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Cloud Scale Storage 

•  An essential service for scalable cloud systems is scalable storage 

•  One family of solutions extends the familiar distributed file system 
o  Can NFS and/or AFS scale to cloud sizes? 

o  NFS & AFS à NASD à GFS à HDFS 

o  Shared file systems have always had a version of isolation (access control), 

and a version of sharing (global pathnames) 

o  Today we review the technology leading to and in GFS-class cloud storage 

•  Another family abandons it (e.g S3) -- more on this next day 
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Approach #1: Server does everything 
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Pros/Cons of approach #1 

•  Pros: Simplicity 
o  Server just looks same as kernel-based FS 

•  application requests simply forwarded from clients 

o  FS simplicity, security, etc… equivalent to standard case 
•  with clients viewed as applications 
•  Even system call atomicity can be preserved 

•  Cons: Performance 
o  Performance of a server can bottleneck clients 

•  this becomes a problem quickly as number of clients grows 

o  Performance of network can bottleneck clients 
•  even for a single client 

o  Memory state must be maintained for each client app session 
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Example: AFS distributed filesystem w/ FUSE  
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Performance tuning: client-side caches 

•  Pretty much mandatory in small-scale environments (absent in GFS) 
o  Spark (Tachyon -> Alluxio) adds (client) caching to a MR cluster 
o  Special case: read-only ….. 

•  Big new problem: cache coherence 
o  having a consistent view across set of client caches 
o  Preserving atomicity of unix system call layer (err, but they don’t?)  

•  Different models of consistency 
o  Unix (Sprite): all reads see most recent write 
o  Original HTTP: all reads see a recent read 

•  i.e., no consistency -- if you care, hit “reload” 
o  NFS: other clients’ writes visible in 30 seconds (open/close) 
o  AFS (v2): file session semantics 

•  reads see version closed most recently before calling open 
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Approach #2: Sprite (Unix)  
•  All reads see most recent write 
•  How? 

o  Clients tell server when they open a file for read or write 
•  also asks for latest timestamp if previously cached 

o  Server tells client whether caching of the file is allowed 
•  any # of readers or a single writer; any other combo denied to all 

o  Server also calls back to clients to disable caching as needed 

o  Client tells server whenever file is closed 

•  Who does what? 
o  Client maintains most session info, like current offset 

o  Server does almost all of FS activity 

o  Client has cache, but so does server 
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Approach #3: NFS v3  
•  Other clients’ writes visible within 30 seconds 

o  Or the local open() after the other client’s close() 

•  How? 
o  Clients cache blocks and remember when last verified 
o  Server promises nothing and remembers nothing 
o  Clients check block freshness whenever older than 30 secs 
o  No write-back caching is allowed on client or server (sort of) 
o  Most implementations assume no concurrent write sharing 

•  Test timestamps from last close on open to allow cache hits 

•  Who does what? 
o  Client provides session and caching 
o  Server does everything an FS would do on a local system 

•  note that it replicates everything, including caching & access control 
•  also note that other servers do this too, but also do other stuff 
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Approach #4: AFS (v2)  
•  All reads see opened version, which is most recent close 
•  How? 

o  Clients obtain full copy of file and callback from server 
•  only when opening a file that is not currently cached with callback 
•  V3: no whole file semantics; use 64 KB chunks (huge file support) 

o  Server promises to callback if the file changes 
•  so client doesn’t need to check again! 

o  Client writes back entire file (if changed) upon close 
•  also keeps cached copy, of course 

o  Server revokes callbacks for the file from other clients 
•  Simple race on close for concurrent access semantics 

•  Who does what? 
o  Client provides session and complete caching 
o  Server does callbacks, directory mgmt, and add’l caching 
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Should servers keep state about clients? 

•  Stateless servers 
o  simple 
o  may be faster (because of simplicity) 

•  though usually not 
o  quick/easy to recover from crashes 

•  don’t need to reconstruct client-related state 
o  no problem with running out of state-tracking resources 

•  Stateful servers 
o  may be faster (because of long-lived connections) 

•  can transform workload to something “better” for server 
•  can keep clients from repeatedly asking “still up-to-date?” 

o  can provide better semantics for users/programmers 
o  Spark driver is stateful for a while …. 
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Network Attached Secure Disk (NASD) 
•  File/object storage management in storage device (inode-like) 

•  Request (1, 2) & cache rights to read/write/extend objects on disks (3, 4) 
E.g. CMU NASD, Pansas, Lustre, Google File System, HDFS 

•  But, changes in storage device standards blocked “in the disk” solutions 
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The Google File System. 

