

Lecture 5

Image Characterization

ch. 4 of *Machine Vision* by Wesley E. Snyder & Hairong Qi

Spring 2025

16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

The content of these slides by John Galeotti, © 2012 - 2025 Carnegie Mellon University (CMU), was made possible in part by NIH NLM contract# HHSN276201000580P, and is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. To view a copy of this license, visit <http://creativecommons.org/licenses/by-nc/3.0/> or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available either from CMU or by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via <http://itk.galeotti.net/>

Digital Images

- How are they formed?
- How can they be represented?

Image Representation

- Hardware
 - Storage
 - Manipulation
- Human
 - Conceptual
 - Mathematical

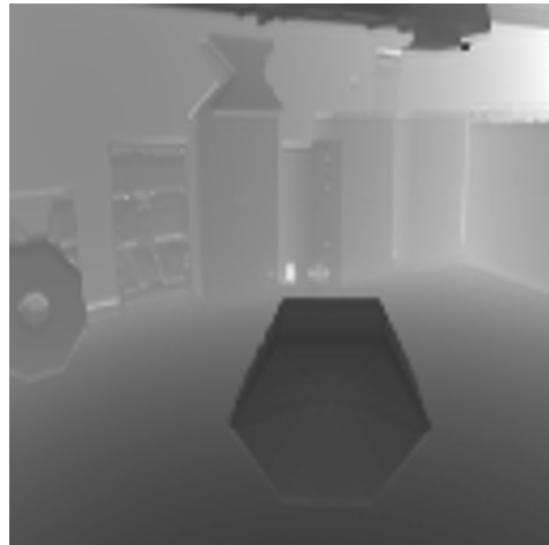
Iconic Representation

- What you think of as an image, ...
 - Camera
 - X-Ray
 - CT
 - MRI
 - Ultrasound
 - 2D, 3D, ...
 - etc

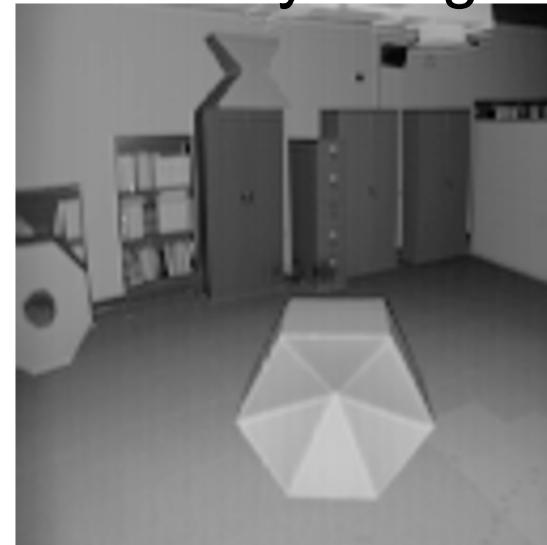
Iconic Representation

- And what you might not

Range Image



Corresponding
Intensity Image



Images from CESAR lab at Oak Ridge National Laboratory,
Sourced from the USF Range Image Database:
<http://marathon.csee.usf.edu/range/DataBase.html>
Acknowledgement thereof requested with redistribution.

Functional Representation

- An Equation
 - Typically continuous
- Fit to the image data
 - Sometimes the entire image
 - Usually just a small piece of it
- Examples (Quadratic Surfaces):
 - Explicit:
$$z = ax^2 + by^2 + cxy + dx + ey + f$$
 - Implicit:
$$0 = ax^2 + by^2 + cz^2 + dxy + exz + fyz + gx + hy + iz + j$$

Linear Representation

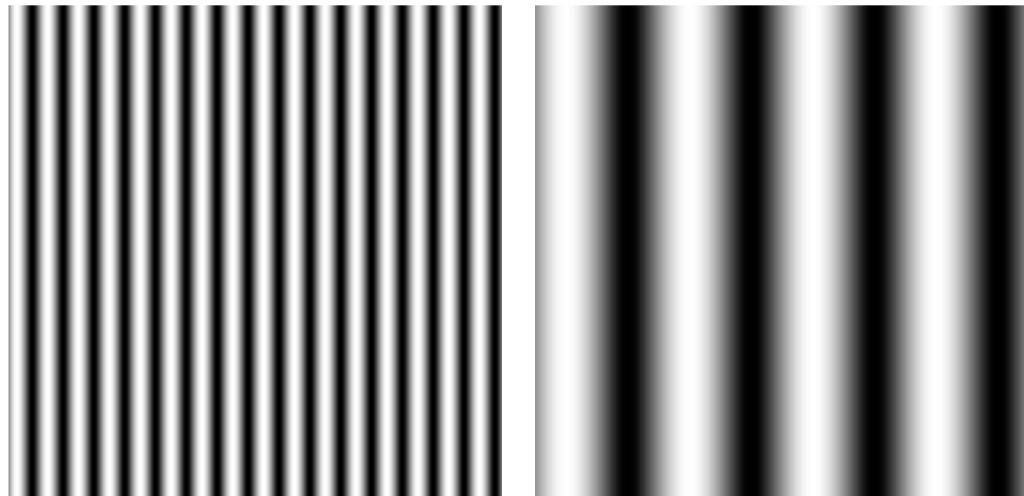
- Unwind the image
 - “Raster-scan” it
- Entire image is now a vector
 - Now we can do matrix operations on it!
 - Often used in research papers

