Feb 20, 2017

Scheduling Computation

15-719

Greg Ganger
Garth Gibson
Majd Sakr

15719 Advanced Cloud Computing

Datacenters today: reality on the ground

¢ EE NN EEEEEENENENENENN,

; " s o

: N : :

a - - \ il Consolidation
. =L APACHE |- R

= i P

..IIIIIII IIIIIII‘

Atom,

[}
L 4

Specialization

®sammnnm?®
4EEEEER

4EEEEEEEEEEEEEEEEEEEEEES®

Feb 20, 2017 15719 Advanced Cloud Computing 2

Context: bunch of work and bunch of machines

* We've got our collection of machines
- We'll start by assuming that they are all the same
o We'll start by assuming that they are allocated as atomic units
* We've got our collection of “jobs” (e.g., VMs)
o We'll start by assuming that they each want a single full machine

- We'll start by assuming extensive user effort applied

* Lets build it up, bit by bit, relaxing assumptions as we go

Feb 20, 2017 15719 Advanced Cloud Computing 3

__—

Simplest case: machine checkout

* Each job wants any one full machine

* User looks at list of available machines and picks one
- Edits the list to indicate that it is no longer free

o Then, uses it

* Assumptions:
- User owns machine fully and accesses it directly after checking it out
o User explicitly “frees” machine when done

- Notice: centralized service (the list) is critical to success

Feb 20, 2017 15719 Advanced Cloud Computing 4

Limit Displayy, Home Preferences Add

foobar@baz.com: your query returned 42 result(s)

EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT

EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT
EDIT | CHECKOUT

EDIT | CHECKOUT

Machine
Name

Feb 20, 2017

Current User

Building Room|Location Used As

15719 Advanced Cloud Computing

Extension #1: scheduler allocates and runs

* User submits job to system

- might be a VM image or some executable script/program
» depends on type of environment

* Scheduler picks machine and runs the job
o still requires free machine list

- also requires ability to start the job on the chosen machine

* e.g., send to VMM or to scheduling agent that executes on the machine
* When the job finishes
- the machine “frees itself”, by telling the scheduler

Feb 20, 2017 15719 Advanced Cloud Computing 6

——

Extension #2: packing multiple onto a machine

* User submits job plus resource request (parts of one machine)
> e.g., RAM capacity (!!) and CPU fraction (in MHz or cores)

* Scheduler picks a machine with enough resources and runs job on it
- must now track what portion of each machine is allocated vs. free

> picking machine is somewhat akin to memory allocation
« options like first fit, best fit, etc. apply
 but, the physical machine boundaries make it a bit different

* Assumptions for now
- the resource request is sufficient to the need
- local machine agent ensures allocation fractions
- interference among jobs on a machine can be ignored

o can ignore unused fractions of machine

Feb 20, 2017 15719 Advanced Cloud Computing 7

Extension #2: packing multiple onto a machine

CPU

Feb 20, 2017 15719 Advanced Cloud Computing 8

—

Extension #3: packing with uncertainty

* User’s resource requests can be imperfect

- common to ask for more than needed
> can often use more, if available, as well... e.g., to finish faster
* Overcommitting
> assign more total “allocation” (e.g., RAM or CPU) to a machine than will fit
- monitor resource usage, identify under-utilization of allocation, and use it

> biggest issue: dealing with situations where resources run out
* e.g., job tries to use its requested allocation of RAM, but there isn’t enough
 options: kill or migrate that job, kill or migrate a different job, shrink allocation

* Using slack resources
- 1magine that only Y2 of the CPU has been allocated to jobs so far
> should those jobs use the extra CPU?

Feb 20, 2017 15719 Advanced Cloud Computing 9

__—

Extension #4: informing decisions re: uncertainty

* User provides more information than just the resource request
o scheduler and per-machine agent use it
* VMware extra information
- Reservation: guaranteed minimum amount (say “no” if can’t promise)
- Limit: upper bound (so, don’t use extra resources beyond certain amount)

- Share: relative importance of different jobs (when sharing extra resources)

Feb 20, 2010 15719 Advanced Cloud Computing 10

Extension #5: machines not all the same

* Few data centers / clouds have a single machine type
o different amounts of RAM, different CPU speeds, core counts, etc.
- could be special features (e.g., GPU) only present on some of them
* Scheduler still works in largely the same way
o still track what portion of each machine is allocated vs. free, and pick

> special features require pruning set of options considered
* e.g.,just the ones with a GPU

* Interesting nuance: exposing vs. hiding machine differences
- remember “MHz” as a measure? Or, number of cores?

