

Lecture 6

Linear Processing

ch. 5 of *Machine Vision* by Wesley E. Snyder & Hairong Qi

Spring 2025

16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

The content of these slides by John Galeotti, © 2012 - 2025 Carnegie Mellon University (CMU), was made possible in part by NIH NLM contract# HHSN276201000580P, and is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. To view a copy of this license, visit <http://creativecommons.org/licenses/by-nc/3.0/> or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available either from CMU or by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via <http://itk.galeotti.net/>

Linear Operators

- D is a linear operator iff: “If and only if”

$$D(\alpha f_1 + \beta f_2) = \alpha D(f_1) + \beta D(f_2)$$

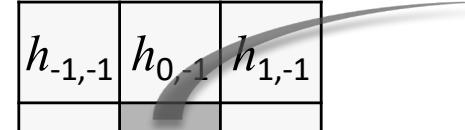
Where f_1 and f_2 are images,
and α and β are scalar multipliers

- Not a linear operator (why?):

$$g = D(f) = af + b$$

Kernel Operators

- Kernel (h) = “small image”
 - Often 3x3 or 5x5
- Correlated with a “normal” image (f)
- Implied correlation (sum of products) makes a kernel an operator. A *linear* operator.
- Note: This use of correlation is often mislabeled as convolution in the literature.
- **Any linear operator applied to an image can be approximated with correlation.**



$h_{-1,-1}$	$h_{0,-1}$	$h_{1,-1}$
$h_{-1,0}$	$h_{0,0}$	$h_{1,0}$
$h_{-1,1}$	$h_{0,1}$	$h_{1,1}$

$f_{0,0}$	$f_{1,0}$	$f_{2,0}$	$f_{3,0}$	$f_{4,0}$
$f_{0,1}$	$f_{1,1}$	$f_{2,1}$	$f_{3,1}$	$f_{4,1}$
$f_{0,2}$	$f_{1,2}$	$f_{2,2}$	$f_{3,2}$	$f_{4,2}$
$f_{0,3}$	$f_{1,3}$	$f_{2,3}$	$f_{3,3}$	$f_{4,3}$
$f_{0,4}$	$f_{1,4}$	$f_{2,4}$	$f_{3,4}$	$f_{4,4}$

Kernels for Derivatives

- Task: estimate partial spatial derivatives
- Solution: numerical approximation
 - $[f(x + 1) - f(x)]/1$
 - Really Bad choice: not even symmetric
 - $[f(x + 1) - f(x - 1)]/2$
 - Still a bad choice: very sensitive to noise
 - We need to blur away the noise (only blur orthogonal to the direction of each partial):

$$\frac{\partial f}{\partial x} = \frac{1}{6} \left(\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \otimes f \right) \quad \text{or} \quad \frac{\partial f}{\partial x} = \frac{1}{8} \left(\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \otimes f \right)$$

Correlation (sum of products)

The Sobel kernel is center-weighted

Derivative Estimation #2: Use Function Fitting

- Think of the image as a surface
 - The gradient then fully specifies the orientation of the tangent planes at every point, and vice-versa.
- So, fit a plane to the neighborhood around a point
 - Then the plane gives you the gradient
- The concept of fitting occurs frequently in machine vision.
Ex:
 - Gray values
 - Surfaces
 - Lines
 - Curves
 - Etc.

Derivative Estimation: Derive a 3x3 Kernel by Fitting a Plane

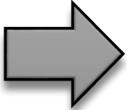
- If you fit by minimizing squared error, and you use symbolic notation to generalize, you get:
 - A headache
 - The kernel that we intuitively guessed earlier:

$$\frac{1}{6} \begin{array}{|c|c|c|} \hline -1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline \end{array}$$

Vector Representations of Images

- Also called lexicographic representations
- Linearize the image
 - Pixels have a single index (that starts at 0)

$f_{0,0}$	$f_{1,0}$	$f_{2,0}$	$f_{3,0}$
$f_{0,1}$	$f_{1,1}$	$f_{2,1}$	$f_{3,1}$
$f_{0,2}$	$f_{1,2}$	$f_{2,2}$	$f_{3,2}$
$f_{0,3}$	$f_{1,3}$	$f_{2,3}$	$f_{3,3}$