  Ghemawat03:  S. Ghemawat, H. Gobioff, S-T. Leung,  

Symp. on Operating Systems Principles (SOSP’03),  

Oct 2003, Bolton Landing, NY. 
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Scaling Distributed Storage 

•  Failures become the norm (many cheap nodes) 
o  Spend disk capacity for simple solution 

o  Design schemes to be less impacted by failure 

o  Weaken promises to applications 

•  Having a captive application set a big plus 
o  Limit number of files 

o  Rule out small files performance as a goal 

o  Allow some access patterns to perform poorly  

o  Change file system semantics (weaken traditional guarantees,  

add new special ops) 
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Google FS Arch 

•  Should look a lot like NASD cuz it is 
o  Applications more homogeneous (then at least) 
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Simplify ! 

•  Single master w/ all metadata in memory 
o  all files much be large; one block size (64MB) 

o  rebuild state often, to allow non-durable state 
•  locations of chunks not durable; poll on boot 

•  Concentrate all synchronization in new op 
o  Don’t hide inconsistency from application 

•  User-level library (no legacy support) 
o  UNIX-like API (but no links, special fast copy) 

•  Repair/recovery is async, so over-replicate 

•  No data caching anywhere but under object server (in ext3) 
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Dual Ordering 

•  Chunk transfers  

& ordered different 
o  one copy of data  

elected as leader  

(output ordering) 

o  orders writes AFTER 

data has arrived at all 
•  Transfer pipeline by  

distance in IP space 
•  Design for poor cluster 

network bisection BW 
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Concurrent sharing 

•  Concurrent updates can be “undefined” 
o  Large transfer split into separate races (like NFS) 

•  Append as special “thin” synch’g solution 
o  GFS picks and returns append offset (<1/4 chunk) 

o  record appended atomically AT LEAST ONCE 
•  Racing failures can leave differences in copies 
•  GFS may pad or duplicate records 

•  Apps SHOULD validate (don’t trust GFS) 
o  formating, checkpointing, checksums, sequence numbers (nonces) 
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Recovery 

•  Background visit to each chunk 
o  if parts are missing, re-replicate 

•  Reconstructed 600 GB in 23 mins (DDN HW RAID 72+ hrs) 

o  throttled to increase “availability” 

o  gradual slow rebalancing 

o  remove “stale” chunks w/ old version numbers 

•  Delete is just unlink 
o  chunk is garbage collected 

o  until collected, it is still available (time travel) 
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Single Metadata Server 

•  1:1,000,000 metadata to data size ratio 
o  force all large files (highly restrictive as FS) 

o  4 GB metadata (in memory) maps 1 PB data, millions of files 

•  prefix table of pathnames, not directory tree 
o  faster, but data management tools all break 

•  not single threaded (not that simple) 

•  replicate log & checkpoints 
o  shadows can support readonly access 
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Hints of GFS2: Colossus 

•  GFS was limited to 50M files, 10 PB 
o  Users generate too many small files  

o  Large file bias induced extra complexity on apps 

o  Low latency apps poorly supported 

•  No longer a single metadata server 
o  “shards” metadata over many servers 

o  Uses BigTable to store this metadata 

•  No longer simply replication 
o  Uses Reed-Solomon (RAID 6 like) encoding 

o  Computes encoding at client (like Panasas) 
•  Client sends all “copies” rather than chaining copying 
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Log Structured Merge (LSM) Trees 

•  Insert / Updates 
o  Buffer and sort recent inserts/updates in memory 

o  Write-out sorted buffers into local file system sequentially 

o  Less random disk writes than traditional B-Tree 

•  Lookup / Scan 
o  Search sorted tables one by one from the disk 

•  Compaction is merge sort into new files, deleting old (cleaning) 
o  Bloom-filter and in-memory index to reduce lookups 

Kai Ren, G. Gibson © Nov 2012 
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Write Optimized like LFS (cleaning = compaction) 

LSM-trees: Insertion
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3. Sorting and garbage collection are coupled 

