
Cloud Storage 1 
 
15-719 Advanced Cloud Computing 
 
Garth Gibson 
Greg Ganger 
Majd Sakr 

Feb 13, 2017 15719 Adv. Cloud Computing 1 



Cloud Scale Storage 

•  An essential service for scalable cloud systems is scalable storage 

•  One family of solutions extends the familiar distributed file system 
o  Can NFS and/or AFS scale to cloud sizes? 

o  NFS & AFS à NASD à GFS à HDFS 

o  Shared file systems have always had a version of isolation (access control), 

and a version of sharing (global pathnames) 

o  Today we review the technology leading to and in GFS-class cloud storage 

•  Another family abandons it (e.g S3) -- more on this next day 

Feb 13, 2017 15719 Adv. Cloud Computing 2 



File system functionality 

Application Application 

Disk I/O 
Caches 

OS 
Interface 

Directories 
Layout 

Sessions 
Access Control FS 

File system functionality 
Name lookup 
Access control 
Attribute examination 
Session management 
File creation/deletion 
Data reads 
Data writes 
File extension (allocation) 
Persistent storage mgmt 

Disk system functionality 
Persistent storage 
Exports linear block space 
Support raw reads/writes 

Feb 13, 2017 15719 Adv. Cloud Computing 3 



Approach #1: Server does everything 

Disk I/O Caches 
Directories 

Layout 

Sessions Access Control FS 

File system functionality 
Name lookup 
Access control 
Attribute examination 
Session management 
File creation/deletion 
Data reads 
Data writes 
File extension (allocation) 
Persistent storage mgmt 

Disk system functionality 
Persistent storage 
Exports linear block space 
Support raw reads/writes 

Application Application 

OS 
Interface 

Request Forwarder 

Application Application 

OS 
Interface 

Request Forwarder 

Client 
Systems 

Server 
System 

Client/Server RPCs 

Feb 13, 2017 15719 Adv. Cloud Computing 4 



Pros/Cons of approach #1 

•  Pros: Simplicity 
o  Server just looks same as kernel-based FS 

•  application requests simply forwarded from clients 

o  FS simplicity, security, etc… equivalent to standard case 
•  with clients viewed as applications 
•  Even system call atomicity can be preserved 

•  Cons: Performance 
o  Performance of a server can bottleneck clients 

•  this becomes a problem quickly as number of clients grows 

o  Performance of network can bottleneck clients 
•  even for a single client 

o  Memory state must be maintained for each client app session 

 Feb 13, 2017 15719 Adv. Cloud Computing 5 



Example: AFS distributed filesystem w/ FUSE  

Feb 13, 2017 15719 Adv. Cloud Computing 6 



Performance tuning: client-side caches 

•  Pretty much mandatory in small-scale environments (absent in GFS) 
o  Spark (Tachyon -> Alluxio) adds (client) caching to a MR cluster 
o  Special case: read-only ….. 

•  Big new problem: cache coherence 
o  having a consistent view across set of client caches 
o  Preserving atomicity of unix system call layer (err, but they don’t?)  

•  Different models of consistency 
o  Unix (Sprite): all reads see most recent write 
o  Original HTTP: all reads see a recent read 

•  i.e., no consistency -- if you care, hit “reload” 
o  NFS: other clients’ writes visible in 30 seconds (open/close) 
o  AFS (v2): file session semantics 

•  reads see version closed most recently before calling open 

Feb 13, 2017 15719 Adv. Cloud Computing 7 



Approach #2: Sprite (Unix)  
•  All reads see most recent write 
•  How? 

o  Clients tell server when they open a file for read or write 
•  also asks for latest timestamp if previously cached 

o  Server tells client whether caching of the file is allowed 
•  any # of readers or a single writer; any other combo denied to all 

o  Server also calls back to clients to disable caching as needed 

o  Client tells server whenever file is closed 

•  Who does what? 
o  Client maintains most session info, like current offset 

o  Server does almost all of FS activity 

o  Client has cache, but so does server 

Feb 13, 2017 15719 Adv. Cloud Computing 8 



Approach #3: NFS v3  
•  Other clients’ writes visible within 30 seconds 

o  Or the local open() after the other client’s close() 

•  How? 
o  Clients cache blocks and remember when last verified 
o  Server promises nothing and remembers nothing 
o  Clients check block freshness whenever older than 30 secs 
o  No write-back caching is allowed on client or server (sort of) 
o  Most implementations assume no concurrent write sharing 

•  Test timestamps from last close on open to allow cache hits 

•  Who does what? 
o  Client provides session and caching 
o  Server does everything an FS would do on a local system 

