

Methods In (Bio)Medical Image Analysis

Spring 2026

16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

The content of these slides by John Galeotti, © 2008 to 2026 Carnegie Mellon University (CMU), was made possible in part by NIH NLM contract# HHSN276201000580P, and is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit <http://creativecommons.org/licenses/by/3.0/> or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available either from CMU or by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via <http://itk.galeotti.net/>

What Are We Doing?

- Theoretical & practical skills in medical image analysis
 - Imaging modalities
 - Segmentation
 - Registration
 - Image understanding
 - Visualization
- Established methods and current research
- Focus on *understanding & using* algorithms

Why Is *Medical* Image Analysis Special?

- Because of the *patient*
- Computer Vision:
 - Good at detecting irregulars, e.g. on the factory floor
 - But no two patients are alike—everyone is “irregular”
- Medicine is war
 - Radiology is primarily for reconnaissance
 - Surgeons are the marines
 - Life/death decisions made on insufficient information
- Success measured by patient recovery
- You’re not in “theory land” anymore

What Do I Mean by *Analysis*?

- Different from “Image Processing”
- Results in identification, measurement, &/or judgment
- Produces numbers, words, & actions
- Holy Grail: *complete image understanding* automated within a computer to perform diagnosis & control robotic intervention
- State of the art: segmentation & registration

Segmentation

- Labeling every voxel
- Discrete vs. fuzzy
- How good are such labels?
 - Gray matter (circuits) vs. white matter (cables).
 - Tremendous oversimplification
- Requires a model


Registration

- Image to Image
 - same vs. different imaging modality
 - same vs. different patient
 - topological variation
- Image to Model
 - deformable models
- Model to Model
 - matching graphs

Visualization

- *Visualization* used to mean *to picture in the mind*.
- Retina is a 2D device
- Analysis needed to visualize surfaces
- Doctors prefer slices to renderings
- Visualization is required to reach visual cortex
- Computers have an advantage over humans in 3D

Model of a Modern Radiologist

automated and
semi-automated
image analysis

How Are We Going to Do This?

- The Shadow Program

- Observe & interact with practicing radiologists and pathologists at UPMC (in person and/or virtually on Zoom or MS Teams; details TBD)

- Project oriented

- Python and/or C++ with (Simple)ITK/MONAI
 - National Library of Medicine Insight Toolkit (ITK)
 - A software library developed by a consortium of institutions including CMU and Upitt; www.itk.org
 - Medical Open Network for Artificial Intelligence (MONAI)
 - A software library developed by a consortium of institutions with initial funding and ongoing support from NVidia; monai.io
 - Both are open-source projects with large online communities

The Practice of Automated Medical Image Analysis

- A collection of recipes, a box of tools
 - Equations that function: crafting human thought.
 - ITK & MONAI are software SDKs/libraries, not programs.
- Solutions:
 - Computer programs (fully- and semi-automated).
 - Very application-specific, no general solution.
 - Supervision / apprenticeship of machines

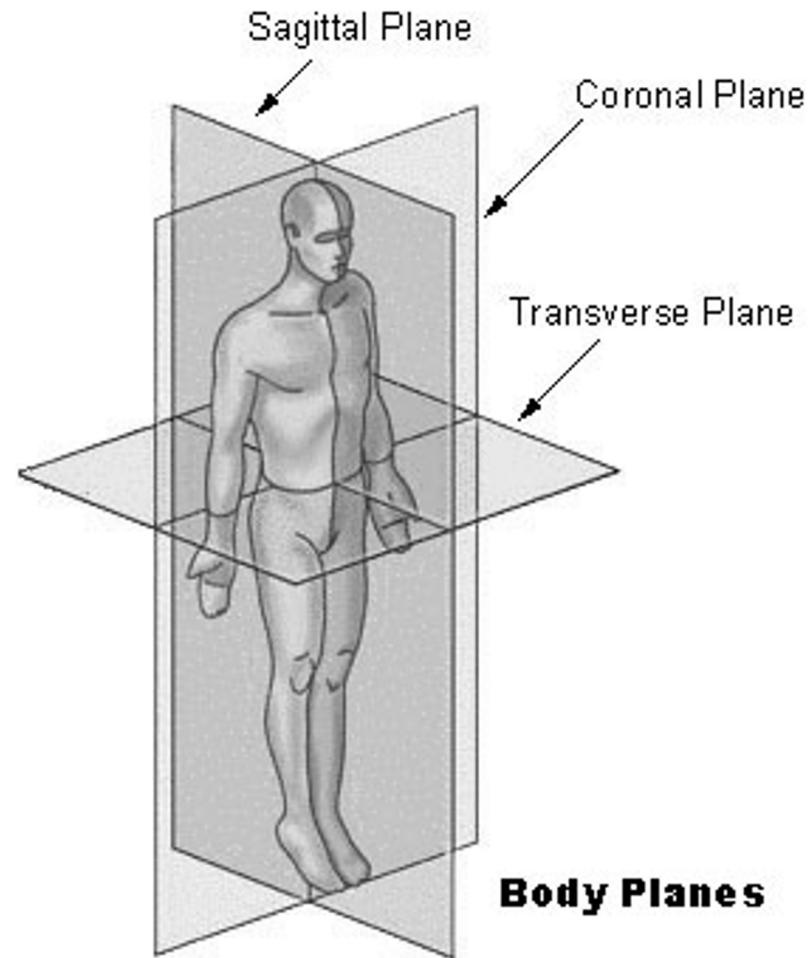
Syllabus

- On the course website
 - http://www.cs.cmu.edu/~galeotti/methods_course/
- Prerequisites
 - Vector calculus
 - Basic probability
 - Knowledge of Python and/or C++
 - Including command-line usage and command-line argument passing to your code
- Helpful but not required:
 - Knowledge of C++ templates & inheritance

Class Schedule

- Comply with Pitt & CMU calendars
- Online and subject to change
- Big picture:
 - Background & review
 - Fundamentals
 - Segmentation, registration, & other fun stuff
 - More advanced ITK programming constructs
 - Review scientific papers
 - Student project presentations

Requirements and Grading


- Engagement: 5%
- Quizzes: 15%
 - Can (and should!) take in advance, so late submissions not normally accepted (except in more extreme extenuating circumstances)
- Homework: 30%
- Shadow Program: 10%
- Final Project: 40%
 - 15% presentation
 - 25% code

Textbooks

- **Required:** *Machine Vision*, Wesley E. Snyder & Hairong Qi
- **Recommended:** *Insight into Images: Principles and Practice for Segmentation, Registration and Image Analysis*, Terry S. Yoo (Editor)
- **Others (build your bookshelf)**

Anatomical Axes

- Superior = head
- Inferior = feet
- Anterior = front
- Posterior = back
- Proximal = central
- Distal = peripheral