> expose special features at all?

Feb 20, 2017 15719 Advanced Cloud Computing

11

T

Ex: heterogeneity in AWS

* Amazon EC2 instance type proliferation:
> General Purpose T2
- Balanced M3
- Compute Optimized C3
- Memory Optimized R3
- GPU G2
o Storage Optimized 12
- High Storage Density HS1

* Also, multiple sizes for most types: small, large, x-large, 2x-large, ...

* Instance type detail matrix — didn’t fit on the screen...

Feb 20, 2017 15719 Advanced Cloud Computing 12

Extension #6: changing previous decisions

* Free resources can become fragmented or poorly distributed
> as jobs finish at arbitrary times that often cannot be known
- may be enough resources for a new job, but not all together

o over-committing or slack usage may be improvable

* Changing decisions requires work

> the job must be moved, somehow, from one machine to another
* inducing tradeoff between short-term cost vs. long-term benefit

> primary options: migration or “shoot-and-restart”

 both take time and resource from doing real work

Feb 20, 2017 15719 Advanced Cloud Computing 13

Extension #7: non-resource constraints

* For some jobs, there are additional concerns to be addressed
> €.g., being close to or not being close to another job
* VMware constraint examples

- Affinity: identifies VMs that should be on same machine

e to allow for faster communication

- Anti-affinity: identifies VMs that must not be on same machine

* to ensure that a machine crash does not disable both
* Constraints more generally
- can be any machine attributes, though scheduler must understand user
o restricts the set of options that the scheduler can consider for a given job

o also, affinity and anti-affinity can relate to more than just “same machine”

Feb 20, 2017 15719 Advanced Cloud Computing 14

Extension #578: multi-machine jobs

* It is not uncommon for a request to ask for several machines at once

> e.g.,torun a Hadoop instance or a 3-tier web service

* Scheduler considers the request as a whole

> usually, will wait until can schedule the entire thing
* S0, it needs to find enough free resources fitting constraints at the same time

> may also try to improve assignments based on knowing the full set

* e.g., run them on same machine or rack
* Interesting nuance: to hoard or not to hoard
- “large” requests may wait forever, if the scheduler just waits to get lucky

- Can “hold back” resources, as they become free, until enough are free

» But, they are “wasted” while waiting

Feb 20, 2017 15719 Advanced Cloud Computing 15

=

Wrap-up (for this part)

* Map collection of jobs (as they arrive) onto set of machines

* Lots of differences (in the details) among different schedulers
> S0, it’s worth looking at examples that we suggested as readings

o and, we’ll talk more about scheduler architecture on Wed

Feb 20, 2017 15719 Adv Cloud Computing 16

Next day plan

* Hey, we're not done today yet!
* Next up: Majd on scheduling in parallel programming frameworks

* Next time: scheduler architecture and multi-level scheduling

Feb 20, 2017 15719 Advanced Cloud Computing

17

Job & Task Scheduling in
MapReduce

Majd Sakr, Garth Gibson, Greg Ganger
15-719/18-849b Advanced Cloud Computing

Spring 2017

February 20, 2017

MapReduce Cluster

& =
L s TN

MapReduce

e Applications in MapReduce are represented as jobs
— Each job encompasses several map and reduce tasks

