Mar 27, 2017

Fault Tolerance

Advanced Cloud Computing
15-719/18-847b

Garth Gibson
Greg Ganger
Majd Sakr

15719/18847b Adv. Cloud Computing 1

Advanced Cloud Computing Fault Tolerance Readings

* Ref1: “Implementing fault tolerant services using the state-machine approach: a
tutorial.” Fred Schneider. ACM Computing Surveys, 1990.
http://www.cs.cornell.edu/fbs/publications/smsurvey.pdf

* Ref 2: “Microreboot — A Technique for Cheap Recovery.” George Candea, Shinichi
Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox. OSDI'04, 2004.
https://www.usenix.org/legacy/event/osdio4/tech/full papers/candea/candea.pdf

* Ref 3: “Disk failures in the real world: What does an MTTF of 1,000,000 hours mean
too you?” FAST 07, 2007.
http://www.cs.toronto.edu/~bianca/papers/fasto7.pdf

* Ref 4: “Characterizing cloud computing hardware reliability.” Kashi Venkatesh
Vishwanath, Nachiappan Nagappan. SOCC’10, 2010.
http://doi.acm.org/10.1145/1807128.1807161

Mar 27, 2017 15719/18847b Adv. Cloud Computing 2

— —

Failures are expensive

Total cost

» Failures greatly impact cost of ownership oS lE

» Storage failures can be particularly expensive

— Unavailability can cost millions per hour
* How decreased response time and lowered thruput is still available?

— Data loss can cost millions per 100MB

« USENIX Computer Failure Data Repository
— 30+ clusters, 6+ sites, HPC & internet services (2000-2006)
— > 23,000 failures; > 100,000 disk drives

« MS Datacenter paper (shortly before 2010)
— > 100,000 machines studied for 14 months

15719/18847b Adv. Cloud Computing 3 Mar 27. 2017

W —

USENIX failure data: hardware replacement logs

Type of drive Count Duration
P Lt5:be L g 18GB 10K RPM SCSI
Supercomputing 3,400 o yrs
S e HPC 36GB 10K RPM SCS| Y
/W
/Lo$ Alamos HPC2 36GB 10K RPM SCSI 520 2.5yrs
G\ 15K RPM SCSI
2 HPC3 15K RPM SCSiI 14,208 1yr
Supercomputing X 7.2K RPM SATA
2} 250GB SATA
HPC4 500GB SATA 13,634 3 yrs
Various HPCs 400GB SATA
COM1 10K RPM SCSI 26,734 1 month
COM2 15K RPM SCSI 39,039 1.5yrs
2l 10K RPM FC-AL
Internet services Y 10K RPM FC-AL
COMS 10K RPM FC-AL 700 | Ty
10K RPM FC-AL

T =

Relative frequency of component replacements

The top ten of replaced components

HPC1 COM1 COM2
Component % Component % Component %
Hard drive 30.6 Power supply 34.8 Hard drive 49.1
Memory 28.5 Memory 20.1 Motherboard 234
Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1
CPU 12.4 Case 11.4 RAID card 4.1
PCI motherboard | 4.9 Fan 8.0 Memory 3.4
Controller 2.9 CPU 2.0 SCSI cable 2.2
QSW 1.7 SCSI Board 0.6 Fan 2.2
Power supply 1.6 NIC Card 1.2 CPU 2.2
MLB 1.0 LV Power Board | 0.6 CD-ROM 0.6
SCSIBP 0.3 CPU heatsink 0.6 Raid Controller | 0.6

 All hardware fails, though disks failures often common

Mar 27, 2017 15719/18847b Adv. Cloud Computing 5

T =

Annual disk replacement rate (ARR)

* Datasheet MTTFs are 1,000,000 to 1,500,000 hours.
= Expected annual replacement rate (ARR): 0.58 - 0.88 %

. Vendor sees “no fault found” for about 50% of returns
. Customer also breaks SLA /warranty terms: heat, moisture, vibration, workload

6

9)

1N

o iRl Data avrg = 3%

N

Annual replacament rate (%)
®
]

-

7= =ARR =0.88%
. ARR =0.58%

HPC1 HPC2 HPC3 HPC4 COM1 COM2 COM3

Mar 27, 2017 15719/18847b Adv. Cloud Computing 6

System failure rate highly variable

E 1000+ 6152 procs
q; 49 nodes
4096 procs
n —
) 500 1024 nodes \
O
U) -
8 600
| -
=
' 400 128 procs
LL 32 nodes
200 j
N J\ J
- N - Y Y _Y_/
4-way 2-way 128-way 256-way
2001 2003 1996 2004