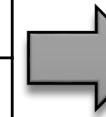
0 is the Lexicographic index

F_0	F_1	F_2	F_3
F_4	F_5	F_6	F_7
F_8	F_9	F_{10}	F_{11}
F_{12}	F_{13}	F_{14}	F_{15}

Change of coordinates

$F_0=7$

7	4	6	1
3	5	9	0
8	1	4	5
2	0	7	2



Vector listing of pixel values

7
4
6
1
3
5
9
0
8
1
4
5
2
0
7
2

Vector Representations of Kernels

- Can also linearize a kernel
- Linearization is unique for each pixel coordinate and for each image size.
 - For pixel coordinate (1,2) (i.e. pixel F_9) in our image:

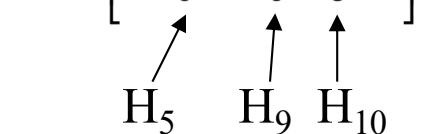
F_0	F_1	F_2	F_3
F_4	F_5	F_6	F_7
F_8	F_9	F_{10}	F_{11}
F_{12}	F_{13}	F_{14}	F_{15}

$$h = \begin{bmatrix} -3 & 1 & 2 \\ -5 & 4 & 6 \\ -7 & 9 & 8 \end{bmatrix}$$

$$H_9 = \begin{bmatrix} 0 & 0 & 0 & 0 & -3 & 1 & 2 & 0 & -5 & 4 & 6 & 0 & -7 & 9 & 8 & 0 \end{bmatrix}^T$$

$$H_{10} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -3 & 1 & 2 & 0 & -5 & 4 & 6 & 0 & -7 & 9 & 8 \end{bmatrix}^T$$

$$H = \begin{bmatrix} -3 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \\ -5 & -3 & 0 \\ 4 & 1 & -3 \\ 6 & 2 & 1 \\ 0 & 0 & 2 \\ \dots & \dots & \dots \\ -7 & -5 & 0 \\ 9 & 4 & -5 \\ 8 & 6 & 4 \\ 0 & 0 & 6 \\ 0 & -7 & 0 \\ 0 & 9 & -7 \\ 0 & 8 & 9 \\ 0 & 0 & 8 \end{bmatrix}$$



- Can combine the kernel vectors for each of the pixels into a single lexicographic kernel matrix (H)
- H is *circulant* (columns are rotations of one another). Why?

Convolution in Lexicographic Representations

- Convolution becomes matrix multiplication!
- Great conceptual tool for proving theorems
- H is almost never computed or written out

Basis Vectors for (Sub)Images

- Carefully choose a set of basis vectors (image patches) on which to project a sub-image (window) of size (x,y)
 - Is this lexicographic?
- The basis vectors with the largest coefficients are the most like this sub-image.
- If we choose meaningful basis vectors, this tells us something about the sub-image

Cartesian Basis Vectors

$$\mathbf{u}_1 = [1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T$$

$$\mathbf{u}_2 = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T$$

⋮

$$\mathbf{u}_9 = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1]^T$$

Frei-Chen Basis Vectors

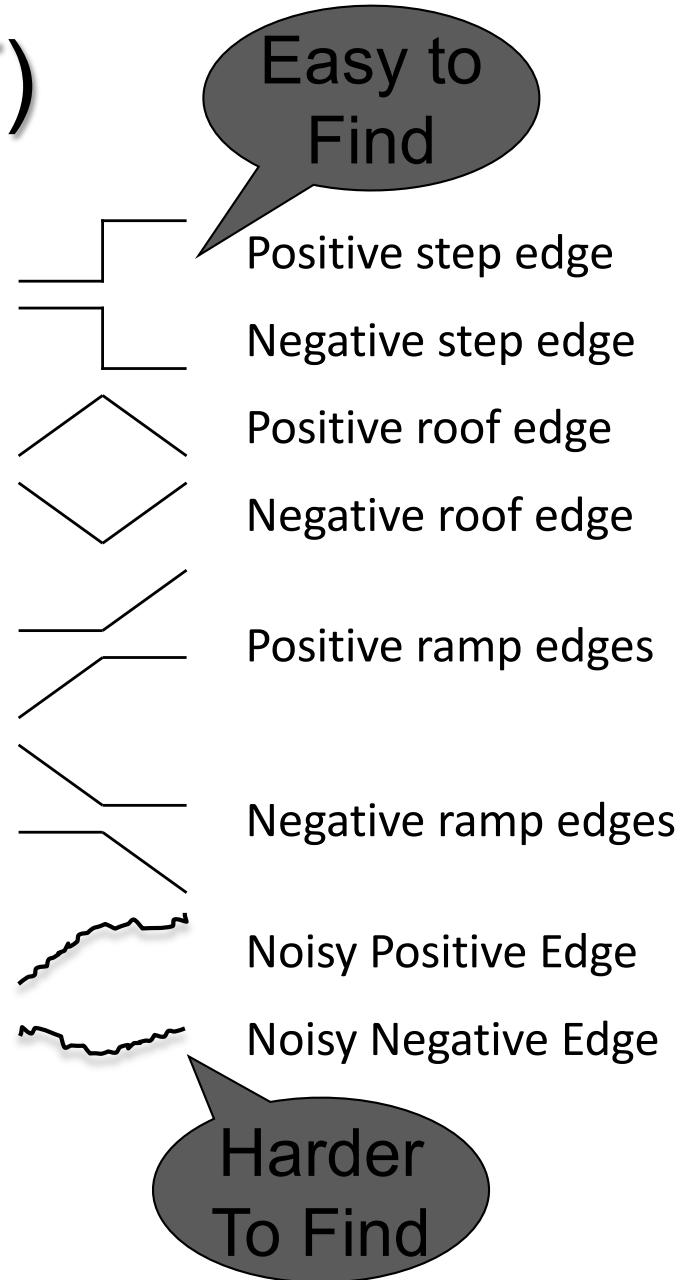
$$\begin{bmatrix} \mathbf{u}_1 \\ 1 & \sqrt{2} & 1 \\ 0 & 0 & 0 \\ -1 & -\sqrt{2} & -1 \end{bmatrix} \begin{bmatrix} \mathbf{u}_2 \\ 1 & 0 & -1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{u}_3 \\ 0 & -1 & \sqrt{2} \\ 1 & 0 & -1 \\ -\sqrt{2} & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u}_4 \\ \sqrt{2} & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} \mathbf{u}_5 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u}_6 \\ -10 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