— Map and reduce tasks operate on data independently and in parallel

Partition
Split 0
Partltlon ™
Partition) W Reduce

Partition

Task

Split 1 Partition
Partition Partition e ; Rigslfe 3 To HDFS
Split 2 g2 Partition

Task Partition

Partition Partition Reduce
Task
Split 3 —@M >l § Merge &
Sort
| 1

| Shuffle Stage _ii Stage ! Reduce Stage
Map Phase Reduce Phase

MapReduce Applications

Shuffled -
Output
Input Data Mep Reduce

Local Disk or
Network

Network Network

Data Pattern Shuffle Data/Map Example

Map Input Shuffle Data InputiRatio

0 Sobel Edge Detection

<<1 Grep

Sort

>>1 ngram

il

Grep Example

Grep Search Map & Reduce task details

Reduce Task 1 - Sorting

Reduce Task 1 - Shuffling

Reduce Task 1

Map task 15

Map task 14
Map task 13 - 0:00:08
Map task 12

Map task 11

Map task 10

Map task 9
Map task 8 - 0:00:08
Map task 7

Map task 6

Map task 5

Map task 4
Map task 3
Map task 2
Map task 1

00:00:00 00:00:09 00:00:17 00:00:26 00:00:35 00:00:43 00:00:52

Reduce Task 1 - Sorting
Reduce Task 1 - Shuffling
Reduce Task 1

Map task 16

Map task 15

Map task 14

Map task 13

Map task 12

Map task 11

Map task 10

Map task 9

Map task 8

Map task 7

Map task 6

Map task 5

Map task 4

Map task 3
Map task 2
Map task 1

TeraSort Example

TeraSort Map & Reduce Task Details

0:01:28

00:00:00

00:00:43

00:01:26

00:02:10

00:02:53

00:03:36

Network Topology In MapReduce

MapReduce assumes a tree style network topology
Nodes are spread over different racks in one or many data centers

The bandwidth between two nodes is dependent on their relative locations
in the network topology

— The assumption is that nodes that are on the same rack will have higher
bandwidth between them as opposed to nodes that are off-rack

& =
o e R

MapReduce Job

* In Hadoop 1.0, a multiple machine cluster includes
— One master, JobTracker

— One or many slaves, TaskTrackers
e Configurable number of Map or Reduce task slots
* TaskTrackers send a heartbeat to JobTracker every 5 secs
* JobTracker combines updates to produce a global view

Core Switch
|

A Map Slot Where a Map Task Can Run A Reduce Slot Where a Reduce Task Can Run

| |

Rack Switch 1 Rack Switch 2
i | f 5 |
TaskTrackerl TaskTracker2 TaskTracker3 TaskTrackerd TaskTracker5
V ;, JobTracker
‘Ll_l Lo o) Lot o) Lod) (Lo Lo ‘LIJ L]
E E_ Sending a Heartbeat i

Replying with a Heartbeat

'
[

Job Submission in MapReduce

runJob creates JobClient —
: JiZgetnewjobid |
and calls submitJob MapReduce | runjob B 1 oot { = Wi
|| program [N JobClient [B Stiiiakonl e e—" > .'.jS: initialize job
— Asks JobTracker for job ID dient VM —— inion: B .
— Checks output S) s o Jobtracker node
. 3: copy job ; 7: heartbeat :
— Computes splits KL (ems ash)
— Copies job resources Shared &
. 10 repllcas (E;‘S?Degg) ‘..8mmmjob TaskTracker
resour¢es -
JobTracker adds to queue % nch |
— Job scheduler to pick up Qe s
and initialize
— TaskTracker sends ionl
heartbeat to JobTracker Mgtk
— Scheduler chooses a task ReduceTask
from job tasktracker node

T. White (2011). "Hadoop: The Definitive Guide” 2nd Edition." O’REILLY.

Task Assignment in MapReduce

e TaskTracker
— leed # SlOtS for Map & W I:un]ob'u‘isubmu)ob "N JobTracker .‘..::?S:initializejob

Reduce tasks ::m’m Gretiewe :
ntn mpulspli(f__.--" -
* Depends on resources 3rcopy o | - jobtracker node
resources V (mumslask)§
* Job scheduler o a ‘
. msyﬁem A TaskTracker
— Fills Map slots before (EGHDSET B:revievejob
resour¢es -
Reduce slots 3 unch
* Pick a Map task whose ok
split is close to
TaskTracker’s network wrwni
location MapTask
or
— data-local, rack-local, ... ReduceTask
— If no empty map slot, tasktracker node

choose next reduce task
T. White (2011). "Hadoop: The Definitive Guide” 2nd Edition." O’REILLY.