LevelDB

[Lanyue Lu, FAST16] 
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LSM-trees: Lookup
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[Lanyue Lu, FAST16] 

•  (Cacheable) Bloom 
filter per SSTable 

•  Skip ~99% 
unneeded lookups 

Clean so there is no 
overlap in SSTables in 
each level after 0 



TableFS packs metadata into LSM Trees 

•  Small objects (<= 4KB) are embedded into LSM (Log-structure Merge) tree 
(a tabular structure) 
o  E.g. directory entries, inodes, small files 
o  Turn many small files into one large object (~ 2MB) 

•  Larger files (> 4KB) are stored directly in object store indexed by TableFS 
assigned ID number 

Kai Ren, G. Gibson © Nov 2012 
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Table Schema 
•  Key: <Parent inode number, hash(filename)> 

o  Inodes with multiple hard links: <inode number, null> 

•  Value: filename, inode attributes, inlined file data (or symbolic link to 
large object). 

Kai Ren, G. Gibson © Nov 2012 

Key Value 
<0,hash(home)> 1, “home”, struct stat 
<1,hash(foo)> 2, “foo”, struct stat 
<1,hash(bar)> 3, “bar”, struct stat 
<2,hash(apple)> 4, “apple”, hard link 
<2,hash(book)> 5, “book”, struct stat,  

inline small file 
<3,hash(pear)> 4, “pear”, hard link 
<4,null> 4, struct stat,  

large file pointer 

Le
xi

co
gr

ap
hi

c 
or

de
r 

book 

/ 
home 

foo bar 

apple pear 

0

32

1

4
5

[Kai Ren, ATC13] 



Table Schema (cont’) 
•  Advantages:  

o  Reduce random lookups by co-locating directory entries with inode 

attributes, and small files 

o  “readdir” performs sequential scan on the table 

Kai Ren, G. Gibson © Nov 2012 

Key Value 
<0,hash(home)> 1, “home”, struct stat 
<1,hash(foo)> 2, “foo”, struct stat 
<1,hash(bar)> 3, “bar”, struct stat 
<2,hash(apple)> 4, “apple”, hard link 
<2,hash(book)> 5, “book”, struct stat,  

inline small file 
<3,hash(pear)> 4, “pear”, hard link 
<4,null> 4, struct stat,  

large file pointer 

Entries in 
the same 
directory 
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Next day plan 

•  More cloud storage 
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Production Parallel File Systems 
•  All four systems scale to support very large compute clusters 

–  LLNL Purple, LANL RoadRunner, Oakridge Jaguar/Titan, etc. 
•  All but GPFS delegate block management to “object-like” data 

servers or OSDs 
•  Approaches to metadata vary 
•  Approaches to fault tolerance vary 
•  Emphasis on features, “turn-key” deployment, vary 

GPFS 
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FAST 12 Tutorial 33 

GPFS 

§  IBM product 
§  General Parallel File System 
§  Legacy: multimedia filesystem 

§  Block interface to storage nodes 
•  Shared memory abstraction 
•  Symmetric I/O servers can all 

“master” all/any data 

§  Distributed locking (DLM) 
•  Needed to access metadata 

describing block storage 
SAN storage 

I/O 
Servers 

NSD 
Clients 
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PANFS 

§  Panasas product based on CMU 
NASD research 

§  Complete “appliance” solution  
(HW + SW), blade server form factor 
•  DirectorBlade = metadata server 
•  StorageBlade = OSD 

§  Coarse grained metadata  
clustering 
•  DirectorBlades manipulate  

metadata distributed in 
objects 

§  Linux native client for  
parallel I/O 
•  Fast & scalable but complex 

34 
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LUSTRE 
§  Dominant Supercomputer FS 

today 
§  Open source object-based 

parallel file system 
•  Based on CMU NASD architecture 
•  Lots of file system ideas from Coda 
•  ClusterFS acquired by Sun,  
•  Sun acquired by Oracle 
•  Intel acquired Whamcloud team 
•  Today: OpenSFS Foundation 

§  Asymmetric design with 
separate metadata server 
•  Metadata is bottleneck (see GFS) 

§  Distributed locking with client-
driven lock recovery 
•  For write-back caching of metadata 

changes 
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Lustre material from www.lustre.org and various talks 