Probabilistic & Relational Representations

- Probability & Graphs
- Discussed later (if at all)

Spatial Frequency Representation

- Think “Fourier Transform”
- Multiple Dimensions!
- Varies greatly across different image regions
- High Freq. = Sharpness



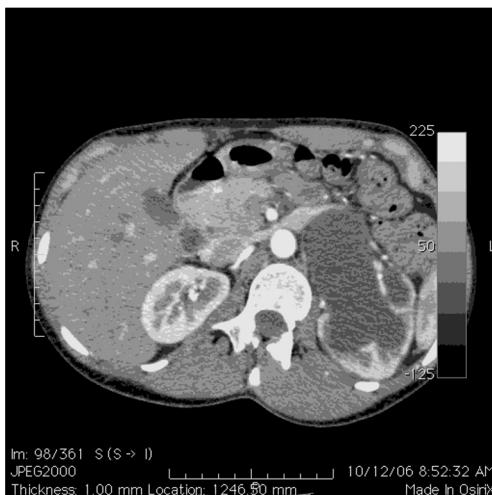
- More examples & details:
<https://www.cs.unm.edu/~brayer/vision/fourier.html>

Image Formation

- Sampling an analog signal
- Resolution
 - # Samples per dimension, OR
 - Smallest clearly discernable physical object
- Dynamic Range
 - # bits / pixel (quantization accuracy), OR
 - Range of measurable intensities
 - Physical meaning of min & max pixel values
 - light, density, etc.

Dynamic Range Example

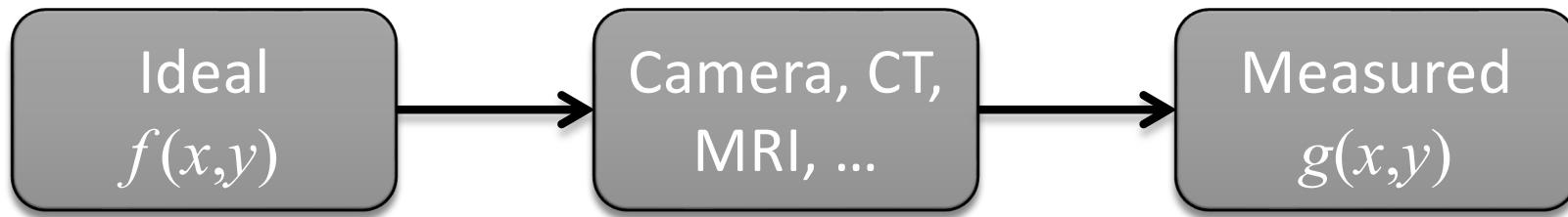
(A slice from a Renal Angio CT: 8 bits, 4 bits, 3 bits, 2 bits)



An Aside: The Correspondence Problem

- My Definition:
 - Given two different images of the same (or similar) objects,
for any point in one image
determine the exact corresponding point in the other image
- Similar (identical?) to registration
- Quite possibly, it is THE problem in computer vision

Image Formation: Corruption



- There is an ideal image
 - It is what we are physically measuring
- No measuring device is perfect
 - Measuring introduces noise
 - $g(x,y) = D(f(x,y))$, where D is the distortion function
- Often, noise is additive and independent of the ideal image

Image Formation: Corruption

- Noise is usually not the only distortion

- If the other distortions are:

- linear &
- space-invariant

then they can *always* be represented with the convolution integral!

