

Lecture 12

Level Sets &

Parametric Transforms

sec. 8.5.2 & ch. 11 of *Machine Vision* by Wesley E. Snyder & Hairong Qi

Spring 2020

16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

The content of these slides by John Galeotti, © 2012 - 2020 Carnegie Mellon University (CMU), was made possible in part by NIH NLM contract# HHSN276201000580P, and is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. To view a copy of this license, visit <http://creativecommons.org/licenses/by-nc/3.0/> or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available either from CMU or by emailing itk@galeotti.net.

The most recent version of these slides may be accessed online via <http://itk.galeotti.net/>

1

A Quick Review

- The movement of boundary points on an active contour can be governed by a partial differential equation (PDE)
- PDE's operate on discrete "time steps"
 - One time step per iteration
- Snake points move normal to the curve
 - The normal direction is recalculated for each iteration.
- Snake points move a distance determined by their speed.

2

2

Typical Speed Function

- Speed is usually a combination (product or sum) of internal and external terms:
 - $s(x,y) = s_I(x,y) s_E(x,y)$
- Internal (shape) speed:
 - e.g., $s_I(x,y) = 1 - ||\kappa(x,y)||$
 - where $\kappa(x,y)$ measures the snake's curvature at (x,y)
- External (image) speed:
 - e.g., $s_E(x,y) = (1+\Delta(x,y))^{-1}$
 - where $\Delta(x,y)$ measures the image's edginess at (x,y)
- Note that $s(x,y)$ above is always positive.
 - Such a formulation would allow a contour to grow but not to shrink.

Can be pre-computed
from the input image

3

3

Active Contours using PDEs: Typical Problems

- Curvature measurements are very sensitive to noise
 - They use 2nd derivatives
- They don't allow an object to split
 - This can be a problem when tracking an object through multiple slices or multiple time frames.
 - A common problem with branching vasculature or dividing cells
- How do you keep a curve from crossing itself?
 - One solution: only allow the curve to grow

4

4

2

Level Sets

- A philosophical/mathematical framework:
 - Represent a curve (or surface, etc.) as an isophote in a “special” image, denoted ψ , variously called the:
 - Merit function
 - Embedding
 - Level-set function
 - Manipulate the curve indirectly by manipulating the level-set function.

5

5

Active Contours using PDEs on Level Sets

- The PDE active-contour framework can be augmented to use a level-set representation.
- This use of an implicit, higher-dimensional representation addresses the active-contour problems mentioned 2 slides back.

6

6

Level Sets: An Example from the ITK Software Guide

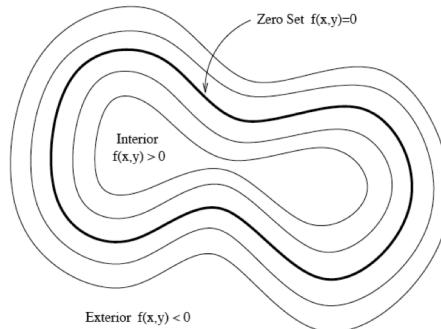


Figure 9.13: Concept of zero set in a level set.

Figures 9.13 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

Note: ITK has inside positive; some other papers & Snyder text have inside negative

7

7

Level Sets and the Distance Transform (DT)

- DT is applied to a binary or segmented image
 - Typically applied to the contour's *initialization*
 - Outside the initial contour, we typically negate the DT
- Records at each pixel the distance from that pixel to the nearest boundary.
- **The 0-level set of the initialization's DT is the original boundary**

	1					1	1	
	1					1	1	
	1	1	1			1	2	1
	1	2	2	1	2	2	1	
		1	2	2	3	2	1	
		1	2	3	2	2	1	
		1	2	2	1	2	1	
		1	2	1		1	1	
			1			1		
			1					

8

8

Level-Set Segmentation: Typical Procedure

- Create an initial contour
 - Many level-set segmentation algorithms require the initialization to be inside the desired contour
- Initialize ψ :
$$\psi(x,y) = \begin{cases} -DT(x,y) & \text{if } (x,y) \text{ is outside the contour} \\ DT(x,y) & \text{if } (x,y) \text{ is inside the contour} \end{cases}$$
- Use a PDE to incrementally update the segmentation (by updating ψ)
 - Level Set Eq: $d\psi/dt = \text{velocity} * \text{gradient_mag}(\psi)$:
- Stop at the right time
 - This can be tricky; more later.

9

9

Measuring curvature and surface normals

- One of the advantages of level sets is that they can afford good measurements of curvature
- Because the curve is represented implicitly as the 0-level set, it can be fit to ψ with sub-pixel resolution
- Surface normals are collinear with the gradient of ψ . (why?)
- See Snyder 8.5 for details on computing curvature (κ).

