2. The new job ID is retrieved from the RM. However, sometimes a
jobID in YARN is also called applicationlID.

3. Necessary job resources, such as the job JAR, configuration files,
and split information are copied to a shared file system in
preparation to run the job.

4. The job client calls submitApplication() on the RM to submit the job.

The Lifecycle of a MR Job in YARN

Job initialization

5.

The RM passes the job request to its Scheduler. The Scheduler
allocates resources to run a container where the Application Master
(AM) will reside. Then the RM sends the resource lease to some
Node Manager (NM).

The NM receives a message form the RM and launches a container
for the AM.

The AM takes the responsibility of initializing the job. Several
bookkeeping objects are created to monitor the job. Afterwards,
while the job is running, the AM will keep receiving updates with the
progress of its tasks.

The AM interacts with the shared file system (e.g. HDFS) to get its
input splits and other information which were copied to the shared
file system in Step 3.

The Lifecycle of a MR Job in YARN

Task assignment

9.

10.

11.
12.

13.

The AM computes the number of map tasks (based on the number of
input splits) and the number of reduce tasks (configurable). The AM
submits the resource request for the map and reduce tasks along with its
heartbeat to the RM. A request includes preferences in terms of data
locality (for map tasks), the amount of memory and the number of CPUs
in each container.

After the RM responds with container leases, the AM communicates with
the NMs.

The NMs start the containers.

The AM assigns a task to this container based on its knowledge of
locality.

The task runs in the container. The MapReduce AM monitors the

individual tasks to completion, requests alternate resources if any of the
tasks fail or stop responding.

The Lifecycle of a MR Job in YARN

Job Completion

— The MapReduce AM also runs appropriate task cleanup code of
completed tasks

— Once the entire map and reduce tasks are complete, the MapReduce
AM runs the requisite job commit

— The MapReduce AM informs the RM then exits since the job is
complete

Scheduling in YARN

The resource manager has a pluggable scheduler.
The default version of YARN has three schedulers
— FIFO Scheduler, Fair Scheduler and Capacity Scheduler.

These schedulers have queues which keep track of the
requests from different application masters.

Job Client

Submit Job Resource Manager

Heartbeat
h NM

»

Launch AM Container
Token

Y Resource

Request
AM >

a

Container
Allocation

YARN Schedulers — 1

e FIFO Scheduler

— Has a single first in first out queue used to schedule
container requests.

 Fair Scheduler

— Has multiple queues and tries to fairly allocate resources
to the queues.

— Uses the Dominant Resource Fairness algorithm which
ensures that the queue with the lowest share of a
particular resource gets the resource.

— Queues are configurable by the cluster administrator.

YARN Schedulers — 2

e Capacity Scheduler

— Has multiple queues and tries to allocate resources to the
gueues such that each queue’s capacity constraint is not
violated.

— During initial configuration, the administrator can split
the capacity of the cluster’s resources among these
gueues

* For example, queue_1 gets 25% and queue_2 gets 75% of the
resources).

* So the scheduler will allocate resources such that these capacity
configurations are not violated.

* These queues can belong to different tenants in which case they
have access to that particular queue’s configuration and
settings.

YARN Capacity Scheduler

Pick a random °
node and loop

Resource over (]
Request (]

Resource Scheduling — 1

* Resource manager has an asynchronous schedule
thread running inside it
— Responsible for scheduling the container requests from

these queues inside the schedulers onto the nodes

* The schedule thread gets a random node from the
list of nodes maintained by the resource manager
and tries to schedule an application’s request on to
the node

* The actual container request which gets to run on
that particular node is chosen by the scheduler

— Fair or Capacity

Resource Scheduling — 2

* Once the request is chosen from the queue by the
scheduler it checks whether the particular request

can be satisfied by the given node

— This includes checking if the node has enough memory,

vcores and locality
e Same node as the one requested by the application master (AM)

* Node in the same rack as the requested node
— If the request can be satisfied, then the container is
allocated onto the node and the RM generates a token for

the container
e RM sends token to the AM and the NM

— |f the request cannot be satisfied, then the queue waits for
another node to be chosen by the scheduler thread

* Late binding

Heartbeat and Status Reporting in
Yarn

Master Node

- Scheduler
Application Manager

Get

Resource Manager

Get Job Status :
.ll....l....ll....l....ll....l..:
// Report Node Status
,, ‘.........................*
/”
4
o Slave Node

4 -
MapReduce Get Task Status Container
ApMpg:;:'on ----------- wennns M/R Task g
IIIIIIIIIIIIIIIIIIII LR ...'....'........;

: Shared File System
: (e.g. HDFS)

..

Heartbeats

AM to RM: NM to RM:
ResourceRequest: { Register: {

Priority: 20, Resource: {

Resource: { vCores: 1,
vCores: 1, memory: 1024
memory: 1024 }

b }

Num Containers: 2,
Desired Host: 192.1.1.1,
Relax Locality: true

Fault Tolerance

RM Failure
— SPOF

— Can recover from persistent storage
* Kills all containers including AMs
 Launches instances for each AM

NM Failure

— RM detects through heartbeat timeout
— Marks all containers on NM killed

— Reports failure to all running AMs

— AMs are responsible for node failures

AM Failure
— RM restarts AM
— AM has to resync with all running tasks or all running tasks are killed

Container failure
— Framework (AM) responsibility

Hadoop IVIapReduce VS. Hadoop YARN

160 000
140 000 + :
120 000 - ; ___________
100 000 f ,,,,,,,,,, '
80000 -cooooo b
60 000
40 000 -+
20 000 -+

Hadoop 1.0 YARN (avg) YARN (sustained) YARN (peak)

(a) Daily jobs

1 | mommm Number of daily tasks (in millions) | .

Hadoop 1.0 YARN (avg)

(b) Daily tasks

YARN (sustained) YARN (peak)

Figure 2: YARN vs Hadoop 1.0 running on a 2500 nodes pro-
duction grid at Yahoo!.

Vavilapalli, et al., “Apache Hadoop YARN: yet another resource negotiator.”
SOCC '13 http://doi.acm.org/10.1145/2523616.2523633

Extensions

Gang scheduling needs

Soft/hard constraints to express arbitrary
co-location or disjoint placement.

Heterogeneous resources
Cost model