- Total corruption:

$$g(x, y) = \iint_{-\infty \dots \infty} f(\alpha, \beta) h(x - \alpha, y - \beta) d\alpha d\beta + n(x, y)$$

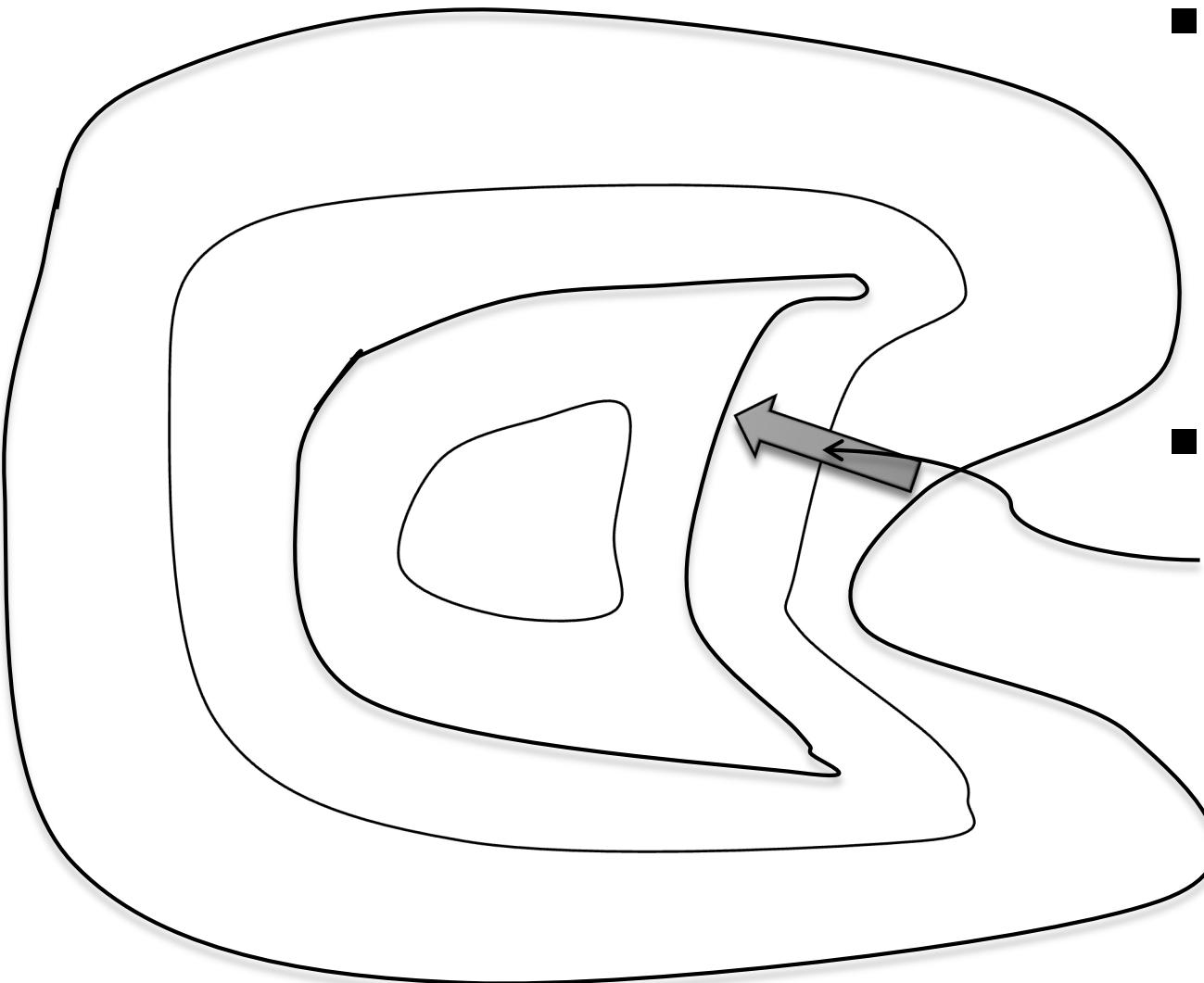
The image as a surface

- Intensity → height
 - In 2D case, but concepts extend to ND
- $z = f(x, y)$
- Describes a surface in space
 - Because only one z value for each x, y pair
 - Assume surface is continuous (interpolate pixels)

Isophote

- “Uniform brightness”
- $C = f(x, y)$
- A curve (2D) or surface (3D) in space
- Always perpendicular to image gradient
 - Why?

