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Digital Images

"How are they formed?
"How can they be represented?



Image Representation

"Hardware
=Storage
=" Manipulation
"Human
" Conceptual
" Mathematical



lconic Representation

"\What you think of as an image, ...
=Camera
= X-Ray
"CT
= MRI
= Ultrasound
=2D, 3D, ...
"etc




lconic Representation

"And what you might not

Corresponding
Range Image Intensity Image

Images from CESAR lab at Oak Ridge National Laboratory,
Sourced from the USF Range Image Database:
http://marathon.csee.usf.edu/range/DataBase.html
Acknowledgement thereof requested with redistribution.



Functional Representation

="An Equation
= Typically continuous
"Fit to the image data
"Sometimes the entire image
" Usually just a small piece of it
"Examples (Quadratic Surfaces):
" Explicit: z=ax’+by’ +cxy+dx+ey+ f
" |mplicit: O0=ax’+by’ +cz” +dxy+exz+ fyz+gx+hy+iz+ j



Linear Representation

="Unwind the image

m “Raster-scan” it

="Entire image is now a vector
=" Now we can do matrix operations on it!

= Often used in research papers

Probabilistic & Relational
Representations

= Probability & Graphs
= Discussed later (if at all)



Spatial Frequency
Representation

" Think “Fourier
Transform”
" Multiple Dimensions!
= Varies greatly across
different image regions
" High Freqg. = Sharpness
" More examples & details:
https://www.cs.unm.edu/~™
brayer/vision/fourier.html| I I
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https://www.cs.unm.edu/~brayer/vision/fourier.html
https://www.cs.unm.edu/~brayer/vision/fourier.html

Image Formation

=Sampling an analog signal
=Resolution

= # Samples per dimension, OR

= Smallest clearly discernable physical object
=" Dynamic Range

= # bits / pixel (quantization accuracy), OR

= Range of measurable intensities

= Physical meaning of min & max pixel values
= |light, density, etc.



Dynamic Range Example

(A slice from a Renal Angio CT: 8 bits, 4 bits, 3 bits, 2 bits)

1.00 mm Lo
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An Aside: The
Correspondence Problem

=" My Definition:

" Given two different images of the same (or similar)
objects,

for any point in one image

determine the exact corresponding point in the other
image

=Similar (identical?) to registration

= Quite possibly, it is THE problem in computer
vision

11



Image Formation: Corruption

Camera, CT, Measured

MRI, ... g(x,y)

"There is an ideal image
" |t is what we are physically measuring
*No measuring device is perfect

" Measuring introduces noise
"o(x,y) = D( fix,y)), where D is the distortion function

= Often, noise is additive and independent of the
ideal image
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Image Formation: Corruption

= Noise is usually not the only distortion
" |f the other distortions are:

" linear &

= space-invariant

then they can always be represented with the
convolution integral!

= Total corruption:

g(x,y) = ff f(a,ﬁ)h(x—a,y—ﬁ)dadﬁ+n(x,y)

—00,,.00
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The image as a surface

" ntensity — height

" In 2D case, but concepts extend to ND

"z=f(xy)

= Describes a surface in space

" Because only one z value for each x, y pair
= Assume surface is continuous (interpolate pixels)

14



|Isophote

" “Uniform brightness”

"C=f(xy)
= A curve (2D) or surface (3D) in space

= Always perpendicular to image gradient
"\Why?
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|Isophotes & Gradient

"|sophotes are like
contour lines on a

f topography
(elevation) map.
=At any point, the
G gradient is always
at a right angle to
the isophote!
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Ridges

®One definition:

" Local maxima of the rate of change of gradient
direction

"Sound confusing?
" Just think of ridge lines along a mountain
" |f you need it, look it up

" Snyder references Maintz
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Medial Axis

sSkeletal representation
"Defined for binary images

= This includes segmented images!
=“Ridges in scale-space”

" Details have to wait (ch. 9)

~ ~ Image courtesy of TranscenData Europe
‘ http://www.fegs.co.uk/motech.html

http://sog1.me.qub.ac.uk/Research/medial/medial.php 18




Neighborhoods

=" Terminology
= 4-connected vs. 8-connected

= Side/Face-connected vs. vertex-connected

= Maximally-connected vs. minimally-
connected (ND)

= Connectivity paradox s this s this
: . shape :
" Due to discretization cIosF;d’? pixel
. ] . connected
= Can define other neighborhoods to the
: : : outside?
= Adjacency not necessarily required
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Curvature

= Compute curvature at every point in a (range)
image
" (Or on a segmented 3D surface)

"Based on differential geometry

" Formulas are in your book

= 2 scalar measures of curvature that are invariant
to viewpoint, derived from the 2 principal
curvatures, (K, K,):
" Mean curvature (arithmetic mean)

" Gauss curvature (product)
= =Q if either K;=0 or K,=0

20



