Lecture 12
Level Sets &
Parametric Transforms

sec. 8.5.2 & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi

Spring 2020
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

The content of these slides by John Galeotti, © 2012 - 2020 Carnegie Mellon University (CMU), was made possible in part by NIH NLM contract#

HHSN276201000580P, undet eative Col ons ri nCol
@G i e g st
EY NG California, 94105, USA eyon of this lice

ial 3.0 Unported License. To view a copy of this
mmons, 171 2nd Street, Suite 300, San Francisco,
r from CMU or by emailing itk@galeotti.net

A Quick Review

=*The movement of boundary points on an active
contour can be governed by a partial
differential equation (PDE)

=PDE’s operate on discrete “time steps”
=" One time step per iteration

=Snake points move normal to the curve

®» The normal direction is recalculated for each
iteration.

=Snake points move a distance determined by
their speed.

Typical Speed Function

= Speed is usually a combination (product or sum) of internal and
external terms:

= s(x.y) = si(x.y) se(x.y)
® Internal (shape) sreed:
"eg,s(xy)=1- |8K(x,y) ||
= where k(x,y) measures the snake’s curvature at (x,y)
= External (image) speed: Can be pre-computecﬂ
= e.g., se(x,y) = (1+A(x,)))! from the input image
= where A(x,y) measures the image’s edginess at (x,))
= Note that s(x,y) above is always positive.

» Sﬁc'hlf formulation would allow a contour to grow but not to
shrink.

Active Contours using PDEs:
Typical Problems

=Curvature measurements are very sensitive to
noise

=" They use 2nd derivatives
=*They don’t allow an object to split

= This can be a problem when tracking an object
through multiple slices or multiple time frames.
= A common problem with branching vasculature or
dividing cells
*How do you keep a curve from crossing itself?
= One solution: only allow the curve to grow

Level Sets

=A philosophical/mathematical framework:

=Represent a curve (or surface, etc.) as an
isophote in a “special” image, denoted v,
variously called the:
= Merit function
=" Embedding
= Level-set function

=" Manipulate the curve indirectly by manipulating
the level-set function.

Active Contours using PDEs
on Level Sets

= The PDE active-contour framework can be
augmented to use a level-set representation.

= This use of an implicit, higher-dimensional
representation addresses the active-contour
problems mentioned 2 slides back.

Level Sets: An Example from
the ITK Software Guide

Zero Set f(x.y)=0

Interior
f(x,y)>0

Exterior f(x,y) <0

Figure 9.13: Concept of zero set in a level set.

Figures 9.13 from the ITK Software Guide v 2.4, by Luis Ibéfiez, et al.

Note: ITK has inside positive; some other papers & Snyder text have inside negative

Level Sets and the
Distance Transform (DT)

= DT is applied to a binary or
segmented image
= Typically applied to the contour’s
initialization
= Qutside the initial contour, we
typically negate the DT
= Records at each pixel the
distance from that pixel to the
nearest boundary.
= The O-level set of the
initialization’s DT is the
original boundary

Level-Set Segmentation:
Typical Procedure

= Create an initial contour

= Many level-set segmentation algorithms require the
initialization to be inside the desired contour

-DT(x,y) if (x,y) is outside the contour
W) = {DT(x,y) if (x,y) is inside the contour
= Use a PDE to incrementally update the segmentation
(by updating)
= Level Set Eq: dy/dt = velocity * gradient_mag(vy):
=Stop at the right time
= This can be tricky; more later.

= |nitialize y:

Measuring curvature and
surface normals

="One of the advantages of level sets is that they
can afford good measurements of curvature

=Because the curve is represented implicitly as
the O-level set, it can be fit to y with sub-pixel
resolution

=Surface normals are collinear with the gradient
of y. (why?)

=See Snyder 8.5 for details on computing
curvature (k).

10

10

Allowing objects to split or

merge

=Suppose we want to segment vasculature
from CT with contrast

=" Many segmentation algorithms only run in 2D
=So we need to slice the data

»But we don’t want to initialize each slice by hand

11

11

Allowing objects to split or
merge

=Solution:

= |nitialize 1 slice by hand
= Segment that slice

= Use the result as the initialization for neighboring
slices

=»But vasculature branches

= One vessel on this slice might branch into 2 vessels
on the next slice

= Segmentation methods that represent a boundary as
a single, closed curve will break here.

12

12

Allowing objects to split or
merge

= evel Sets represent a curve implicitly
*Nothing inherently prevents the O-level set of Y
from representing multiple, distinct objects.

=" Most level-set segmentation algorithms naturally
handle splitting or merging

= PDEs are applied and calculated locally

13

13

Active Surfaces

=Level Sets can represent surfaces too!
=y now fills a volume

=The surface is still implicitly defined as the zero
level set.

=*The PDE updates “every” point in the volume

= (To speed up computation, on each iteration we can
update only pixels that are close to the 0 level set)

=Being able to split and merge 3D surfaces over
time can be very helpful!

14

14

ITK’s Traditional PDE
Formulation

%1/; =-aA(x) Vy- BP(x)|Vy|+yZ(x)k |Vy|

= A is an advection term
= Draws the O-level set toward image edginess
= P is a propagation (expansion or speed) term

= The O-level set moves slowly in areas of edginess in the original
image

= 7 is a spatial modifier term for the mean curvature k

= a, B, and y are weighting constants
= Many algorithms don’t use all 3 terms

15

15

A Very Simple Example
(ITK Software Guide 4.3.1)

= |nitialize inside the object
= Propagation:

= Slow down near edges

= |s always positive (growth only)

=Stop at the “right” time

= Perform enough iterations (time steps) for the curve to
grow close to the boundaries

= Do not allow enough time for the curve to grow past the
boundaries

=" This method is very fast!

