
Fault Tolerance

Advanced Cloud Computing
15-719/18-847b

Garth Gibson
Greg Ganger
Majd Sakr

Mar 27, 2017 15719/18847b Adv. Cloud Computing 1

Advanced Cloud Computing Fault Tolerance Readings

•  Ref 1: “Implementing fault tolerant services using the state-machine approach: a
tutorial.” Fred Schneider. ACM Computing Surveys, 1990.
http://www.cs.cornell.edu/fbs/publications/smsurvey.pdf

•  Ref 2: “Microreboot – A Technique for Cheap Recovery.” George Candea, Shinichi
Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox. OSDI’04, 2004.
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/candea/candea.pdf

•  Ref 3: “Disk failures in the real world: What does an MTTF of 1,000,000 hours mean
too you?” FAST’07, 2007.
http://www.cs.toronto.edu/~bianca/papers/fast07.pdf

•  Ref 4: “Characterizing cloud computing hardware reliability.” Kashi Venkatesh
Vishwanath, Nachiappan Nagappan. SOCC’10, 2010.
http://doi.acm.org/10.1145/1807128.1807161

Mar 27, 2017 15719/18847b Adv. Cloud Computing 2

Mar 27, 2017 15719/18847b Adv. Cloud Computing 3

Failures are expensive

•  Failures greatly impact cost of ownership

•  Storage failures can be particularly expensive

–  Unavailability can cost millions per hour
•  How decreased response time and lowered thruput is still available?

–  Data loss can cost millions per 100MB

•  USENIX Computer Failure Data Repository
–  30+ clusters, 6+ sites, HPC & internet services (2000-2006)
–  > 23,000 failures; > 100,000 disk drives

•  MS Datacenter paper (shortly before 2010)
–  > 100,000 machines studied for 14 months

Total cost
of ownership

Failures
(33-50%)

Mar 27, 2017 15719/18847b Adv. Cloud Computing 4

USENIX failure data: hardware replacement logs

Internet services Y

36GB 10K RPM SCSI

10K RPM SCSI
15K RPM SCSI

10K RPM FC-AL

10K RPM FC-AL
10K RPM FC-AL
10K RPM FC-AL

Type of drive Count

520

26,734
39,039

3,700

Duration

2.5 yrs

1 month
1.5 yrs

1 yr

18GB 10K RPM SCSI
36GB 10K RPM SCSI

3,400 5 yrs HPC1

HPC2

COM1
COM2

COM3

HPC3

HPC4

Supercomputing X

Various HPCs
13,634

14,208

3 yrs

1 yr

400GB SATA

250GB SATA
500GB SATA

7.2K RPM SATA

15K RPM SCSI
15K RPM SCSI

Mar 27, 2017 15719/18847b Adv. Cloud Computing 5

Relative frequency of component replacements

The top ten of replaced components

•  All hardware fails, though disks failures often common

Mar 27, 2017 15719/18847b Adv. Cloud Computing 6

Annual disk replacement rate (ARR)
•  Datasheet MTTFs are 1,000,000 to 1,500,000 hours.
⇒ Expected annual replacement rate (ARR): 0.58 - 0.88 %

•  Vendor sees “no fault found” for about 50% of returns
•  Customer also breaks SLA/warranty terms: heat, moisture, vibration, workload

ARR = 0.58%
ARR = 0.88%

Data avrg = 3%

Mar 27, 2017 15719/18847b Adv. Cloud Computing 7

System failure rate highly variable

4096 procs
1024 nodes

128 procs
32 nodes

4-way
2001

2-way
2003

128-way
1996

200

400

600

800

1000

Fa
ilu

re
s

pe
r y

ea
r

256-way
2004

6152 procs
49 nodes

Mar 27, 2017 15719/18847b Adv. Cloud Computing 8

Best model: failures track # of processor chips

4096 chips
1024 nodes 128 chips

32 nodes

failures normalized by # chips

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fa
ilu

re
s

pe
r y

ea
r p

er
 c

hi
p

2-way
2003

128-way
1996

256-way
2004

4-way
2001

6152 chips
49 nodes

Microsoft datacenter systems

•  Over 100,000 machines
•  Unreported socket/chip count, usage
•  Studied 14 months of hardware logs
•  8% machine hardware fails annually

o  50% repaired once, 85% < 4 times
o  78% failures caused by hard disks

•  2.7% disks repaired per year
o  5% were RAID controllers
o  3% were memory DIMM failures
o  20% repeat failures within 1 day