Isophotes & Gradient



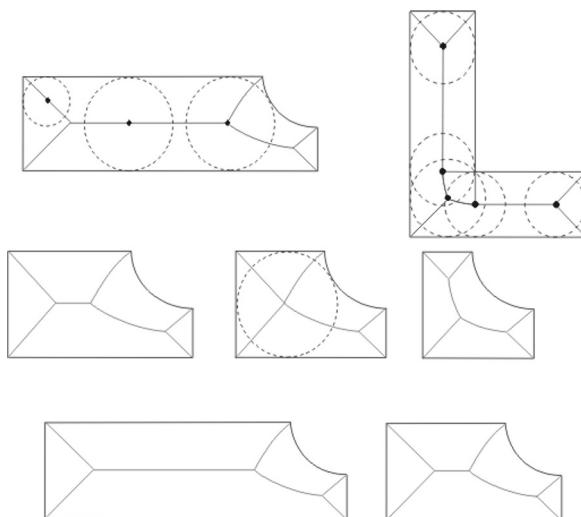
- Isophotes are like contour lines on a topography (elevation) map.
- At any point, the gradient is always at a right angle to the isophote!

Ridges

- One definition:
 - Local maxima of the rate of change of gradient direction
 - Sound confusing?
 - Just think of ridge lines along a mountain
 - If you need it, look it up
 - Snyder references Maintz

Medial Axis

- Skeletal representation
- Defined for binary images
 - This includes segmented images!
- “Ridges in scale-space”
 - Details have to wait (ch. 9)



<http://sog1.me.qub.ac.uk/Research/medial/medial.php>

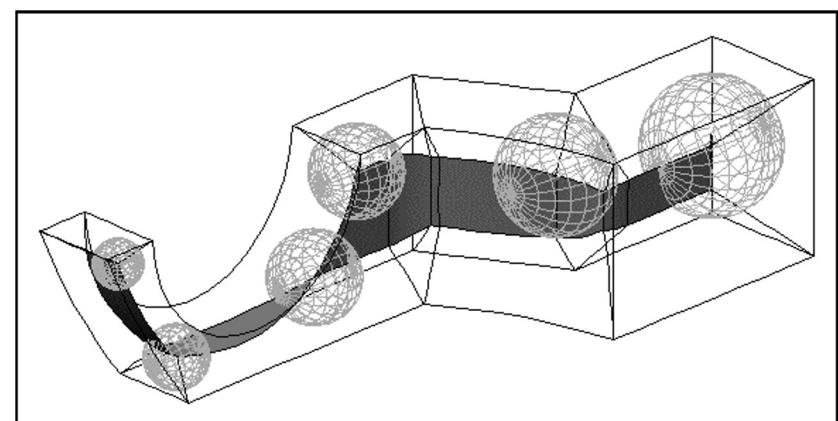


Image courtesy of TranscenData Europe
<http://www.fegs.co.uk/motech.html>

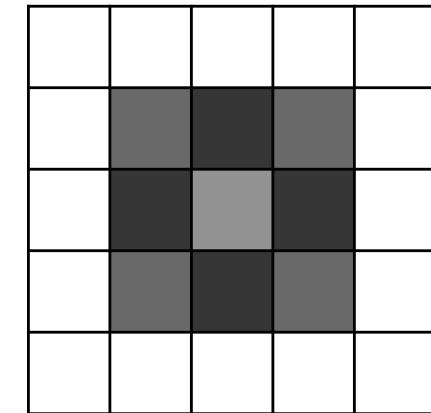
Neighborhoods

- Terminology

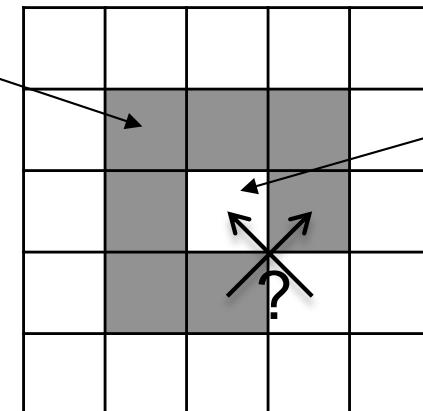
- 4-connected vs. 8-connected
- Side/Face-connected vs. vertex-connected
- Maximally-connected vs. minimally-connected (ND)

- Connectivity paradox

- Due to discretization
- Can define other neighborhoods
- Adjacency not necessarily required



Is this shape closed?



Is this pixel connected to the outside?

Curvature

- Compute curvature at every point in a (range) image
 - (Or on a segmented 3D surface)
- Based on differential geometry
- Formulas are in your book
- 2 scalar measures of curvature that are invariant to viewpoint, derived from the 2 principal curvatures, (K_1, K_2) :
 - Mean curvature (arithmetic mean)
 - Gauss curvature (product)
 - =0 if either $K_1=0$ or $K_2=0$