Feb 13, 2017

Cloud Storage 1

15-719 Advanced Cloud Computing
Garth Gibson

Greg Ganger
Majd Sakr

15719 Adv. Cloud Computing 1

Cloud Scale Storage

* An essential service for scalable cloud systems is scalable storage

* One family of solutions extends the familiar distributed file system
- Can NFS and/or AFS scale to cloud sizes?
o NFS & AFS - NASD - GFS > HDFS
- Shared file systems have always had a version of isolation (access control),
and a version of sharing (global pathnames)

- Today we review the technology leading to and in GFS-class cloud storage

* Another family abandons it (e.g S3) -- more on this next day

Feb 13, 2017 15719 Adv. Cloud Computing 2

File system functionality

Application| eee [Application

A

- File system functionality

Name lookup

e 0os Access control
Interface Attribute examination
= ¥ Y Session management
FS . Access Control File creation/deletion
Sessions Data reads
Directories Data writes
Layout Cach File extension (allocation)
: acnes Persistent storage mgmt
Disk1’0 | | . J9¢ S
Disk system functionality
Persistent storage
e Exports linear block space
Support raw reads/writes
Feb 13, 2017 15719 Adv. Cloud Computing

———

Approach #1: Server does everythmg

Application| 444 | Application Client Application| ¢4¢ | Application
T T i Systems T T
0S 0S
= I Tterface ~|T T ® 00 - ftqe |-
Request Forwarder | i : | Request Forwarder

Client/Server RPCs

o Name lookup
Access control
Attribute examination

Seﬂ/er Session management

: . Access Control File creation/deletion
SySte m : Sessions _) Data reads

: Directories Data writes
: Layout Caches File extension (aIIocatlon)
Disk I/0O Persistent storage mgmt i

Persistent storage
Exports linear block space
Support raw reads/writes

Feb 13, 2017 15719 Adv. Cloud Computing 4

e

Pros/Cons of approach #1

* Pros: Simplicity
- Server just looks same as kernel-based FS
« application requests simply forwarded from clients

- FS simplicity, security, etc... equivalent to standard case

» with clients viewed as applications
* Even system call atomicity can be preserved

* (Cons: Performance

- Performance of a server can bottleneck clients
» this becomes a problem quickly as number of clients grows

- Performance of network can bottleneck clients
« even for a single client

- Memory state must be maintained for each client app session

Feb 13, 2017 15719 Adv. Cloud Computing 5

Example: AFS distributed filesystem w/ FUSE

Feb 13, 2017

15719 Adv. Cloud Computing

1
| |
I |
I
n Afsfuse_ | o | Afsfuse_server :
; client I - !
) : .
[A) 1
Ay (R — F --------------------
CIiEnt process {
file requests : File nequests
:
|
|
|
1r |
I ¥
I
kernel : kemel
' | |
I
VFS interface : VFS interface
I
: f
: AFS servers
\ AFS Module -
Fuse module :
I

W —

Performance tuning: client-side caches

* Pretty much mandatory in small-scale environments (absent in GFS)
- Spark (Tachyon -> Alluxio) adds (client) caching to a MR cluster
> Special case: read-only
* Big new problem: cache coherence
> having a consistent view across set of client caches
- Preserving atomicity of unix system call layer (err, but they don’t?)
* Different models of consistency
o Unix (Sprite): all reads see most recent write

o Original HTTP: all reads see a recent read
* i.e., no consistency -- if you care, hit “reload”
- NFS: other clients’ writes visible in 30 seconds (open/close)

- AFS (v2): file session semantics
» reads see version closed most recently before calling open

Feb 13, 2017 15719 Adv. Cloud Computing 7

Approach #2: Sprite (Unix)
All reads see most recent write

How?

- Clients tell server when they open a file for read or write
 also asks for latest timestamp if previously cached

- Server tells client whether caching of the file is allowed
» any # of readers or a single writer; any other combo denied to all

- Server also calls back to clients to disable caching as needed
- Client tells server whenever file is closed

Who does what?