Task Execution in MapReduce

TaskTracker is assigned a

task _ iz qetoewibd &
e S | L:ssbmitjob
— Copy JAR from HDFS to it o ’ X

dient JVM :

1 i 6. retiieve b :
B Ié)cal ﬁlelsystlem y dentoote ___ opisls S
reates local wor INg 3: copy job g 7o o
directo ry resources ' (returns ask)

— Creates TaskRunner &

Stared. & |
HGS{:!QII'I e o ooseneneinasnnsisnsasesibasines TaskTracker
‘e. DFS) 5 : . -
TaskRunner % s

— Launches child JVM 9 launch

4
* Reuse is possible child JVM

— Run taskin JVM

e Bugs do not affect TT 10:run

— Communicates progress to *
TaskTracker Ma::ﬂ
ReduceTask
TaskTracker
communicates progress to tasktracker node
JobTracker

T. White (2011). "Hadoop: The Definitive Guide” 2nd Edition." O’REILLY.

Scheduling in MapReduce

e Centralized job scheduler

— Default: FIFO

— Others are pluggable (separate from JobTracker)
* Fair Scheduler (Facebook)
e Capacity Scheduler (Yahoo!)

e Task scheduling considers:
— Data-locality
— Variations in overall system workloads
— Failure

FIFO Job Scheduler

e Default FIFO scheduler for jobs
— A MapReduce job consumes all cluster resources

— Schedules jobs in order of submission
* Now schedules jobs with higher priority

— Schedules tasks from a new job only when all tasks
from running job have been scheduled

— Starvation with long-running jobs
— No job preemption

* A started long-running, low-priority job, cannot be preempted
— No evaluation of job size

Fair Job Scheduler (Facebook)

* Aims to give each user fair share of cluster
capacity over time

e Jobs are placed in pools
— Each user gets a pool

* If a single user submits many jobs

e All pools get equal share of resources
— Default setting

Fair Job Scheduler (Facebook)

Free slots in idle pools may be allocated to other
pools

Excess capacity within a pool is shared among jobs

Supports preemption

— If pool has not received fair share, kills tasks in pools
running over capacity

Jobs within pool share resources equally
— Priority may be set within pool

Jobs that require less time can finish with long
running jobs

Capacity Scheduler (Yahoo!)

* Defined for large clusters
— Multiple independent consumers

* Creates job queues
— Each queue is configured with # of slots (capacity)

— Each queue has capacity guarantees
e Sum of all queue capacities equal cluster capacity
e Excess capacity can be allocated to other queues

— Within a queue, scheduling is priority based

Hadoop Job Schedulers
_H__

Sharing Limited

Starvation Yes No No
Prioritization Supported but OFF Within Pool but OFF Within Queue
Preemption No Yes Designed,

implemented?

Task Scheduling in MapReduce

MapReduce adopts a master-slave architecture

The master node in MapReduce is referred
to as Job Tracker (JT)

Each slave node in MapReduce is referred
to as Task Tracker (TT)

MapReduce adopts a pull scheduling strategy rather than
a push one

* |.e., JT does not push map and reduce tasks to TTs but rather TTs pull them by
making pertaining requests

Map and Reduce Task Scheduling

Every TT sends a heartbeat message periodically to JT encompassing a
request for a map or a reduce task to run

Map Task Scheduling:

e JT satisfies requests for map tasks via attempting to schedule mappers in the
vicinity of their input splits (i.e., it considers locality)

Reduce Task Scheduling:

 However, JT simply assigns the next yet-to-run reduce task to a requesting TT
regardless of TT’s network location and its implied effect on the reducer’s
shuffle time (i.e., it does not consider locality)

Task Scheduling

Core Switch
A Map Slot Where a Map Task Can Run I A Reduce Slot Where a Reduce Task Can Run
. l l ;
Rack Switch 1 Rack Switch 2
P | | . |
TaskTrackerl TaskTracker2 TaskTracker3 TaskTrackerd TaskTracker5’
V b JobTracker
A) S (S| oy | |

Sending a Heartbeat

Replying with a Heartbeat

Task Scheduling in Hadoop

A golden principle adopted by Hadoop is: “Moving computation towards data

is cheaper than moving data towards computation”

— Hadoop applies this principle to Map task scheduling

With map task scheduling, once a slave (or a TaskTracker- TT) polls for a map
task, M, at the master node (or the JobTracker- JT), JT attempts to assign TT

an M that has its input data local to TT

Core Switch

Rack Switch 1

Rack Switch 2

| |
askTrackerl askTracker askTracker askTracker askTracker
N)) T Y O |) ()