10

10

Allowing objects to split or merge

- Suppose we want to segment vasculature from CT with contrast
- Many segmentation algorithms only run in 2D
 - So we need to slice the data
 - But we don't want to initialize each slice by hand

11

11

Allowing objects to split or merge

- Solution:
 - Initialize 1 slice by hand
 - Segment that slice
 - Use the result as the initialization for neighboring slices
- But vasculature branches
 - One vessel on this slice might branch into 2 vessels on the next slice
 - Segmentation methods that represent a boundary as a single, closed curve will break here.

12

12

Allowing objects to split or merge

- Level Sets represent a curve implicitly
- Nothing inherently prevents the 0-level set of ψ from representing multiple, distinct objects.
- Most level-set segmentation algorithms naturally handle splitting or merging
 - PDEs are applied and calculated locally

13

13

Active Surfaces

- Level Sets can represent surfaces too!
- ψ now fills a volume
- The surface is still implicitly defined as the zero level set.
- The PDE updates “every” point in the volume
 - (To speed up computation, on each iteration we can update only pixels that are close to the 0 level set)
- Being able to split and merge 3D surfaces over time can be very helpful!

14

14

ITK's Traditional PDE Formulation

$$\frac{d}{dt} \psi = -\alpha \mathbf{A}(\mathbf{x}) \cdot \nabla \psi - \beta P(\mathbf{x}) |\nabla \psi| + \gamma Z(\mathbf{x}) \kappa |\nabla \psi|$$

- \mathbf{A} is an advection term
 - Draws the 0-level set toward image edginess
- P is a propagation (expansion or speed) term
 - The 0-level set moves slowly in areas of edginess in the original image
- Z is a spatial modifier term for the mean curvature κ
- α , β , and γ are weighting constants
- Many algorithms don't use all 3 terms

15

15

A Very Simple Example (ITK Software Guide 4.3.1)

- Initialize inside the object
- Propagation:
 - Slow down near edges
 - Is always positive (growth only)
- Stop at the “right” time
 - Perform enough iterations (time steps) for the curve to grow close to the boundaries
 - Do not allow enough time for the curve to grow past the boundaries
- This method is very fast!

16

16

A More Complex Example (ITK Software Guide 4.3.3)

- Geodesic Active Contours Segmentation
- Uses an advection term, A
 - Draws the curve toward edginess in the input image
 - Things no longer “blow up” if we run too long
- Now, we can simply stop when things converge (sufficiently small change from one time step to the next).
 - Still, it’s a good idea to program a maximum number of allowed time steps, in case things don’t converge.

17

17

Some General Thoughts about Level Sets

- Remember, Level Sets are nothing more than a way of representing a curve (or surface, hypersurface, etc.)
- Level-Sets do have some advantages (e.g, splitting/merging)
- But, Level-Sets otherwise work no better than any other method.
 - Look at the many examples in the ITK software guide; their results often leave a little or a lot to be desired

18

18

Level Set References

- Snyder, 8.5.2
- *Insight into Images*, ch. 8
- *ITK Software Guide*, book 2, 4.3
- “The” book:
 - *Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science*, by J.A. Sethian, Cambridge University Press, 1999.
 - Also see: http://math.berkeley.edu/~sethian/2006/level_set.html
- All of the above reference several scientific papers.

19

19

Snyder ch. 11: Parametric Transforms

- Goal: Detect geometric features in an image
- Method: Exchange the role of variables and parameters
- References: Snyder 11 & ITK Software Guide book 2, 4.4

20

20

Geometric Features?

- For now, think of geometric features as shapes that can be graphed from an equation.
- Line: $y = mx + b$
- Circle: $R^2 = (x-x_{\text{center}})^2 + (y-y_{\text{center}})^2$

(variables are shown in **bold purple**, parameters are in black)

21

21

Why Detect Geometric Features?

- Guide segmentation methods
 - Automated initialization!
- Prepare data for registration methods
- Recognize anatomical structures

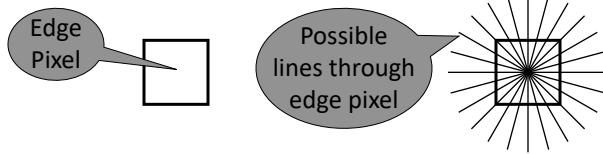
From the ITK Software Guide v 2.4, by Luis Ibáñez, et al., p. 596

22

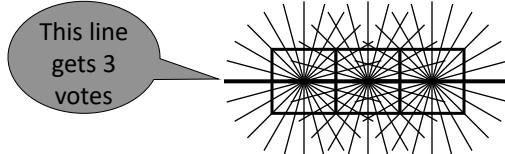
22

How do we do this again?