- Client maintains most session info, like current offset

o Server does almost all of FS activity

- Client has cache, but so does server

Feb 13, 2017 15719 Adv. Cloud Computing 8

— e

Approach #3: NFS v3

* Other clients’ writes visible within 30 seconds
o Or the local open() after the other client’s close()
* How?
- Clients cache blocks and remember when last verified
o Server promises nothing and remembers nothing
o Clients check block freshness whenever older than 30 secs
- No write-back caching is allowed on client or server (sort of)

o Most implementations assume no concurrent write sharing
» Test timestamps from last close on open to allow cache hits

* Who does what?
o Client provides session and caching

o Server does everything an FS would do on a local system

» note that it replicates everything, including caching & access control
» also note that other servers do this too, but also do other stuff

Feb 13, 2017 15719 Adv. Cloud Computing 9

—

Approach #4: AFS (v2)

* All reads see opened version, which is most recent close
* How?
- Clients obtain full copy of file and callback from server
» only when opening a file that is not currently cached with callback
» V3: no whole file semantics; use 64 KB chunks (huge file support)
- Server promises to callback if the file changes
» so client doesn’t need to check again!
o Client writes back entire file (if changed) upon close
 also keeps cached copy, of course
o Server revokes callbacks for the file from other clients
« Simple race on close for concurrent access semantics
* Who does what?
o Client provides session and complete caching
- Server does callbacks, directory mgmt, and add’l caching

Feb 13, 2017 15719 Adv. Cloud Computing 10

Should servers keep state about clients?

* Stateless servers
o simple
- may be faster (because of simplicity)
» though usually not

o quick/easy to recover from crashes
« don’t need to reconstruct client-related state

o no problem with running out of state-tracking resources
* Stateful servers

- may be faster (because of long-lived connections)

 can transform workload to something “better” for server
« can keep clients from repeatedly asking “still up-to-date?”

o can provide better semantics for users/programmers
o Spark driver is stateful for a while

Feb 13, 2017 15719 Adv. Cloud Computing 11

Client/Server Architecture

Client coe Client

LAN

Server

AN

Feb 13, 2017 15719 Adv. Cloud Computing 12

=

Example: NASD, EMC HighRoad, pNFS

Client coe Client
LAN
File
Manager
Direct connections
@ S:A:I.\I @ used for bulk
data transfers

Feb 13, 2017 15719 Adv. Cloud Computing 13

_—

Network Attached Secure Disk (NASD)

* File/object storage management in storage device (inode-like)

* Request (1, 2) & cache rights to read/write/extend objects on disks (3, 4)
E.g. CMU NASD, Pansas, Lustre, Google File System, HDFS

* But, changes in storage device standards blocked “in the disk” solutions

File Manager

Y :; o3 s
' Protocol Stack| Access Control, [LINASD @\r NASD
3 Namespace,) B

." Network Consistency [Net] Controlled| [Net] [Contralled

@->

@ (2) (object token) @

A
o

Feb 13, 2017 14

Example: NASD standardized as pNFS

PNFS protocol
standardized: NFS v4.1 Client
Storage-access protocol
files (NFSv4.1)
blocks (FC, iSCSI, FCoE)
objects (OSD2/NASD’)

PNFS
Control protocol protoco Storage-access
Outside of the pNFS protocol
standard
v
Metadata T T =
Server >
il Control
protocol Data Servers
15719 Adv. Cloud
Feb 13, 2017 15

Computing

The Google File System.

Ghemawat03: S. Ghemawat, H. Gobioff, S-T. Leung,
Symp. on Operating Systems Principles (SOSP’ 03),
Oct 2003, Bolton Landing, NY.

Feb 13, 2017 15719 Adv. Cloud Computing 16

Scaling Distributed Storage

* Failures become the norm (many cheap nodes)
- Spend disk capacity for simple solution
- Design schemes to be less impacted by failure

- Weaken promises to applications

* Having a captive application set a big plus
o Limit number of files
- Rule out small files performance as a goal
- Allow some access patterns to perform poorly
- Change file system semantics (weaken traditional guarantees,

add new special ops)

Feb 13, 2017 15719 Adv. Cloud Computing 17

Google FS Arch

e Should look a lot like NASD cuzitis

o Applications more homogeneous (then at least)

Application (file name, chunk index) | GFS master = [foo/bar
GFS client - File namespace '/" chunk 2ef0
(chunk hand!e, J
chunk locations) Legend:
mmms) Data messages
Instructions to chunkserver | - Control messages
(chunk handle, byte range) _ 11 Chunkserver state Y
GFS chunkserver GFS chunkserver |
chunk data - Linux file system Linux file system

98 - 98 -

Figure 1: GFS Architecture

Feb 13, 2017 15719 Adv. Cloud Computing 18

Simplify !

