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Linear Operators

. . . “If and only if”
=D is a linear operator iff:

D(of; + PBf2) = aD(f;) + BD(/2)
Where f; and f, are images,

and o and [3 are scalar multipliers

*Not a linear operator (why?):
g=D(f)=af+b



Kernel Operators

=Kernel (h) = by 4| ho, | = fo,o\Qo fro | fao | fao
“small image” hio| g | P11 Joi [ o1 | on | fan | Jan
m Often 3x3 or 5x5  |hq4| ho1| iy Joo | o2 | Sz | S32 | fa2
= Correlated with Jos |f13 | o3 | fa3 | Jas
a “normal” image (/) Joa | fra | foa | faa | fan

*"Implied correlation (sum of products) makes a kernel an
operator. A linear operator.

s Note: This use of correlation is often mislabeled as
convolution in the literature.

=" Any linear operator applied to an image can be
approximated with correlation.



Kernels for Derivatives

" Task: estimate partial spatial derivatives
"Solution: numerical approximation

"[fx+D-f(x) )1

= Really Bad choice: not even symmetric
"[fx+D-fx-1)])2
= Still a bad choice: very sensitive to noise

=" \We need to blur away the noise (only blur orthogonal to
the direction of each partial):

. i i The Sobel kernel
1 0 f 1 -1 1 is center-weighted
1l@f| or Z_Zl|-2029QFf
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Derivative Estimation #2:
Use Function Fitting

" Think of the image as a surface

= The gradient then fully specifies the orientation of the tangent
planes at every point, and vice-versa.

= So, fit a plane to the neighborhood around a point
= Then the plane gives you the gradient

" The concept of fitting occurs frequently in machine vision.
Ex:

= Gray values
= Surfaces

" Lines

= Curves

= Etc.



Derivative Estimation: Derive a
3x3 Kernel by Fitting a Plane

" |f you fit by minimizing squared error, and you use symbolic
notation to generalize, you get:

= A headache
= The kernel that we intuitively guessed earlier:
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Vector Representations of

Images

= Also called lexicographic representations

" Linearize the image

= Pixels have a single index (that starts at 0)
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Vector Representations of

Kernels

m Can also linearize a kernel

(N*

" Linearization is unique for each pixel coordinate
and for each image size.

= For pixel coordinate (1,2) (i.e. pixel Fy) in our image:

Fy|F, | F, | F;
-317|2| H,

LI S X PIT

Fy | Fs | Fio| Fus '7 og H,

F12F13F14F15

[0000-31 20-5460-7980]

[00000-31 20-5460-79 8]

= Can combine the kernel vectors for each of the
pixels into a single lexicographic kernel matrix (H)

" H is circulant (columns are rotations of one

another). Why?

This is
HUGE
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Convolution in Lexicographic
Representations

=Convolution becomes matrix multiplication!
"Great conceptual tool for proving theorems

=/ is almost never computed or written out



Basis Vectors for
(Sub)Images

= Carefully choose a set of basis
vectors (image patches) on which
to project a sub-image (window)
of size (x,y)

= |s this lexicographic?

" The basis vectors with the largest
coefficients are the most like this
sub-image.

= [f we choose meaningful basis
vectors, this tells us something
about the sub-image

Cartesian Basis Vectors
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Edge Detection
(VERY IMPORTANT)

" Image areas where:

Positive step edge
* Brightness changes suddenly =

C At Negative step edge
= Some derivative has a large & p €ag

magnitude /\ Positive roof edge
= Often occur at object ™\~ Negative roof edge
boundaries! S
. Positive ramp edges
= Find by: S b Eas
= Estimating partial derivatives AN
with kernels T Negative ramp edges
= Calculating magnitude and
direction from partials //Vu‘ Noisy Positive Edge
*~_~_ Noisy Negative Edge
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Edge Detection

® O © Original ® O O Grad. Magnitude Diatom image

200x100 pixels; 8-bit grayscale; 19K 200x100 pixels, 32-bit grayscale; 76K (left) and |tS

gradient
magnitude

(right).
(http://bigwww.epfl.ch/theve
naz/differentials/)

Detected edges are:
Vf|= \/G,f +G, = Edge Strength * Too thick in places

* Missing in places

« Extraneous in places

X

G

Yy

Then threshold the
gradient magnitude image 12

LVf = atan




Convolving w/ Fourier

= Sometimes, the fastest way
to convolve is to multiply in
the frequency domain.

= Multiplication is fast.
Fourier transforms are not.

=" The Fast Fourier Transform
(FFT) helps

" Pratt (Snyder ref. 5.33)
figured out the details

= Complex tradeoff depending
on both the size of the kernel
and the size of the image

* . .
For almost all image sizes

For kernels < 7x7,
normal (spatial domain)
convolution is fastest’.

For kernels = 13x13,
the Fourier method
is fastest'.
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Image Pyramids

= A series of representations of
the same image

= Each is a 2:1 subsampling of the
image at the next “lower level.
= Subsampling = averaging = down
sampling
= The subsampling happens across all
dimensions!

= For a 2D image, 4 pixels in one layer
correspond to 1 pixel in the next
layer.
= To make a Gaussian pyramid:
1. Blur with Gaussian

2. Down sample by 2:1 in each
dimension

3. Gotostepl
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Scale Space

= Multiple levels like a pyramid
= Blur like a pyramid
=" But don’t subsample

= All layers have the same size

" |[nstead:
= Convolve each layer with a Gaussian of variance o.
" 5 is the “scale parameter”
= Only large features are visible at high scale (large o).
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Quad/Oc Trees

" Represent an image
" Homogeneous blocks

= Inefficient for storage
= Too much overhead

= Not stable across small
changes

= But: Useful for
representing scale space.
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Gaussian Scale Space

= | arge scale = only large objects are visible
" |ncreasing ¢ — coarser representations
= Scale space causality

" |ncreasing c — # extrema should not increase
= Allows you to find “important” edges first at high scale.

" How features vary with scale tells us something about the
image

=" Non-integral steps in scale can be used

= Useful for representing:
= Brightness

= Texture
= PDF (scale space implements clustering)
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How do People Do It?

= Receptive fields
= Representable by Gabor
functions
= 2D Gaussian +
= A plane wave

" The plane wave tends to

propagate along the short axis of
the Gaussian

= But also representable by
Difference of offset Gaussians

= Only 3 extrema
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Canny Edge Detector

1.

2.

Use kernels to find at every point:

Gradient magnitude

Gradient direction
Perform Nonmaximum suppression (NMS) on
the magnitude image

This thins edges that are too thick

Only preserve gradient magnitudes that are
maximum compared to their 2 neighbors in the
direction of the gradient
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Canny Edge Detector, contd.

= Edges are now properly located and 1 pixel wide

=" But noise leads to false edges, and noise+blur lead to
missing edges.
= Help this with 2 thresholds

= A high threshold does not get many false edges, and a low threshold
does not miss many edges.

= Do a “flood fill” on the low threshold result, seeded by the high-
threshold result

= Only flood fill along isophotes
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