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A Quick Review

§The movement of boundary points on an active 
contour can be governed by a partial 
differential equation (PDE)
§PDE’s operate on discrete “time steps”
§One time step per iteration

§Snake points move normal to the curve
§The normal direction is recalculated for each 

iteration.
§Snake points move a distance determined by 

their speed.
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Typical Speed Function
§ Speed is usually a combination (product or sum) of internal and 

external terms:
§ s(x,y) = sI(x,y) sE(x,y)

§ Internal (shape) speed:
§ e.g., sI(x,y) = 1 - úú ek(x,y) úú
§ where k(x,y) measures the snake’s curvature at (x,y)

§ External (image) speed:
§ e.g., sE(x,y) = (1+D(x,y) )-1
§ where D(x,y) measures the image’s edginess at (x,y) 

§Note that s(x,y) above is always positive.
§ Such a formulation would allow a contour to grow but not to 

shrink.
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Can be pre-computed
from the input image
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Active Contours using PDEs:
Typical Problems
§Curvature measurements are very sensitive to 

noise
§They use 2nd derivatives

§They don’t allow an object to split
§This can be a problem when tracking an object 

through multiple slices or multiple time frames.
§A common problem with branching vasculature or 

dividing cells
§How do you keep a curve from crossing itself?
§One solution:  only allow the curve to grow
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Level Sets

§A philosophical/mathematical framework:
§Represent a curve (or surface, etc.) as an 

isophote in a “special” image, denoted y, 
variously called the:
§Merit function
§Embedding
§ Level-set function

§Manipulate the curve indirectly by manipulating 
the level-set function.

5

5

Active Contours using PDEs 
on Level Sets
§The PDE active-contour framework can be 

augmented to use a level-set representation.
§This use of an implicit, higher-dimensional 

representation addresses the active-contour 
problems mentioned 2 slides back.
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Figures 9.13 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

Note:  ITK has inside positive; some other papers & Snyder text have inside negative
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Level Sets: An Example from 
the ITK Software Guide
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§ DT is applied to a binary or 
segmented image
§ Typically applied to the contour’s 
initialization

§ Outside the initial contour, we 
typically negate the DT 

§ Records at each pixel the 
distance from that pixel to the 
nearest boundary.

§ The 0-level set of the 
initialization’s DT is the 
original boundary
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Level Sets and the
Distance Transform (DT)
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Level-Set Segmentation:  
Typical Procedure
§Create an initial contour
§Many level-set segmentation algorithms require the 

initialization to be inside the desired contour

§Initialize y:

§Use a PDE to incrementally update the segmentation 
(by updating y)
§ Level Set Eq:  dy/dt = velocity * gradient_mag(y):

§Stop at the right time
§This can be tricky; more later.

9

y(x,y) =
-DT(x,y) if (x,y) is outside the contour

DT(x,y) if (x,y) is inside the contour
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Measuring curvature and 
surface normals
§One of the advantages of level sets is that they 

can afford good measurements of curvature
§Because the curve is represented implicitly as 

the 0-level set, it can be fit to y with sub-pixel 
resolution
§Surface normals are collinear with the gradient 

of y.  (why?)
§See Snyder 8.5 for details on computing 

curvature (k).
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Allowing objects to split or 
merge
§Suppose we want to segment vasculature 
from CT with contrast
§Many segmentation algorithms only run in 2D
§So we need to slice the data
§But we don’t want to initialize each slice by hand
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Allowing objects to split or 
merge
§Solution:
§ Initialize 1 slice by hand
§Segment that slice
§Use the result as the initialization for neighboring 

slices
§But vasculature branches
§One vessel on this slice might branch into 2 vessels 

on the next slice
§Segmentation methods that represent a boundary as 

a single, closed curve will break here.
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Allowing objects to split or 
merge
§Level Sets represent a curve implicitly
§Nothing inherently prevents the 0-level set of y

from representing multiple, distinct objects.
§Most level-set segmentation algorithms naturally 

handle splitting or merging
§PDEs are applied and calculated locally
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Active Surfaces

§Level Sets can represent surfaces too!
§y now fills a volume
§The surface is still implicitly defined as the zero 

level set.
§The PDE updates “every” point in the volume
§ (To speed up computation, on each iteration we can 

update only pixels that are close to the 0 level set)

§Being able to split and merge 3D surfaces over 
time can be very helpful!
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ITK’s Traditional PDE 
Formulation

§A is an advection term
§ Draws the 0-level set toward image edginess

§P is a propagation (expansion or speed) term
§ The 0-level set moves slowly in areas of edginess in the original 

image

§Z is a spatial modifier term for the mean curvature k
§a, b, and g are weighting constants
§Many algorithms don’t use all 3 terms
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A Very Simple Example
(ITK Software Guide 4.3.1)
§Initialize inside the object
§Propagation:

§ Slow down near edges
§ Is always positive (growth only)

§Stop at the “right” time
§Perform enough iterations (time steps) for the curve to 

grow close to the boundaries
§Do not allow enough time for the curve to grow past the 

boundaries
§This method is very fast!
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A More Complex Example
(ITK Software Guide 4.3.3)
§Geodesic Active Contours Segmentation
§Uses an advection term, A
§Draws the curve toward edginess in the input image
§Things no longer “blow up” if we run too long

§Now, we can simply stop when things converge 
(sufficiently small change from one time step to 
the next).
§ Still, it’s a good idea to program a maximum number of 

allowed time steps, in case things don’t converge.
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Some General Thoughts 
about Level Sets
§Remember, Level Sets are nothing more than a 

way of representing a curve (or surface, 
hypersurface, etc.)