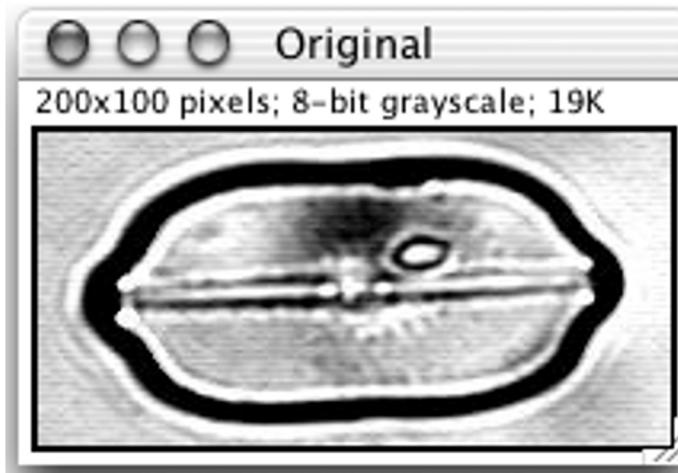
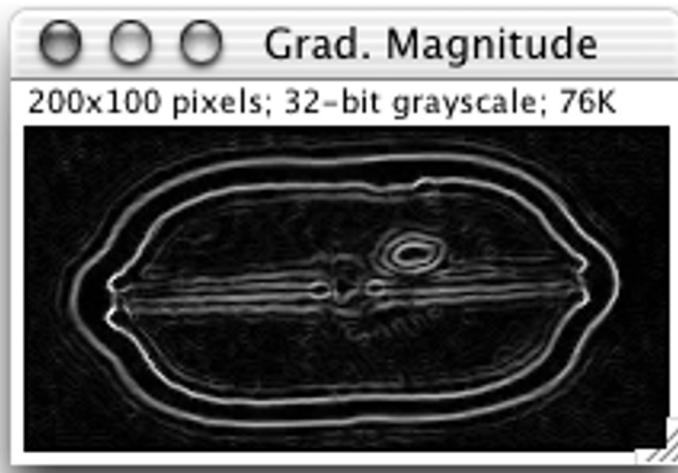
$$\begin{bmatrix} \mathbf{u}_7 \\ 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{u}_8 \\ -2 & 1 & -2 \\ 1 & 4 & 1 \\ -2 & 1 & -2 \end{bmatrix} \begin{bmatrix} \mathbf{u}_9 \\ 111 \\ 111 \\ 111 \end{bmatrix}$$

Edge Detection (VERY IMPORTANT)

- Image areas where:
 - Brightness changes suddenly =
 - Some derivative has a large magnitude
- Often occur at object boundaries!
- Find by:
 - Estimating partial derivatives with kernels
 - Calculating magnitude and direction from partials



Edge Detection



Diatom image (left) and its gradient magnitude (right).

