Lecture 10
Segmentation, Part II (ch 8)
Active Contours (Snakes)
ch. 8 of *Machine Vision* by Wesley E. Snyder & Hairong Qi

Spring 2020
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Review: Segmentation

- A partitioning...
 - Into connected regions...
- Where each region is:
 - Homogeneous
 - Identified by a unique label

There is room for interpretation here...

And here
Review: The “big picture:” Examples from *The ITK Software Guide*

![Image of figures from ITK Software Guide](image)

Review: The Nature of Curves

- A curve is a 1D function, which is simply bent in (“lives in”) ND space.

- That is, a curve can be parameterized using a single parameter (hence, 1D).

- The parameter is usually arc length, s
 - Even though not invariant to affine transforms.
Review: The Nature of Curves

- The speed of a curve at a point \(s \) is:
 \[
 \Psi(s) = \sqrt{\left(\frac{dx}{ds}\right)^2 + \left(\frac{dy}{ds}\right)^2}
 \]
- Denote the outward normal direction at point \(s \) as \(n_{\Psi}(s) \)
- Suppose the curve is closed:
 - The concepts of INSIDE and OUTSIDE make sense
 - Given a point \(x = [x_i, y_i] \) not on the curve,
 - Let \(\Psi_x \) represent the closest point on the curve to \(x \)
 - The arc length at \(\Psi_x \) is defined to be \(s_x \).
 - \(x \) is INSIDE the curve if:
 \[
 [x - \Psi_x] \cdot n_{\Psi}(s_x) \leq 0
 \]
 - And OUTSIDE otherwise.

Active Contours (Snakes)

- Most whole-image segmentation methods:
 - Connectivity and homogeneity are based only on image data.
- In medical imaging, we often want to segment an anatomic object:
 - Connectivity and homogeneity are defined in terms of anatomy, not pixels
 - How can we do this from an image?
 - We definitely have to make use of prior knowledge of anatomy!
 - Radiologists do this all the time
Let’s look at ultrasound of my neck.

Examine the CCA:
- Large parts of the boundary are NOT visible!
- We know the CCA doesn’t include the large black area at the bottom-right

How can we automatically get a “good” segmentation?
- This is (usually) hard.

How do we know where the edges/boundaries are?

Why are they missing in some places?
- Ultrasound & OCT frequently measure pixels as too dark
- Nuclear medicine often measures pixels as too bright
- X-Ray superimposes different objects from different depths

What can we do about it?
- Edge closing won’t work.
- “Hallucinate”
Active Contours (Snakes)

- Another example & underlying idea:

- Active contours can insure* that:
 - The segmentation is not "drastically" too large or too small
 - It is approximately the right shape
 - There is a single, closed boundary
 - Active contours can still be very wrong
 - Just like every other segmentation method

* Requires careful usage.
Active Contours (Snakes)

- Step 1:
 - Initialize the boundary curve (the active contour)
 - Automatically,
 - Manually, or
 - Semi-automatically
- Step 2:
 - The contour moves
 - “Active” contour
 - Looks like a wiggling “snake”
- Step 3:
 - The contour stops moving
 - When many/most points on the contour line up with edge pixels

Initialization

- Good initialization is critical!
 - Especially around small neighboring objects
 - Especially if the image is really noisy/blurry
- Some snake algorithms require initialization entirely inside or outside of the object.
 - It is usually best to initialize on the “cleaner” side of the boundary.
- Clinically, this is often involves a human, who:
 - Marks 1 or more points inside the object
 - Marks 1 or more boundary points
 - And/or—
 - Possibly draws a simple curve, such as an ellipse
Moving the Contour

- Two common philosophies:
 - Energy minimization
 - “Ad-hoc” energy equation describes how good the curve looks, and how well it matches the image
 - Numerically optimize the curve
 - Partial differential equations (PDEs)
 - Start the curve expanding or contracting
 - Points on the curve move more slowly as:
 - They become more curved
 - They lie on top of image “edginess”
 - The curve ideally stops moving when it lies over the appropriate image boundaries