§Level-Sets do have some advantages (e.g, 
splitting/merging)

§But, Level-Sets otherwise work no better than any 
other method.
§ Look at the many examples in the ITK software guide; 

their results often leave a little or a lot to be desired

18

18



10

Level Set References

§Snyder,  8.5.2
§Insight into Images, ch. 8
§ITK Software Guide, book 2, 4.3
§“The” book:

§ Level Set Methods and Fast Marching Methods:  Evolving Interfaces in 
Computational Geometry, Fluid Mechanics, Computer Vision and Materials 
Science, by J.A. Sethian, Cambridge University Press, 1999.

§ Also see:  http://math.berkeley.edu/~sethian/2006/level_set.html

§All of the above reference several scientific papers.
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Snyder ch. 11:
Parametric Transforms

§Goal:  Detect geometric features in an image

§Method:  Exchange the role of variables and 
parameters

§References:  Snyder 11 & ITK Software 
Guide book 2, 4.4
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http://math.berkeley.edu/~sethian/2006/level_set.html
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Geometric Features?

§For now, think of geometric features as 
shapes that can be graphed from an 
equation.
§Line:  y = mx + b
§Circle:  R2 = (x-xcenter)2 + (y-ycenter)2

(variables are shown in bold purple, parameters are in black)
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Why Detect Geometric 
Features?
§Guide segmentation methods
§Automated initialization!

§Prepare data for registration methods
§Recognize anatomical structures
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From the ITK Software Guide v 2.4, by Luis Ibáñez, et al., p. 596
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How do we do this again?

§Actually, each edge pixel “votes”
§If we are looking for lines, each edge pixel 
votes for every possible line through itself:

§Example:  3 collinear edge pixels:
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Edge
Pixel

Possible
lines through

edge pixel

This line
gets 3
votes
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How to Find All Possible 
Shapes for each Edge Pixel
§Exchange the role of variables and 
parameters:
§Example for a line:  y = mx + b

(variables are shown in bold purple)

§Each edge pixel in the image:
§Has its own (x, y) coordinates
§Establishes its own equation of (m,b)
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This is the set of all
possible shapes through

that edge point
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How to Implement Voting

§With an accumulator
§Think of it as an image in parameter space
§ Its axes are the new variables (which were formally 

parameters)
§But, writing to a pixel increments (rather than 

overwriting) that pixel’s value.
§Graph each edge pixel’s equation on the 

accumulator (in parameter space)
§Maxima in the accumulator are located at the 

parameters that fit the shape to the image.
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§If we use y = mx + b
§Then each edge 
pixel results in a line 
in parameter space: 
b = -mx + y

Edge Detection Results
(contains 2 dominant line segments)
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Example 1:  Finding Lines

Accumulator Intermediate Result
(after processing 2 edge pixels)

m

b
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§A closer look at the 
accumulator after 
processing 2 and then 3 
edge pixels

§The votes from each edge 
pixel are graphed as a line 
in parameter space

§Each accumulator cell is 
incremented each time 
an edge pixel votes for it
§ I.e., each time a line in 

parameter space passes 
through it
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Example 1:  Finding Lines
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Each of these edge
pixels could have

come from this line
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Example 2:  Finding Lines…
A Better Way
§What’s wrong with the previous example?
§Consider vertical lines:  m = ∞
§My computer doesn’t like infinite-width 

accumulator images.  Does yours?
§For parametric transforms, we need a 
different line equation, one with a bounded 
parameter space.
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θ

Example 2:  Finding Lines…
A Better Way
§A better line equation for parameter voting:

r = x cos q + y sin q
§r ≤ the input image diagonal size

§ But, to make math easy, r can be - too.

§q is bounded within [0,2p]
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x

y

θ

ρ

Gradient direction See Machine 
Vision Fig. 11.5 
for example of 
final accumulator 
for 2 noisy lines
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Computational Complexity

§This can be really slow
§Each edge pixel yields a lot of computation
§The parameter space can be huge

§Speed things up:
§Only consider parameter combinations that 

make sense…
§Each edge pixel has an apx. direction attached to 

its gradient, after all.
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Example 3:  Finding Circles

§Equation: R2 = (x-xcenter)2 + (y-ycenter)2

§Must vote for 3 parameters if R is not 
known!
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This vote is for a
certain (xcenter, ycenter)
with a corresponding

particular R

Another vote for a
different (xcenter, ycenter)

with its own,
different R
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Example 4:  General Shapes

§What if our shape is weird, but we can draw it?
§Being able to draw it implies we know how big it will be

§See Snyder 11.4 for details
§Main idea:
§ For each boundary point, record its coordinates in a local 

reference frame (e.g., at the shape’s center-of-gravity).
§ Itemize the list of boundary points (on our drawing) by 

the direction of their gradient
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