(<http://bigwww.epfl.ch/thevenaz/differentials/>)

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}^T \equiv \begin{bmatrix} G_x & G_y \end{bmatrix}^T$$

$$|\nabla f| = \sqrt{G_x^2 + G_y^2} = \text{Edge Strength}$$

$$\angle \nabla f = \text{atan} \left(\frac{G_x}{G_y} \right)$$

Then **threshold** the gradient magnitude image

Detected edges are:

- Too thick in places
- Missing in places
- Extraneous in places

Convolving w/ Fourier

- Sometimes, the fastest way to convolve is to multiply in the frequency domain.
- Multiplication is fast. Fourier transforms are not.
- The Fast Fourier Transform (FFT) helps
- Pratt (Snyder ref. 5.33) figured out the details
 - Complex tradeoff depending on both the size of the kernel and the size of the image

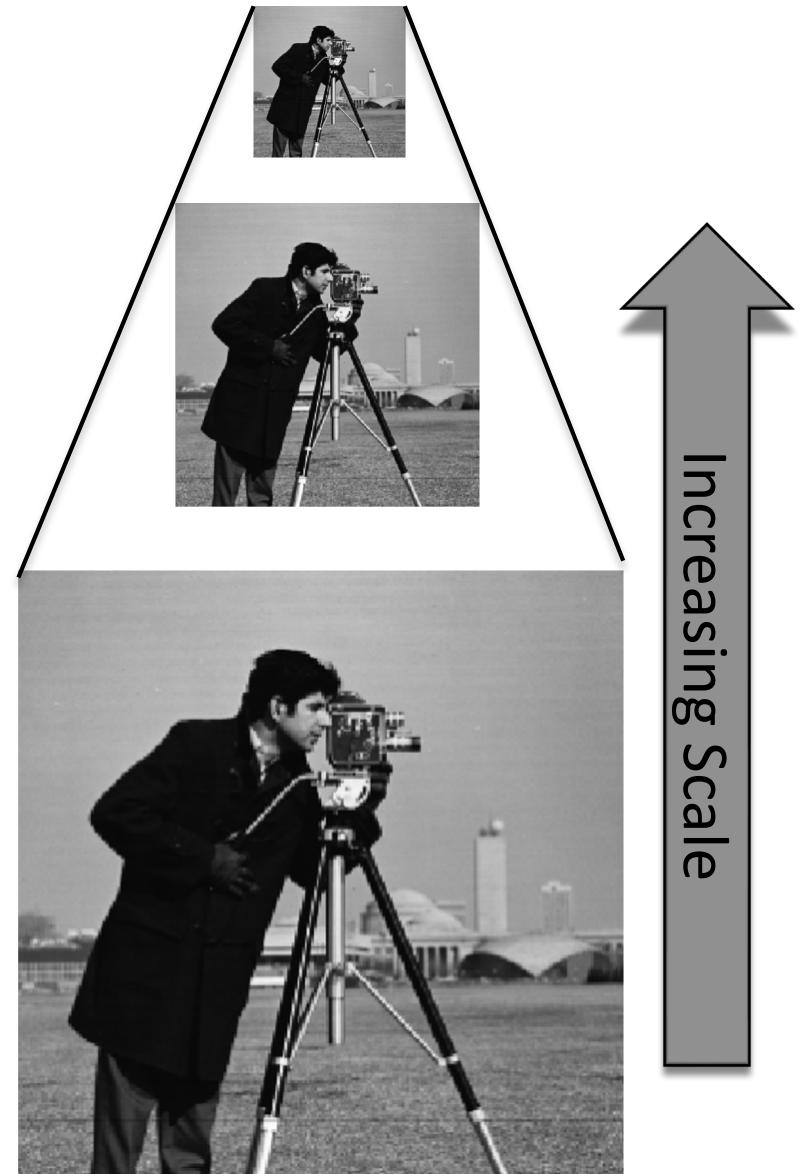
For kernels $\leq 7 \times 7$,
normal (spatial domain)
convolution is fastest*.

For kernels $\geq 13 \times 13$,
the Fourier method
is fastest*.