Active Contours:
Energy Minimization

- “Visible” image boundaries represent a low energy state for the active contour
 - ...If your equations are properly set up
 - This is usually a local minima
 - This is one reason why initialization is so important!
- The curve is (typically) represented as a set of sequentially connected points.
 - Each point is connected to its 2 neighboring points.
 - The curve is usually closed, so the “first” and “last” points are connected.
Active Contours: Energy Minimization

- Active contour points ≠ pixels
 - At any given time, each point is located at some pixel location
 - (Think itk::Index or itk::ContinuousIndex)
 - But points move around as the curve moves
 - And neighboring points are usually separated by several pixels
 - This allows room for each point to “move around”

Active Contours: Snake Energy

- Two Terms
 - Internal Energy + External Energy
- External Energy
 - Also called image energy
 - Designed to capture desired image features
- Internal Energy
 - Also called shape energy
 - Designed to reduce extreme curvature and prevent outlier points
Active Contours: External (Image) Energy

- Designed to capture desired image features
- Example:
 \[E_E = \sum \exp(-\|\nabla f(X_i)\|) \]
 - Measures the gradient magnitude in the image at the location of each snake point

Active Contours: Internal (Shape) Energy

- Designed to reduce extreme curvature and prevent outlier points
- Example:
 \[E_I = \sum a \|X_i - X_j\| + b \|X_{i-1} - 2X_i + X_{i+1}\| \]
 - Minimizes:
 - How far apart the snake points are from one another
 - How much the curve bends
 - Can add a -d term for avg. segment length
 - Looks like a 2nd derivative kernel
 - “Rubber band tension”
 - \(\beta \) is usually larger than \(\alpha \)
Active Contours: Selecting New Points

- Need choices to evaluate when minimizing snake energy
- Scenario 1: Snake can only shrink
 - Useful to execute between (large) initialization and normal execution
 - Look at points only inside the contour, relative to current point locations
- Scenario 2: Each snake point can move 1 step in any direction
 - Useful if the snake is close to the correct boundary
 - Look at all vertex-connected neighbors of each point’s current location
- Other scenarios possible

Active Contours: Energy Minimization

- Numerical minimization methods
- Several choices
 - In 2D, dynamic programming can work well
 - In 3D (i.e. “active surfaces”), simulated annealing can be a good choice
- Both methods require a finite (typically sampled) number of possible states.
 - The solution obtained is hopefully the best within the set that was sampled, but...
 - If the best solution in the region of interest is not included in the sample set, then we won’t find it!
Active Contours: Partial Differential Equations (PDEs)

- A different method for moving the active contour’s points
- Used by “Level Sets”
- Operates on discrete “time steps”
- Snake points move normal to the curve (at each “time step”).
- Snake points move a distance determined by their speed.

Active Contours using PDEs: Typical Speed Function

- Speed is usually a product of internal and external terms:
 \[s(x,y) = s_f(x,y)s_E(x,y) \]
- Internal (shape) speed:
 \[s_f(x,y) = 1 - \| \kappa(x,y) \| \]
 where \(\kappa(x,y) \) measures the snake’s curvature at \((x,y)\)
- External (image) speed:
 \[s_E(x,y) = (1+\Delta(x,y))^{-1} \]
 where \(\Delta(x,y) \) measures the image’s edginess at \((x,y)\)
Active Contours using PDEs: Typical Problems

- Curvature measurements are very sensitive to noise
 - They use 2nd derivatives
- These contour representations don’t allow an object to split
 - This can be a problem when tracking an object through multiple slices or multiple time frames.
 - A common problem with branching vasculature or dividing cells
- How do you keep a curve from crossing itself?
 - One solution: only allow the curve to grow

Level Sets

- A variation of the PDE framework
- Address the problems on the previous slide
- We will go over these in detail in the next lecture