* Single master w/ all metadata in memory
- all files much be large; one block size (64MB)

- rebuild state often, to allow non-durable state
* locations of chunks not durable; poll on boot

* Concentrate all synchronization in new op

- Don’t hide inconsistency from application

* User-level library (no legacy support)

- UNIX-like API (but no links, special fast copy)
* Repair/recovery is async, so over-replicate

* No data caching anywhere but under object server (in ext3)

Feb 13, 2017 15719 Adv. Cloud Computing 19

Dual Ordering

4 stepl
Chunk transfers ~ Client . Master
: 3
& ordered different I
> one copy of data Secondary =
Replica A 6
elected as leader 1
(output ordering) .
: Primary -
o orders writes AFTER - Replica 5
data has arrived at all l Legend:
» Transfer pipeline by p ~ Control
distance in IP space Secondary —
 Design for poor cluster Replica B

network bisection BW
Figure 2: Write Control and Data Flow

Feb 13, 2017 15719 Adv. Cloud Computing 20

Serial defined defined
. success interspersed with
C oncurre nt S h arin g Concurrent | consistent inconsistent
successes but undefined
Failure inconsistent

* Concurrent updates can be “undefined”

o Large transfer split into separate races (like NFS)

* Append as special “thin” synch’g solution

- GFS picks and returns append offset (<1/4 chunk)

o record appended atomically AT LEAST ONCE
» Racing failures can leave differences in copies

« GFS may pad or duplicate records

* Apps SHOULD validate (don'’t trust GFS)

- formating, checkpointing, checksums, sequence numbers (nonces)

Feb 13, 2017 15719 Adv. Cloud Computing

21

T

Recovery

* Background visit to each chunk

o if parts are missing, re-replicate
» Reconstructed 600 GB in 23 mins (DDN HW RAID 72+ hrs)

o throttled to increase “availability”

- gradual slow rebalancing

- remove “stale” chunks w/ old version numbers
* Delete is just unlink

o chunk is garbage collected

o until collected, it is still available (time travel)

Feb 13, 2017 15719 Adv. Cloud Computing 22

Single Metadata Server

1:1,000,000 metadata to data size ratio

- force all large files (highly restrictive as FS)

- 4 GB metadata (in memory) maps 1 PB data, millions of files

prefix table of pathnames, not directory tree

o faster, but data management tools all break
* not single threaded (not that simple)

* replicate log & checkpoints

- Shadows can support readonly access

Feb 13, 2017 15719 Adv. Cloud Computing 23

Hints of GFS2: Colossus

* GFS was limited to 50M files, 10 PB
- Users generate too many small files
- Large file bias induced extra complexity on apps

- Low latency apps poorly supported
* No longer a single metadata server
- ‘shards” metadata over many servers
- Uses BigTable to store this metadata
* No longer simply replication
- Uses Reed-Solomon (RAID 6 like) encoding

o Computes encoding at client (like Panasas)
» Client sends all “copies” rather than chaining copying

Feb 13, 2017 15719 Adv. Cloud Computing 24

Log Structured Merge (LSM) Trees

* Insert/ Updates
- Buffer and sort recent inserts/updates in memory
- Write-out sorted buffers into local file system sequentially

- Less random disk writes than traditional B-Tree

* Lookup/ Scan

o Search sorted tables one by one from the disk
« Compaction is merge sort into new files, deleting old (cleaning)

- Bloom-filter and in-memory index to reduce lookups

— Disk

\ /
Memory buffer Sorted Table 1
— orted lable
N) Sorted Table 2
N I I N AN R AN //

Kai Ren, G. Gibson © Nov 2012

=

Write Optimized like LFS (cleaning = compaction)

Clean so there is no
] overlap in SSTables in
LSM-trees: Insertion each level after 0

|.Write sequentially 2. Sort data for quick lookups
3. Sorting and garbage collection are coupled

3 2
<— nEnil|€<— KV
memory ‘L I
disk 4 \t v
LO (8MB) | |
00 s
Leveip ' (® (L) O U ‘-

raoome) () () () () ()

 (Cacheable)index

per SSTable ey () (O O OO 0O)

« Lists 15t & last key
per SSTable [Lanyue Lu, FAST16]

R

O(log size) lookup like B-tree

Clean so there is no
overlap in SSTables in
LSM-trees: Lookup each level after 0

|. Random reads
2. Travel many levels for a large LSM-tree

memory / 3LItolLé6
disk

oeme) () () I
LevelDB ' (1B () O O \ 4 -y
rzgoome) () () () () ()