•  note that it replicates everything, including caching & access control 
•  also note that other servers do this too, but also do other stuff 

Feb 13, 2017 15719 Adv. Cloud Computing 9 



Approach #4: AFS (v2)  
•  All reads see opened version, which is most recent close 
•  How? 

o  Clients obtain full copy of file and callback from server 
•  only when opening a file that is not currently cached with callback 
•  V3: no whole file semantics; use 64 KB chunks (huge file support) 

o  Server promises to callback if the file changes 
•  so client doesn’t need to check again! 

o  Client writes back entire file (if changed) upon close 
•  also keeps cached copy, of course 

o  Server revokes callbacks for the file from other clients 
•  Simple race on close for concurrent access semantics 

•  Who does what? 
o  Client provides session and complete caching 
o  Server does callbacks, directory mgmt, and add’l caching 

Feb 13, 2017 15719 Adv. Cloud Computing 10 



Should servers keep state about clients? 

•  Stateless servers 
o  simple 
o  may be faster (because of simplicity) 

•  though usually not 
o  quick/easy to recover from crashes 

•  don’t need to reconstruct client-related state 
o  no problem with running out of state-tracking resources 

•  Stateful servers 
o  may be faster (because of long-lived connections) 

•  can transform workload to something “better” for server 
•  can keep clients from repeatedly asking “still up-to-date?” 

o  can provide better semantics for users/programmers 
o  Spark driver is stateful for a while …. 

Feb 13, 2017 15719 Adv. Cloud Computing 11 



Client Client 

Server 

SAN 

LAN 

Client/Server Architecture 

Feb 13, 2017 15719 Adv. Cloud Computing 12 



Client Client 

File 
Manager 

SAN 

LAN 

Direct connections 
used for bulk 
data transfers 

Example: NASD, EMC HighRoad, pNFS 

Feb 13, 2017 15719 Adv. Cloud Computing 13 



Network Attached Secure Disk (NASD) 
•  File/object storage management in storage device (inode-like) 

•  Request (1, 2) & cache rights to read/write/extend objects on disks (3, 4) 
E.g. CMU NASD, Pansas, Lustre, Google File System, HDFS 

•  But, changes in storage device standards blocked “in the disk” solutions 

File Manager

Protocol Stack

Network

Access Control,
Namespace, 
Consistency Net

NASD

Controller

3 4

3,4

Net

NASD

Controller

3 41 2 (object token)

Feb 13, 2017 15719 Adv. Cloud Computing 14 



15719 Adv. Cloud 
Computing 

Example: NASD standardized as pNFS 
pNFS protocol 

standardized: NFS v4.1 
Storage-access protocol 

files (NFSv4.1) 
blocks (FC, iSCSI, FCoE) 
objects (OSD2/NASD’) 

Control protocol 
Outside of the pNFS 

standard 

pNFS 
protocol 

Control 
protocol 

Storage-access 
protocol 

Metadata  
Server 

Data Servers 

Client 

Feb 13, 2017 15 



The Google File System. 

  Ghemawat03:  S. Ghemawat, H. Gobioff, S-T. Leung,  

Symp. on Operating Systems Principles (SOSP’03),  

Oct 2003, Bolton Landing, NY. 

Feb 13, 2017 15719 Adv. Cloud Computing 16 



Scaling Distributed Storage 

•  Failures become the norm (many cheap nodes) 
o  Spend disk capacity for simple solution 

o  Design schemes to be less impacted by failure 

o  Weaken promises to applications 

•  Having a captive application set a big plus 
o  Limit number of files 

o  Rule out small files performance as a goal 

o  Allow some access patterns to perform poorly  

o  Change file system semantics (weaken traditional guarantees,  

add new special ops) 

Feb 13, 2017 15719 Adv. Cloud Computing 17 



Google FS Arch 

•  Should look a lot like NASD cuz it is 
o  Applications more homogeneous (then at least) 

Feb 13, 2017 15719 Adv. Cloud Computing 18 



Simplify ! 