•  50% repeat failures within 2 weeks

Mar 27, 2017 15719/18847b Adv. Cloud Computing 9

How does (software) handle failures?
Redundant storage and repeatable computation

•  Media failure (fail-stop)
o  IO device code bugs, disk HW failures: loss of (durable) disk info

•  System failure (fail-stop)
o  DB bug, OS fault, HW failure:

wipe out volatile memory but durable memory (disk) survives
•  Short, non-shared, deterministic programs (most of them)

o  OS, framework or user destroys partial changes, then reruns program
•  Builds on external storage independently protected (RAID/Replicas)

•  Long running, non-shared, deterministic programs (simulation, ETL)
o  Periodic stop and checkpoint state to durable, independent, protected storage

•  Components/tasks may checkpoint independently (less synchronization)
o  On failure, isolate failed component/system, then restart from checkpoint

•  Dependent components/systems are waiting & can trigger failure detection

Mar 27, 2017 15719/18847b Adv. Cloud Computing 10

How does software handle soft failures?

•  Micro-reboot applies restart to long running system software components
•  Components must be transactional, store state externally, restart from external state,

be loosely coupled, support locks that expire and requests that are retry-able

•  Concurrent, shared data (database) multi-application systems
o  ACID transactions and write-ahead logging governing all shared state

•  Builds on external state independently protected

•  Concurrent, shared-nothing replicated systems (maybe no external state)
o  Replicated state machines driven by coordinating replica changes

Mar 27, 2017 15719/18847b Adv. Cloud Computing 11

Transactions

•  Multiple users manipulating shared data safely
o  Users == application processes, assume to be less experienced/skilled

•  ACID properties of a transaction (a “user” interaction with DB)
o  Atomicity: a specific transformation is done all or nothing

•  All partial changes must be tentative til one committing change

o  Consistency: users make only (application defined) correct changes
o  Isolation: partial changes not visible to other user’s code (less complex)
o  Durability: changes survive subsequent failures

•  Basic notion is storage redundancy/RAID, but can be process redundancy

•  AID provided by database system, C (mostly) by programmer
o  DB is consistent iff contents result only from successful transactions
o  Integrity constraints (partial consistency) may be enforced by DB

•  Replica consistency is an important special case (later)

Mar 27, 2017 15719/18847b Adv. Cloud Computing 12

Isolation: Two-Phase Locking (2PL)

•  Simplify for user: think only about running one transaction at a time
•  Assuming well-formed/consistent transactions seeking isolation

o  Simple locking: Hold a (shared) lock to read & exclusive lock to write
•  Can fail to provide isolation (if transactions interleave mutation/locking)

•  2PL: acquire no lock after releasing any
o  Sufficient to insure isolation
o  Strict 2PL: release no lock before committing, avoids cascading aborts
o  Locks held a long time increase blocking; decrease concurrency

•  Optimistic methods don’t take/hold locks but may abort & retry
o  Record all variables touched and check for conflicts on commit
o  Faster if conflict is rare, but risks livelock if not

13Mar 27, 2017 15719/18847b Adv. Cloud Computing

Failure Types

•  Media failure (fail-stop)
o  IO device code bugs, disk HW failures: loss of disk info
o  Rare events, “hours” to recover from checkpoints & audit logs

•  System failure (fail-stop)
o  DB bug, OS fault, HW failure:

wipe out volatile memory but durable memory (disk) survives
o  Infrequent events, “minutes” to recover