- Actually, each edge pixel “votes”
- If we are looking for lines, each edge pixel votes for every possible line through itself:



- Example: 3 collinear edge pixels:



23

23

How to Find All Possible Shapes for each Edge Pixel

- Exchange the role of variables and parameters:
- Example for a line: $y = mx + b$
(variables are shown in **bold purple**)
- Each edge pixel in the image:
 - Has its own (x, y) coordinates
 - Establishes its own equation of (m, b)

This is the set of all possible shapes through that edge point

24

24

How to Implement Voting

- With an accumulator
 - Think of it as an image in parameter space
 - Its axes are the new variables (which were formally parameters)
 - But, writing to a pixel increments (rather than overwriting) that pixel's value.
- Graph each edge pixel's equation on the accumulator (in parameter space)
- Maxima in the accumulator are located at the parameters that fit the shape to the image.

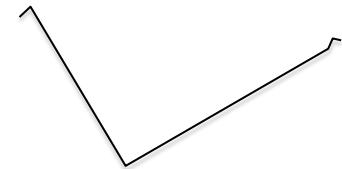
25

25

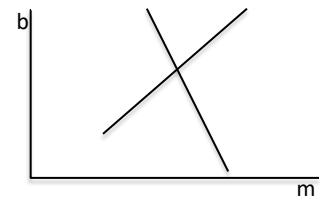
Example 1: Finding Lines

- If we use $y = mx + b$
- Then each edge pixel results in a line in parameter space:
 $b = -mx + y$

Edge Detection Results
(contains 2 dominant line segments)



Accumulator Intermediate Result
(after processing 2 edge pixels)

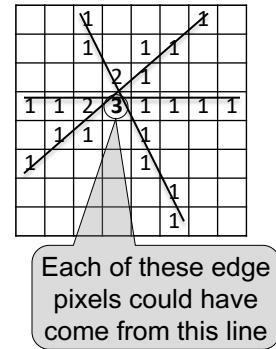


26

26

Example 1: Finding Lines

- A closer look at the accumulator after processing 2 and then 3 edge pixels
- The votes from each edge pixel are graphed as a line in parameter space
- Each accumulator cell is incremented each time an edge pixel votes for it
 - I.e., each time a line in parameter space passes through it



27

27

Example 2: Finding Lines... A Better Way

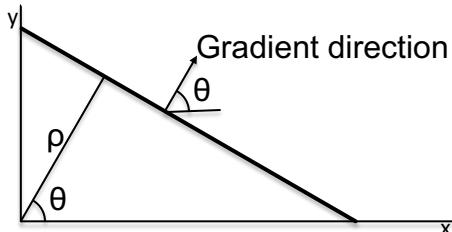
- What's wrong with the previous example?
 - Consider vertical lines: $m = \infty$
 - My computer doesn't like infinite-width accumulator images. Does yours?
- For parametric transforms, we need a different line equation, one with a bounded parameter space.

28

28

Example 2: Finding Lines... A Better Way

- A better line equation for parameter voting:
$$\rho = x \cos \theta + y \sin \theta$$
- $\rho \leq$ the input image diagonal size
 - But, to make math easy, ρ can be - too.
- θ is bounded within $[0, 2\pi]$



See *Machine Vision* Fig. 11.5
for example of
final accumulator
for 2 noisy lines

29

Computational Complexity

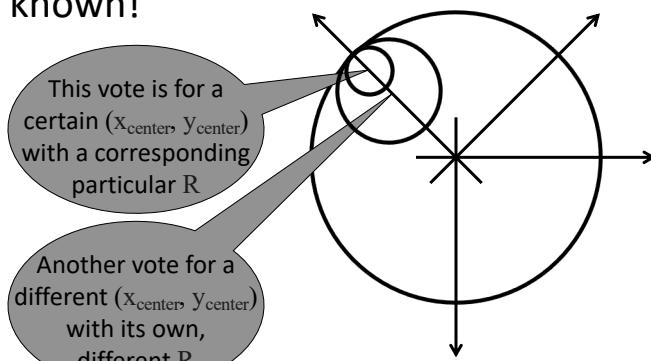
- This can be really slow
 - Each edge pixel yields a lot of computation
 - The parameter space can be huge
- Speed things up:
 - Only consider parameter combinations that make sense...
 - Each edge pixel has an apx. direction attached to its gradient, after all.

30

30

Example 3: Finding Circles

- Equation: $R^2 = (x - x_{\text{center}})^2 + (y - y_{\text{center}})^2$
- Must vote for 3 parameters if R is not known!



31

31

Example 4: General Shapes

- What if our shape is weird, but we can draw it?
 - Being able to draw it implies we know how big it will be
- See Snyder 11.4 for details
- Main idea:
 - For each boundary point, record its coordinates in a local reference frame (e.g., at the shape's center-of-gravity).
 - Itemize the list of boundary points (on our drawing) by the direction of their gradient

32

32