•  Single master w/ all metadata in memory 
o  all files much be large; one block size (64MB) 

o  rebuild state often, to allow non-durable state 
•  locations of chunks not durable; poll on boot 

•  Concentrate all synchronization in new op 
o  Don’t hide inconsistency from application 

•  User-level library (no legacy support) 
o  UNIX-like API (but no links, special fast copy) 

•  Repair/recovery is async, so over-replicate 

•  No data caching anywhere but under object server (in ext3) 

Feb 13, 2017 15719 Adv. Cloud Computing 19 



Dual Ordering 

•  Chunk transfers  

& ordered different 
o  one copy of data  

elected as leader  

(output ordering) 

o  orders writes AFTER 

data has arrived at all 
•  Transfer pipeline by  

distance in IP space 
•  Design for poor cluster 

network bisection BW 

Feb 13, 2017 15719 Adv. Cloud Computing 20 



Concurrent sharing 

•  Concurrent updates can be “undefined” 
o  Large transfer split into separate races (like NFS) 

•  Append as special “thin” synch’g solution 
o  GFS picks and returns append offset (<1/4 chunk) 

o  record appended atomically AT LEAST ONCE 
•  Racing failures can leave differences in copies 
•  GFS may pad or duplicate records 

•  Apps SHOULD validate (don’t trust GFS) 
o  formating, checkpointing, checksums, sequence numbers (nonces) 

Feb 13, 2017 15719 Adv. Cloud Computing 21 



Recovery 

•  Background visit to each chunk 
o  if parts are missing, re-replicate 

•  Reconstructed 600 GB in 23 mins (DDN HW RAID 72+ hrs) 

o  throttled to increase “availability” 

o  gradual slow rebalancing 

o  remove “stale” chunks w/ old version numbers 

•  Delete is just unlink 
o  chunk is garbage collected 

o  until collected, it is still available (time travel) 

Feb 13, 2017 15719 Adv. Cloud Computing 22 



Single Metadata Server 

•  1:1,000,000 metadata to data size ratio 
o  force all large files (highly restrictive as FS) 

o  4 GB metadata (in memory) maps 1 PB data, millions of files 

•  prefix table of pathnames, not directory tree 
o  faster, but data management tools all break 

•  not single threaded (not that simple) 

•  replicate log & checkpoints 
o  shadows can support readonly access 

Feb 13, 2017 15719 Adv. Cloud Computing 23 



Hints of GFS2: Colossus 

•  GFS was limited to 50M files, 10 PB 
o  Users generate too many small files  

o  Large file bias induced extra complexity on apps 

o  Low latency apps poorly supported 

•  No longer a single metadata server 
o  “shards” metadata over many servers 

o  Uses BigTable to store this metadata 

•  No longer simply replication 
o  Uses Reed-Solomon (RAID 6 like) encoding 

o  Computes encoding at client (like Panasas) 
•  Client sends all “copies” rather than chaining copying 

Feb 13, 2017 15719 Adv. Cloud Computing 24 



Log Structured Merge (LSM) Trees 

•  Insert / Updates 
o  Buffer and sort recent inserts/updates in memory 

o  Write-out sorted buffers into local file system sequentially 

o  Less random disk writes than traditional B-Tree 

•  Lookup / Scan 
o  Search sorted tables one by one from the disk 

•  Compaction is merge sort into new files, deleting old (cleaning) 
o  Bloom-filter and in-memory index to reduce lookups 

Kai Ren, G. Gibson © Nov 2012 

Memory buffer 
Disk 

Sorted Table 1 

Sorted Table 2 
…… 



Write Optimized like LFS (cleaning = compaction) 

LSM-trees: Insertion

Log
L0 (8MB)

L1 (10MB)

L2 (100MB)

L6 (ITB)

memory 1

KVmemTmemT
23

4

5

disk

1. Write sequentially   2. Sort data for quick lookups
3. Sorting and garbage collection are coupled 

LevelDB

[Lanyue Lu, FAST16] 

•  (Cacheable) index 
per SSTable 

•  Lists 1st & last key 
per SSTable 

Clean so there is no 
overlap in SSTables in 
each level after 0 



LSM-trees: Lookup

Log
L0 (8MB)

L1 (10MB)

L2 (100MB)

L6 (ITB)

memory

KmemT
1

2 3 L1 to L6

disk

LevelDB

1. Random reads   
2. Travel many levels for a large LSM-tree

O(log size) lookup like B-tree 

[Lanyue Lu, FAST16] 

•  (Cacheable) Bloom 
filter per SSTable 

•  Skip ~99% 
unneeded lookups 

Clean so there is no 
overlap in SSTables in 
each level after 0 



TableFS packs metadata into LSM Trees 

•  Small objects (<= 4KB) are embedded into LSM (Log-structure Merge) tree 
(a tabular structure) 
o  E.g. directory entries, inodes, small files 
o  Turn many small files into one large object (~ 2MB) 

•  Larger files (> 4KB) are stored directly in object store indexed by TableFS 
assigned ID number 

Kai Ren, G. Gibson © Nov 2012 

Object 0 …. 