•  Transaction failure
o  Code aborts, based on input/database inconsistency

[sometimes programmer is just escaping complex corner cases in code]
o  Mechanical aborts caused by concurrency control solutions to isolation
o  Frequent events, “instant” recovery needed

Mar 27, 2017 15719/18847b Adv. Cloud Computing 14

Recoverable Database System Model

•  Log changes durably before
database changes durable

o  Write-ahead logging
o  Once a committed transaction has

been logged separately, multiple
changes to database can be
serialized & retry will “REDO” work

•  REDO: repeat completed
transaction on old DB data

o  Partial system or total media failure

•  UNDO: rollback aborted transaction
o  Transaction or system failure
o  Only if uncommitted transaction

allowed to change durable media
Mar 27, 2017 15719/18847b Adv. Cloud Computing 15

Replicated State Machines

•  A state machine is code and data that acts predictably and

deterministically to input commands

•  All non-faulty replicas of a service started with the same state and

executing the same commands produce the same state & output
o  If failures are simple random “fail-stop”, 1 surviving replica is sufficient

o  If failures are malicious deceivers, non-faulty survivors must win a vote
•  Need 2t+1 replicas to survive t malicious (Byzantine) failures

•  Common tools for replicated state machines
o  Part-time parliament or PAXOS [Lamport89], ZooKeeper, RAFT, ….

Mar 27, 2017 15719/18847b Adv. Cloud Computing 16

Agreement & Ordering

•  Decompose Replicated State Machine protocol into two:
o  Agreement – deliver every request to all non-faulty machines

o  Ordering – ensure the same order of execution at all non-faulty machines

Mar 27, 2017 15719/18847b Adv. Cloud Computing 17

Concurrency & “Happens Before”

•  Two events are not
concurrent if one
“happens before” the
other

•  Eg. P1 happens before R3
but P2 and R4 may be
concurrent

•  Replicated state machine
wants same order of
changes at all replicas

Mar 27, 2017 15719/18847b Adv. Cloud Computing 18

Agreement & Ordering

•  Decompose Replicated State Machine protocol into two:
o  Agreement – deliver every request to all non-faulty machines

•  A coordinator/client specifies a request & the rest agree

o  Ordering – ensure the same order of execution at all non-faulty machines
•  Assign identifiers to requests and execute in identifier order
•  Use a clock – three kinds: logical, real-time, server generated
•  Client sends a logical clock with every message, or
•  Every machine has & sends real-time clocks, or
•  Servers/replicas negotiate a clock/identifier for order

Mar 27, 2017 15719/18847b Adv. Cloud Computing 19

Logical clocks

•  Every machine maintains a counter for its (orderable) events
•  When a message arrives, carrying the sender’s counter

the receiver advances its
counter past the sender’s
o  C’ = max(C, msg-C) + 1
o  Resolve ties by adding

machine/thread ID as
lower order bits

•  Defines a total order that
that is consistent with
“happens before”

Mar 27, 2017 15719/18847b Adv. Cloud Computing 20

Replicated State Machines using Logical Clocks

•  In order to decide what request to execute next, need to know that no
request with a lower logical clock may arrive in future

•  Require messages between two machines arrive in order (e.g. TCP)
•  Delay execution at a replica until it has heard a larger logical clock from

all non-faulty machines
o  The requests being held all happened before the latest messages,

so a smallest identifier can be selected and executed (following total order)

•  Waiting for later messages is undesirable
o  Forces heartbeat messages, and significant latency
o  Real-time clocks can fix this if clock skew is smaller than message delivery
o  Replicas can negotiate an order by communicating among themselves

•  At the cost of extra messaging

Mar 27, 2017 15719/18847b Adv. Cloud Computing 21

Next up

•  Latency and the tyranny of stragglers J

•  More on Failure

Mar 27, 2017 15719/18847b Adv. Cloud Computing 22