Request a Map Task

JobTracker

Schedule a Map Task at an Empty Map Slot on TaskTrackerl

Task Scheduling in Hadoop

 Hadoop does not apply the locality principle to Reduce task scheduling

* With reduce task scheduling, once a slave (or a TaskTracker- TT) polls for a
reduce task, R, at the master node (or the JobTracker- JT), JT assigns TT any R

Total Network Distance (TND) = 4 Shuifle ﬁamnons .
P e A locality problem,
B —— aa— -~ I - Where R is scheduled
at TT1 while its
partitions exist

at TT4

Request Reduce Task R

Assign Rto TT1

22
CS= Core Switch & RS = Rack Switch

Fault Tolerance in Hadoop

 Data redundancy
Achieved at the storage layer through replicas (default is 3)
Stored at physically separate machines
Can tolerate
— Corrupted files
— Faulty nodes
HDFS:
— Computes checksums for all data written to it
— Verifies when reading

* Task Resiliency (task slowdown or failure)

* Monitor tasks to detect whether faulty or slow
* Replicate

Task Failure

MapReduce can guide jobs toward a successful completion even when jobs are
run on a large cluster where probability of failures increases

The primary way that MapReduce achieves fault tolerance is through
restarting tasks

A task throws a runtime exception

* JVM informs TT, the TT marks attempt failed and frees up the slot
If JVM exits

e TT marks it failed

If a TT fails to communicate with JT for a period of time (by default, 10 minutes
in Hadoop), JT will assume that TT in question has crashed

 JT asks another TT to re-execute all Mappers that previously ran at the
failed TT

e JT asks another TT to re-execute all Reducers that were in progress on the
failed TT

Task Failure

* When JT is informed by a heartbeat that a task failed
 Reschedules task

e Avoidssame T TT
e TTis blacklisted

e |f task fails > 4 times
 Job failure

* Maximum % of tasks allowed to fail without triggering
a job failure can be configured

Speculative Execution

A MapReduce job is dominated by the slowest task

MapReduce attempts to locate slow tasks (stragglers) and run
redundant (speculative) tasks that will optimistically commit
before the corresponding stragglers

This process is known as speculative execution
Only one copy of a straggler is allowed to be speculated

* Whichever copy of a task commits first, it becomes the
definitive copy, and the other copy is killed by JT

Task prioritization
1. Dead tasks

2. Normal tasks
3. Speculative tasks

Locating Stragglers

* How does Hadoop locate stragglers?

 Hadoop monitors each task progress using a progress score
between 0 and 1

* |If a task’s progress score is less than (average — 0.2), and the task has
run for at least 1 minute, it is marked as a straggler

A
I
I
I

T1 — | v Not a straggler

PS= 2/3
T2 H

PS=1/12

| x A straggler

v

€-=——=|—-==—|=|- -

Time

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

20000 —
15000 —
10000 —

5000 —

Done

20000 —
15000 —
10000 —

5000 —

—T—
500

A/

—T
1000

20000 —
15000 —
10000 —

5000 —

—T
500

[

—T—
1000

L] T T L] I T 1 L} T
500
Seconds

(a) Normal execution

Figure 3: Data transfer

I T
1000

20000 —
15000 —
10000

5000 H

0

44% longer

Daqne

20000 —
15000 —
10000

5000 H

T
1000

0

20000 —
15000 —
10000 —

5000 —

0

l T
500

L
1000

—T—
500
Seconds

—T
1000

(b) No backup tasks

20000 —
15000 —
10000 —

5000 —

5% longer

Done

20000 —
15000 —
10000 —

5000 —

— T
500 1000

20000 —
15000 —
10000

5000 —

—
500 1000

|
500

Seconds
(¢) 200 tasks killed

rates over time for different executions of the sort program

Drawbacks of Speculative Execution

Lots of speculative tasks
— Heterogeneous environments (up to 80%)
— Transient congestion

Launches speculative tasks at TTs without checking speed
of TT or load of speculative task

— Slow TT will become slower

Locality trumps slowness

— If 2 speculative tasks T1 & T2
e With stragglers ST1@70% and ST2@20%

— |If task slot is local to ST1’s HDFS block, ST1 gets scheduled
Three reduce stages treated equally

— Shuffle stage is typically slower than the merge & sort and
reduce stages