*For almost all image sizes

Image Pyramids

- A series of representations of the same image
- Each is a 2:1 subsampling of the image at the next “lower level.”
 - Subsampling = averaging = down sampling
 - The subsampling happens across all dimensions!
 - For a 2D image, 4 pixels in one layer correspond to 1 pixel in the next layer.
- To make a Gaussian pyramid:
 1. Blur with Gaussian
 2. Down sample by 2:1 in each dimension
 3. Go to step 1

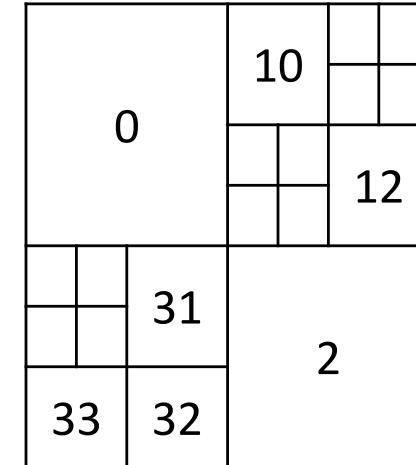
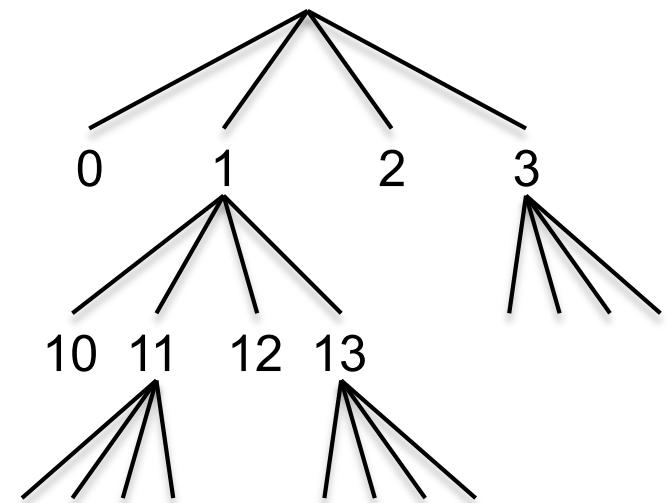


Scale Space

- Multiple levels like a pyramid
- Blur like a pyramid
- But don't subsample
 - All layers have the same size
- Instead:
 - Convolve each layer with a Gaussian of variance σ .
 - σ is the “scale parameter”
 - Only large features are visible at high scale (large σ).

Quad/Oc Trees

- Represent an image
- Homogeneous blocks
- Inefficient for storage
 - Too much overhead
- Not stable across small changes
- But: Useful for representing scale space.

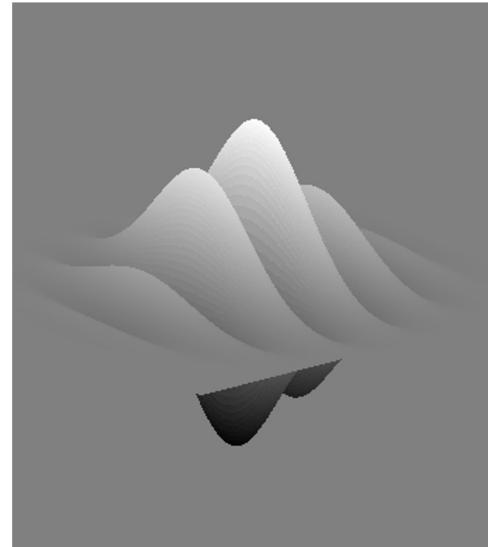


Gaussian Scale Space

- Large scale = only large objects are visible
 - Increasing $\sigma \rightarrow$ coarser representations
- *Scale space causality*
 - Increasing $\sigma \rightarrow$ # extrema should not increase
 - Allows you to find “important” edges first at high scale.
- How features vary with scale tells us something about the image
- Non-integral steps in scale can be used
- Useful for representing:
 - Brightness
 - Texture
 - PDF (scale space implements clustering)

How do People Do It?

- Receptive fields
- Representable by *Gabor functions*
 - 2D Gaussian +
 - A plane wave
- The plane wave tends to propagate along the short axis of the Gaussian
- But also representable by *Difference of offset Gaussians*
 - Only 3 extrema



Canny Edge Detector

1. Use kernels to find at every point:
 - Gradient magnitude
 - Gradient direction
2. Perform Nonmaximum suppression (NMS) on the magnitude image
 - This thins edges that are too thick
 - Only preserve gradient magnitudes that are maximum compared to their 2 neighbors in the direction of the gradient

Canny Edge Detector, contd.

- Edges are now properly located and 1 pixel wide
- But noise leads to false edges, and noise+blur lead to missing edges.
 - Help this with 2 thresholds
 - A high threshold does not get many false edges, and a low threshold does not miss many edges.
 - Do a “flood fill” on the low threshold result, seeded by the high-threshold result
 - Only flood fill along isophotes