
1

The content of these slides by John Galeotti, © 2012 - 2020 Carnegie M ellon University (CM U), was made possible in part by NIH NLM contract#
HHSN276201000580P, and is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco,
California, 94105, USA. Permissions beyond the scope of this license may be available either from CM U or by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via http://itk.galeotti.net/

Spring 2020
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Lecture 12
Level Sets &

Parametric Transforms
sec. 8.5.2 & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi

1

A Quick Review

§The movement of boundary points on an active
contour can be governed by a partial
differential equation (PDE)
§PDE’s operate on discrete “time steps”
§One time step per iteration

§Snake points move normal to the curve
§The normal direction is recalculated for each

iteration.
§Snake points move a distance determined by

their speed.
2

2

2

Typical Speed Function
§ Speed is usually a combination (product or sum) of internal and

external terms:
§ s(x,y) = sI(x,y) sE(x,y)

§ Internal (shape) speed:
§ e.g., sI(x,y) = 1 - úú ek(x,y) úú
§ where k(x,y) measures the snake’s curvature at (x,y)

§ External (image) speed:
§ e.g., sE(x,y) = (1+D(x,y))-1
§ where D(x,y) measures the image’s edginess at (x,y)

§Note that s(x,y) above is always positive.
§ Such a formulation would allow a contour to grow but not to

shrink.

3

Can be pre-computed
from the input image

3

Active Contours using PDEs:
Typical Problems
§Curvature measurements are very sensitive to

noise
§They use 2nd derivatives

§They don’t allow an object to split
§This can be a problem when tracking an object

through multiple slices or multiple time frames.
§A common problem with branching vasculature or

dividing cells
§How do you keep a curve from crossing itself?
§One solution: only allow the curve to grow

4

4

3

Level Sets

§A philosophical/mathematical framework:
§Represent a curve (or surface, etc.) as an

isophote in a “special” image, denoted y,
variously called the:
§Merit function
§Embedding
§ Level-set function

§Manipulate the curve indirectly by manipulating
the level-set function.

5

5

Active Contours using PDEs
on Level Sets
§The PDE active-contour framework can be

augmented to use a level-set representation.
§This use of an implicit, higher-dimensional

representation addresses the active-contour
problems mentioned 2 slides back.

6

6

4

Figures 9.13 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

Note: ITK has inside positive; some other papers & Snyder text have inside negative

7

Level Sets: An Example from
the ITK Software Guide

7

§ DT is applied to a binary or
segmented image
§ Typically applied to the contour’s
initialization

§ Outside the initial contour, we
typically negate the DT

§ Records at each pixel the
distance from that pixel to the
nearest boundary.

§ The 0-level set of the
initialization’s DT is the
original boundary

1 1 1

1 1 1

1 1 1 1 2 1

1 2 2 1 2 2 1

1 2 2 3 2 1

1 2 3 2 2 1

1 2 2 1 2 1

1 2 1 1 1

1 1

1

8

Level Sets and the
Distance Transform (DT)

8

5

Level-Set Segmentation:
Typical Procedure
§Create an initial contour
§Many level-set segmentation algorithms require the

initialization to be inside the desired contour

§Initialize y:

§Use a PDE to incrementally update the segmentation
(by updating y)
§ Level Set Eq: dy/dt = velocity * gradient_mag(y):

§Stop at the right time
§This can be tricky; more later.

9

y(x,y) =
-DT(x,y) if (x,y) is outside the contour

DT(x,y) if (x,y) is inside the contour

9

Measuring curvature and
surface normals
§One of the advantages of level sets is that they

can afford good measurements of curvature
§Because the curve is represented implicitly as

the 0-level set, it can be fit to y with sub-pixel
resolution
§Surface normals are collinear with the gradient

of y. (why?)
§See Snyder 8.5 for details on computing

curvature (k).
10

10

6

Allowing objects to split or
merge
§Suppose we want to segment vasculature
from CT with contrast
§Many segmentation algorithms only run in 2D
§So we need to slice the data
§But we don’t want to initialize each slice by hand

11

11

Allowing objects to split or
merge
§Solution:
§ Initialize 1 slice by hand
§Segment that slice
§Use the result as the initialization for neighboring

slices
§But vasculature branches
§One vessel on this slice might branch into 2 vessels

on the next slice
§Segmentation methods that represent a boundary as

a single, closed curve will break here.

12

12

7

Allowing objects to split or
merge
§Level Sets represent a curve implicitly
§Nothing inherently prevents the 0-level set of y

from representing multiple, distinct objects.
§Most level-set segmentation algorithms naturally

handle splitting or merging
§PDEs are applied and calculated locally

13

13

Active Surfaces

§Level Sets can represent surfaces too!
§y now fills a volume
§The surface is still implicitly defined as the zero

level set.
§The PDE updates “every” point in the volume
§ (To speed up computation, on each iteration we can

update only pixels that are close to the 0 level set)

§Being able to split and merge 3D surfaces over
time can be very helpful!

14

14

8

ITK’s Traditional PDE
Formulation

§A is an advection term
§ Draws the 0-level set toward image edginess

§P is a propagation (expansion or speed) term
§ The 0-level set moves slowly in areas of edginess in the original

image

§Z is a spatial modifier term for the mean curvature k
§a, b, and g are weighting constants
§Many algorithms don’t use all 3 terms

15

15

A Very Simple Example
(ITK Software Guide 4.3.1)
§Initialize inside the object
§Propagation:

§ Slow down near edges
§ Is always positive (growth only)

§Stop at the “right” time
§Perform enough iterations (time steps) for the curve to

grow close to the boundaries
§Do not allow enough time for the curve to grow past the

boundaries
§This method is very fast!