* (Cacheable) Bloom

filter per SSTable
. Skip ~99% earey () (J (J (J O O

unneeded lookups [Lanyue Lu, FAST16]

TableFS packs metadata into LSM Trees

* Small objects (<= 4KB) are embedded into LSM (Log-structure Merge) tree

(a tabular structure)
- E.qg. directory entries, inodes, small files
- Turn many small files into one large object (~ 2MB)

* Larger files (> 4KB) are stored directly in object store indexed by TableFS
assigned ID number

Dil;e_ctory/\ Large files
entries, > 4KB
Inodes, /\ / ()
Small files
(<4KB)

Object 0

[Kai Ren, ATC13]
Kai Ren, G. Gibson © Nov 2012

Table Schema

* Key: <Parent inode number, hash(filename)>
o Inodes with multiple hard links: <inode number, null>

* Value: filename, inode attributes, inlined file data (or symbolic link to

large object).

/
home

Lexicographic order

[Kai Ren, ATC13]

Key

Value

<0,hash(home)>
<1,hash(foo)>
<1,hash(bar)>
<2,hash(apple)>
<2,hash(book)>

<3,hash(pear)>
<4,null>

1, “home”, struct stat
2, “foo”, struct stat
3, “bar”, struct stat
4, “apple”, hard link

5, “book”, struct stat,
inline small file

4, “pear”, hard link

4, struct stat,
large file pointer

Kai Ren, G. Gibson © Nov 2012

_—

Table Schema (cont’)

* Advantages:
- Reduce random lookups by co-locating directory entries with inode
attributes, and small files

o “‘readdir’ performs sequential scan on the table

Key Value

] . <0,hash(home)> 1, “home”, struct stat
Entries in <1,hash(foo)> 2, “foo”, struct stat
the same { <1,hash(bar)> 3, “bar’, struct stat
dlreCtory <2,hash(apple)> 4, “apple”, hard link

<2,hash(book)> 5, “book”, struct stat,
inline small file

<3,hash(pear)> 4, “pear”, hard link

<4 null> 4, struct stat,
large file pointer [Kai Ren, ATC13]

Kai Ren, G. Gibson © Nov 2012

—_—
Next day plan

* More cloud storage

Feb 13, 2017 15719 Adv. Cloud Computing 31

Production Parallel File Systems

All four systems scale to support very large compute clusters
— LLNL Purple, LANL RoadRunner, Oakridge Jaguar/Titan, etc.

All but GPFS delegate block management to “object-like” data
servers or OSDs

Approaches to metadata vary
Approaches to fault tolerance vary
Emphasis on features, “turn-key” deployment, vary

panasas’ . .|.y-.5-t-f-e-

32

—_—

GPFS
NSD
IBM product Clients
General Parallel File System
Legacy: multimedia filesystem
Block interface to storage nodes
« Shared memory abstraction
« Symmetric I/O servers can all /0
“master” all/any data Servers

Distributed locking (DLM)
* Needed to access metadata

- ——

sas -

Wt

describing block storage
SAN storage g g

_—

PANFS

Panasas product based on CMU
NASD research

Complete “appliance” solution

(HW + SW), blade server form factor

* DirectorBlade = metadata server

. N>

sSas -

Compute Nodes

10,000+

Client

A A A

- StorageBlade = OSD e RPC / | J.JiISCSI/OSD

Coarse grained metadata

clustering
« DirectorBlades manipulate
metadata distributed in

objects Director Blade \ 1l
. 100+

St
o || EE

Linux native client for

parallel I/O
» Fast & scalable but complex

NFS/CIFS

SysMgr

Client

PanFS

_—

LUSTRE

Dominant Supercomputer FS
today

Open source object-based
paraIIeI file system

Based on CMU NASD architecture
* Lots of file system ideas from Coda
* ClusterFS acquired by Sun,
« Sun acquired by Oracle
* Intel acquired Whamcloud team
« Today: OpenSFS Foundation

Asymmetric design with
separate metadata server
» Metadata is bottleneck (see GFS)

Distributed locking with client-

driven lock recovery
» For write-back caching of metadata

Failover

Metadata
Servers : n .

QSW Elan

Myrinet
g—)

MDS 1
(active) [(standby)

QJ =
Multiple storage %

networks are supported 0SS6

Lustre Object Storage 5557
Servers (0SS, 100’s)

Sas

Commodity
SAN or disks

Failover

Enterprise class
Raid storage

changes Lustre material from www.lustre.org and various talks