16

16

A More Complex Example
(ITK Software Guide 4.3.3)

= Geodesic Active Contours Segmentation

= Uses an advection term, A
= Draws the curve toward edginess in the input image
= Things no longer “blow up” if we run too long

=Now, we can simply stop when things converge

(sufficiently small change from one time step to
the next).

= Still, it’s a good idea to program a maximum number of
allowed time steps, in case things don’t converge.

17

17

Some General Thoughts
about Level Sets

="Remember, Level Sets are nothing more than a

way of representing a curve (or surface,
hypersurface, etc.)

= Level-Sets do have some advantages (e.g,
splitting/merging)

=But, Level-Sets otherwise work no better than any
other method.

= Look at the many examples in the ITK software guide;
their results often leave a little or a lot to be desired

18

18

Level Set References

=Snyder, 8.5.2

= Insight into Images, ch. 8

" |TK Software Guide, book 2, 4.3
=" “The” book:

= Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision and Materials
Science, by J.A. Sethian, Cambridge University Press, 1999.

= Also see: http://math.berkeley.edu/~sethian/2006/level set.html

= All of the above reference several scientific papers.

19

19
Snyder ch. 11:
Parametric Transforms
mGoal: Detect geometric features in an image
"Method: Exchange the role of variables and
parameters
mReferences: Snyder 11 & ITK Software
Guide book 2, 4.4
20

10

http://math.berkeley.edu/~sethian/2006/level_set.html

Geometric Features?

"For now, think of geometric features as

shapes that can be graphed from an
equation.

"line: y=mx+b

'Cirde: R2 - (X'Xcenter)2 + (y'}’center)2

(variables are shown in bold purple, parameters are in black)

21

21

Why Detect Geometric
Features?

=Guide segmentation methods
= Automated initialization!

"Prepare data for registration methods
mRecognize anatomical structures

From the ITK Software Guide v 2.4, by Luis Ibafiez, et al., p. 596

22

22

11

How do we do this again?

=Actually, each edge pixel “votes”

=|f we are looking for lines, each edge pixel
votes for every possible line through itself:

SO @

sExample: 3 collinear edge pixels:

& e

/ \

=

/I

23

23

How to Find All Possible
Shapes for each Edge Pixel

=Exchange the role of variables and
parameters:

"Example foraline: y=mx+b

(variables are shown in bold purple)

=Each edge pixel in the image:
"Has its own (X, y) coordinates

= Establishes its own equation of (m,b)

24

24

12

How to Implement Voting

=\With an accumulator

= Think of it as an image in parameter space

" |ts axes are the new variables (which were formally
parameters)

= But, writing to a pixel increments (rather than
overwriting) that pixel’s value.

=*Graph each edge pixel’s equation on the
accumulator (in parameter space)

=Mlaxima in the accumulator are located at the
parameters that fit the shape to the image.

25

25
Example 1: Finding Lines
Edge Detection Result
=|f we use Y =mXx + b (cog:taiﬁsezccli%?nir?;::t Isine segments)
=Then each edge
pixel results in a line
in parameter Space:
b=-mx+y
Accumulator Intermediate Result
(after processing 2 edge pixels)
b
m 26
26

13

Example 1. Finding Lines

= A closer look at the
accumulator after
processing 2 and then 3 %fi
A

[y 2=y
N

N

—
—
—
—
—

edge pixels ESRZ
» The votes from each edge M1

pixel are graphed as a line]
in parameter space /)

= Each accumulator cell is Each of these edge
incremented each time pixels could have
an edge pixel votes for it come from this line

= |.e., each time a line in
parameter space passes
through it

27

27

Example 2: Finding Lines...
A Better Way

=\What’s wrong with the previous example?
=Consider vertical lines: m = oo

=My computer doesn’t like infinite-width
accumulator images. Does yours?

=For parametric transforms, we need a

different line equation, one with a bounded
parameter space.

28

28

14

Example 2: Finding Lines...
A Better Way

= A better line equation for parameter voting:
p=xcosO+ysinB

= p < the input image diagonal size
= But, to make math easy, p can be - too.

= 9 is bounded within [0,2r]

Y|

Gradient direction See Machine
s Vision Fig. 11.5
for example of
P)
final accumulator
0 for 2 noisy lines

29

29

Computational Complexity

=This can be really slow
=Each edge pixel yields a lot of computation
*The parameter space can be huge
=Speed things up:

=" Only consider parameter combinations that
make sense...

=Each edge pixel has an apx. direction attached to
its gradient, after all.

30

30

15

Example 3: Finding Circles

.Equation: R2 = (X'Xcenter)2 + (}"}]center)2

= Must vote for 3 parameters if R is not
known!

v

31

31

Example 4. General Shapes

=»\What if our shape is weird, but we can draw it?

= Being able to draw it implies we know how big it will be
=See Snyder 11.4 for details
= Main idea:

= For each boundary point, record its coordinates in a local
reference frame (e.g., at the shape’s center-of-gravity).

= [temize the list of boundary points (on our drawing) by
the direction of their gradient

32

32

16