Object Store 

Directory 
entries, 
Inodes, 
Small files 
(<4KB) 

Large files 
(> 4KB) 

[Kai Ren, ATC13] 



Table Schema 
•  Key: <Parent inode number, hash(filename)> 

o  Inodes with multiple hard links: <inode number, null> 

•  Value: filename, inode attributes, inlined file data (or symbolic link to 
large object). 

Kai Ren, G. Gibson © Nov 2012 

Key Value 
<0,hash(home)> 1, “home”, struct stat 
<1,hash(foo)> 2, “foo”, struct stat 
<1,hash(bar)> 3, “bar”, struct stat 
<2,hash(apple)> 4, “apple”, hard link 
<2,hash(book)> 5, “book”, struct stat,  

inline small file 
<3,hash(pear)> 4, “pear”, hard link 
<4,null> 4, struct stat,  

large file pointer 

Le
xi

co
gr

ap
hi

c 
or

de
r 

book 

/ 
home 

foo bar 

apple pear 

0

32

1

4
5

[Kai Ren, ATC13] 



Table Schema (cont’) 
•  Advantages:  

o  Reduce random lookups by co-locating directory entries with inode 

attributes, and small files 

o  “readdir” performs sequential scan on the table 

Kai Ren, G. Gibson © Nov 2012 

Key Value 
<0,hash(home)> 1, “home”, struct stat 
<1,hash(foo)> 2, “foo”, struct stat 
<1,hash(bar)> 3, “bar”, struct stat 
<2,hash(apple)> 4, “apple”, hard link 
<2,hash(book)> 5, “book”, struct stat,  

inline small file 
<3,hash(pear)> 4, “pear”, hard link 
<4,null> 4, struct stat,  

large file pointer 

Entries in 
the same 
directory 

[Kai Ren, ATC13] 



Next day plan 

•  More cloud storage 

Feb 13, 2017 15719 Adv. Cloud Computing 31 



Production Parallel File Systems 
•  All four systems scale to support very large compute clusters 

–  LLNL Purple, LANL RoadRunner, Oakridge Jaguar/Titan, etc. 
•  All but GPFS delegate block management to “object-like” data 

servers or OSDs 
•  Approaches to metadata vary 
•  Approaches to fault tolerance vary 
•  Emphasis on features, “turn-key” deployment, vary 

GPFS 

32 



FAST 12 Tutorial 33 

GPFS 

§  IBM product 
§  General Parallel File System 
§  Legacy: multimedia filesystem 

§  Block interface to storage nodes 
•  Shared memory abstraction 
•  Symmetric I/O servers can all 

“master” all/any data 

§  Distributed locking (DLM) 
•  Needed to access metadata 

describing block storage 
SAN storage 

I/O 
Servers 

NSD 
Clients 



FAST 12 Tutorial 34 

PANFS 

§  Panasas product based on CMU 
NASD research 

§  Complete “appliance” solution  
(HW + SW), blade server form factor 
•  DirectorBlade = metadata server 
•  StorageBlade = OSD 

§  Coarse grained metadata  
clustering 
•  DirectorBlades manipulate  

metadata distributed in 
objects 

§  Linux native client for  
parallel I/O 
•  Fast & scalable but complex 

34 

iSCSI/OSD 

OSDFS 
Storage 
Blade 
1000+ 

SysMgr 
PanFS 

NFS/CIFS 

Client 

Director Blade 
100+ 

Client 

Compute Nodes 

RPC 

10,000+ 



FAST 12 Tutorial 35 

LUSTRE 
§  Dominant Supercomputer FS 

today 
§  Open source object-based 

parallel file system 
•  Based on CMU NASD architecture 
•  Lots of file system ideas from Coda 
•  ClusterFS acquired by Sun,  
•  Sun acquired by Oracle 
•  Intel acquired Whamcloud team 
•  Today: OpenSFS Foundation 

§  Asymmetric design with 
separate metadata server 
•  Metadata is bottleneck (see GFS) 

§  Distributed locking with client-
driven lock recovery 
•  For write-back caching of metadata 

changes 

MDS 2 
(standby) 

Lustre Object Storage 
Servers (OSS, 100’s) 

Metadata 
Servers 

Failover 

MDS 1 
(active) 

Commodity 
SAN or disks 

Enterprise class 
Raid storage 

Failover 

QSW Elan 

Myrinet 

IB 

GigE 

OSS1 

OSS2 

OSS3 

OSS4 

OSS5 

OSS6 

OSS7 

Multiple storage 
networks are supported 

Lustre material from www.lustre.org and various talks 