Mar 27, 2017 15719/18847b Adv. Cloud Computing 7

R —

Best model: failures track # of processor chips

Q
'.g 0.8 | # failures normalized by # chips .
o 0.7¢F
o
« 0.6} ,
8 4096 chips
0.5 1024 nodes i
z’ 13228&];22 6152 chips
8 04 49 nodes
)
)
| -
=
©
L

0.3 \

0.2 \

0.1+ —

O
_ J\ I\)

~ T
4-way 2-way 128-way 256-way
2001 2003 1996 2004

Mar 27, 2017 15719/18847b Adv. Cloud Computing 8

Microsoft datacenter systems

* (Over 100,000 machines

* Unreported socket/chip count, usage

o u o

70 +

60 -

% ot Servers
N N
w

=
w

o

.-
6

4 5
Server Age

[N
N
w

* Studied 14 months of hardware logs ¢ *
S 40
* 8% machine hardware fails annually 5=
20
o 50% repaired once, 85% < 4 times o i :
0 AR -
o 78% failures caused by hard disks 1 4 7 10 13 16 19 22 25 29 32 35 38 41 46 54 66 143
« 2.7% disks repaired per year S pensanir
60
o 5% were RAID controllers -
> 3% were memory DIMM failures § 40
3 30
> 20% repeat failures within 1 day 5
°\°
* 50% repeat failures within 2 weeks 10 I I
0 +— | PN SN —
1 2 3 45 6 7 8 9101213141617 202432
Number of DIMMs
15719/18847b Adv. Cloud Computing 9

Mar 27, 2017

_—

How does (software) handle failures?
Redundant storage and repeatable computation

* Media failure (fail-stop)
o 10 device code bugs, disk HW failures: loss of (durable) disk info
* System failure (fail-stop)
- DB bug, OS fault, HW failure:
wipe out volatile memory but durable memory (disk) survives
* Short, non-shared, deterministic programs (most of them)

o OS, framework or user destroys partial changes, then reruns program
 Builds on external storage independently protected (RAID/Replicas)

* Long running, non-shared, deterministic programs (simulation, ETL)

- Periodic stop and checkpoint state to durable, independent, protected storage
« Components/tasks may checkpoint independently (less synchronization)

o On failure, isolate failed component/system, then restart from checkpoint
« Dependent components/systems are waiting & can trigger failure detection

Mar 27, 2017 15719/18847b Adv. Cloud Computing 10

T =

How does software handle soft failures?

* Micro-reboot applies restart to long running system software components

» Components must be transactional, store state externally, restart from external state,
be loosely coupled, support locks that expire and requests that are retry-able

* Concurrent, shared data (database) multi-application systems

- ACID transactions and write-ahead logging governing all shared state
* Builds on external state independently protected

* Concurrent, shared-nothing replicated systems (maybe no external state)

o Replicated state machines driven by coordinating replica changes

Mar 27, 2017 15719/18847b Adv. Cloud Computing 11

—

Transactions

* Multiple users manipulating shared data safely

- Users == application processes, assume to be less experienced/skilled

* ACID properties of a transaction (a “user” interaction with DB)

- Atomicity: a specific transformation is done all or nothing
 All partial changes must be tentative til one committing change

- Consistency: users make only (application defined) correct changes
- Isolation: partial changes not visible to other user’s code (less complex)

o Durability: changes survive subsequent failures
 Basic notion is storage redundancy/RAID, but can be process redundancy

* AID provided by database system, C (mostly) by programmer
- DB is consistent iff contents result only from successful transactions
- Integrity constraints (partial consistency) may be enforced by DB

» Replica consistency is an important special case (later)

Mar 27, 2017 15719/18847b Adv. Cloud Computing 12

Isolation: Two-Phase Locking (2PL)

Simplify for user: think only about running one transaction at a time

Assuming well-formed/consistent transactions seeking isolation

- Simple locking: Hold a (shared) lock to read & exclusive lock to write
 Can fail to provide isolation (if transactions interleave mutation/locking)

2PL: acquire no lock after releasing any

- Sufficient to insure isolation

o Strict 2PL: release no lock before committing, avoids cascading aborts
o Locks held a long time increase blocking; decrease concurrency
Optimistic methods don’t take/hold locks but may abort & retry
- Record all variables touched and check for conflicts on commit

o Faster if conflict is rare, but risks livelock if not

Mar 27, 2017 15719/18847b Adv. Cloud Computing 13

_— =

Failure Types

* Media failure (fail-stop)
o 10 device code bugs, disk HW failures: loss of disk info
o Rare events, “hours” to recover from checkpoints & audit logs