16

16

9

A More Complex Example
(ITK Software Guide 4.3.3)
§Geodesic Active Contours Segmentation
§Uses an advection term, A
§Draws the curve toward edginess in the input image
§Things no longer “blow up” if we run too long

§Now, we can simply stop when things converge
(sufficiently small change from one time step to
the next).
§ Still, it’s a good idea to program a maximum number of

allowed time steps, in case things don’t converge.

17

17

Some General Thoughts
about Level Sets
§Remember, Level Sets are nothing more than a

way of representing a curve (or surface,
hypersurface, etc.)

§Level-Sets do have some advantages (e.g,
splitting/merging)

§But, Level-Sets otherwise work no better than any
other method.
§ Look at the many examples in the ITK software guide;

their results often leave a little or a lot to be desired

18

18

10

Level Set References

§Snyder, 8.5.2
§Insight into Images, ch. 8
§ITK Software Guide, book 2, 4.3
§“The” book:

§ Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision and Materials
Science, by J.A. Sethian, Cambridge University Press, 1999.

§ Also see: http://math.berkeley.edu/~sethian/2006/level_set.html

§All of the above reference several scientific papers.

19

19

Snyder ch. 11:
Parametric Transforms

§Goal: Detect geometric features in an image

§Method: Exchange the role of variables and
parameters

§References: Snyder 11 & ITK Software
Guide book 2, 4.4

20

20

http://math.berkeley.edu/~sethian/2006/level_set.html

11

Geometric Features?

§For now, think of geometric features as
shapes that can be graphed from an
equation.
§Line: y = mx + b
§Circle: R2 = (x-xcenter)2 + (y-ycenter)2

(variables are shown in bold purple, parameters are in black)

21

21

Why Detect Geometric
Features?
§Guide segmentation methods
§Automated initialization!

§Prepare data for registration methods
§Recognize anatomical structures

22

From the ITK Software Guide v 2.4, by Luis Ibáñez, et al., p. 596

22

12

How do we do this again?

§Actually, each edge pixel “votes”
§If we are looking for lines, each edge pixel
votes for every possible line through itself:

§Example: 3 collinear edge pixels:

23

Edge
Pixel

Possible
lines through

edge pixel

This line
gets 3
votes

23

How to Find All Possible
Shapes for each Edge Pixel
§Exchange the role of variables and
parameters:
§Example for a line: y = mx + b

(variables are shown in bold purple)

§Each edge pixel in the image:
§Has its own (x, y) coordinates
§Establishes its own equation of (m,b)

24

This is the set of all
possible shapes through

that edge point

24

13

How to Implement Voting

§With an accumulator
§Think of it as an image in parameter space
§ Its axes are the new variables (which were formally

parameters)
§But, writing to a pixel increments (rather than

overwriting) that pixel’s value.
§Graph each edge pixel’s equation on the

accumulator (in parameter space)
§Maxima in the accumulator are located at the

parameters that fit the shape to the image.

25

25

§If we use y = mx + b
§Then each edge
pixel results in a line
in parameter space:
b = -mx + y

Edge Detection Results
(contains 2 dominant line segments)

26

Example 1: Finding Lines

Accumulator Intermediate Result
(after processing 2 edge pixels)

m

b

26

14

§A closer look at the
accumulator after
processing 2 and then 3
edge pixels

§The votes from each edge
pixel are graphed as a line
in parameter space

§Each accumulator cell is
incremented each time
an edge pixel votes for it
§ I.e., each time a line in

parameter space passes
through it

27

Example 1: Finding Lines

1 1
1 1 1

2 1
1 2

1 1 1
1 1

1
1

1 1
1 1 1

2 1
1 1 2 3 1 1 1 1

1 1 1
1 1

1
1

Each of these edge
pixels could have

come from this line

27

Example 2: Finding Lines…
A Better Way
§What’s wrong with the previous example?
§Consider vertical lines: m = ∞
§My computer doesn’t like infinite-width

accumulator images. Does yours?
§For parametric transforms, we need a
different line equation, one with a bounded
parameter space.

28

28

15

θ

Example 2: Finding Lines…
A Better Way
§A better line equation for parameter voting:

r = x cos q + y sin q
§r ≤ the input image diagonal size

§ But, to make math easy, r can be - too.

§q is bounded within [0,2p]

29

x

y

θ

ρ

Gradient direction See Machine
Vision Fig. 11.5
for example of
final accumulator
for 2 noisy lines

29

Computational Complexity

§This can be really slow
§Each edge pixel yields a lot of computation
§The parameter space can be huge

§Speed things up:
§Only consider parameter combinations that

make sense…
§Each edge pixel has an apx. direction attached to

its gradient, after all.

30

30

16

Example 3: Finding Circles

§Equation: R2 = (x-xcenter)2 + (y-ycenter)2

§Must vote for 3 parameters if R is not
known!

31

This vote is for a
certain (xcenter, ycenter)
with a corresponding

particular R

Another vote for a
different (xcenter, ycenter)

with its own,
different R

31

Example 4: General Shapes

§What if our shape is weird, but we can draw it?
§Being able to draw it implies we know how big it will be

§See Snyder 11.4 for details
§Main idea:
§ For each boundary point, record its coordinates in a local

reference frame (e.g., at the shape’s center-of-gravity).
§ Itemize the list of boundary points (on our drawing) by

the direction of their gradient

32

32