* System failure (fail-stop)
- DB bug, OS fault, HW failure:
wipe out volatile memory but durable memory (disk) survives

> Infrequent events, “minutes” to recover

* Transaction failure
- Code aborts, based on input/database inconsistency
[sometimes programmer is just escaping complex corner cases in code]
o Mechanical aborts caused by concurrency control solutions to isolation
- Frequent events, “instant” recovery needed

Mar 27, 2017 15719/18847b Adv. Cloud Computing 14

__

Recoverable Database System Model

* Log changes durably before

Temporary Log
AP, APy || AP, Supports Transaction UNDO,
database changes durable - Global UNDO, partial REDO
Computer * >

o Write-ahead logging

o Once a committed transaction has Code
been logged separately, multiple \

Database Buffer f—
changes to database can be = : dad \Q

serialized & retry will “REDO” work

Archive Log
Supports Global REDO

* REDO: repeat completed Physical Copy of
the Database

Archive Copy of
the Database G<_

Figure 4. Storage hierarchy of a DBMS during normal mode of operation.

transaction on old DB data

o Partial system or total media failure

* UNDQO: rollback aborted transaction
o Transaction or system failure
o Only if uncommitted transaction
allowed to change durable media
Mar 27, 2017 15719/18847b Adv. Cloud Computing 15

Replicated State Machines

* A state machine is code and data that acts predictably and
deterministically to input commands

* All non-faulty replicas of a service started with the same state and
executing the same commands produce the same state & output

o If failures are simple random “fail-stop”, 1 surviving replica is sufficient

o If failures are malicious deceivers, non-faulty survivors must win a vote

* Need 2t+1 replicas to survive t malicious (Byzantine) failures
* Common tools for replicated state machines

- Part-time parliament or PAXOS [Lamport89], ZooKeeper, RAFT,

Mar 27, 2017 15719/18847b Adv. Cloud Computing 16

Agreement & Ordering

* Decompose Replicated State Machine protocol into two:
- Agreement — deliver every request to all non-faulty machines

- Ordering — ensure the same order of execution at all non-faulty machines

Mar 27, 2017 15719/18847b Adv. Cloud Computing 17

_—— =

Concurrency & “Happens Before”

® Two events are not

concurrent if one

process P
process Q
process R

“happens before” the

other

* Eg. P1 happens before R3
but P2 and R4 may be
concurrent

* Replicated state machine

wants same order of

changes at all replicas

Mar 27, 2017 15719/18847b Adv. Cloud Computing 18

Agreement & Ordering

* Decompose Replicated State Machine protocol into two:

- Agreement — deliver every request to all non-faulty machines
» A coordinator/client specifies a request & the rest agree

o Ordering — ensure the same order of execution at all non-faulty machines
 Assign identifiers to requests and execute in identifier order
» Use a clock — three kinds: logical, real-time, server generated
 Client sends a logical clock with every message, or
« Every machine has & sends real-time clocks, or
» Servers/replicas negotiate a clock/identifier for order

Mar 27, 2017 15719/18847b Adv. Cloud Computing 19

T

Logical clocks

* Every machine maintains a counter for its (orderable) events
* When a message arrives, carrying the sender’s counter
the receiver advances its
counter past the sender’s p

o C =max(C, msg-C) + 1
> Resolve ties by adding
machine/thread ID as

lower order bits q

* Defines a total order that

that is consistent with

“happens before” y

Mar 27, 2017 15719/18847b Adv. Cloud Computing 20

——

Replicated State Machines using Logical Clocks

* In order to decide what request to execute next, need to know that no
request with a lower logical clock may arrive in future

* Require messages between two machines arrive in order (e.g. TCP)

* Delay execution at a replica until it has heard a larger logical clock from
all non-faulty machines

- The requests being held all happened before the latest messages,
so a smallest identifier can be selected and executed (following total order)

* Waiting for later messages is undesirable
- Forces heartbeat messages, and significant latency

> Real-time clocks can fix this if clock skew is smaller than message delivery

- Replicas can negotiate an order by communicating among themselves
At the cost of extra messaging

Mar 27, 2017 15719/18847b Adv. Cloud Computing 21

Next up

* Latency and the tyranny of stragglers ©

® More on Failure

Mar 27, 2017 15719/18847b Adv. Cloud Computing

22

