Lecture 4
Intro to Registration with ITK

(Bio)Medical Image Analysis - Spring 2026
16-725 (CMU RI) : BioE 2630 (Pitt)
Dr. John Galeotti

Based in part on Damion Shelton’s slides from 2006

This work by John Galeotti and Damion Shelton, © 2004-2026, was made possible in part by NIH NLM contract#
HHSN276201000580P, and is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
@ ® license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 2nd Street, Suite 300, San

Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via http://itk.galeotti.net/

http://creativecommons.org/licenses/by/3.0/

M| For more info/gory detail... [

= Please see the following for exhaustive detail:

= Chapter 3 in the ITK Software Guide Book 2
= /nsight into Images
= [TK Source Tree
= Examples/RegistrationITKv4/
= E.g. Examples/RegistrationITKv4/ImageRegistration1.cxx
= ITK Doxygen
= http://www.itk.org/Doxygen53/html/group__ Group-Registration.html
» https://itk.org/Doxygen53/html/group__ ITKRegistrationMethodsv4.html
= http://www.itk.org/Doxygen53/html/group__ Group-Numerics.html
= SimplelTK:

» http://insightsoftwareconsortium.github.io/SimplelTK-Notebooks/
= See all the Python Registration (6x) notebooks, especially:

= http://insightsoftwareconsortium.github.io/SimplelTK-
Notebooks/Python_html/60_Registration_Introduction.html

= https://simpleitk.org/doxygen/v2_3/html/classitk_1_1simple_1_1lmageRegistra
tionMethod.html

B What is registration?

" The process of aligning a target image to a
source image

" More generally, determining the transform that
maps points in the target image to points in the
source image

M| Transform types

"Rigid (rotate, translate)

= Affine (rigid + scale & shear)

" Deformable = non-rigid (affine + vector field)
" Many others

M| Registration in ITK

= |TK uses an extensible registration framework
= Various interchangeable classes exist

= Relatively easy to “twiddle” the part you’re interested in while
recycling prior work

=" The newer ITKv4 Registration framework is separate from the
legacy framework.

= The legacy framework follows traditional practice

= \ersion 4 registration is more flexible and thus more complex
= Use the v4 framework whenever practical

= SimplelTK also supports registration

= For “simplified” complex registration, consider using ANTS instead:
» http://picsl.upenn.edu/software/ants/

= http://stnava.github.io/ANTs/

.I New since ITKv4 I.
(ImageRegistrationMethodv4, etc.)

= New unified, improved, and fully multi-threaded optimization and
registration framework (including multi-threaded metrics)

= Dense deformation fields (including a new transform that encapsulates a
dense deformation field)

= Point Set registration methods (landmark or label guided registration)

= Automatic parameter scale estimation for transforms
= Automatic step-size selection for gradient-based registration optimizers
= Composite Transforms (grouping multiple transforms into a single one)

= Symmetric registration (where the Fixed and Moving images make
unbiased contributions to the registration)

= New metrics for Demons and Mutual Information
= Diffeomorphic (velocity field) deformable registration
= Additional evolutionary optimizers

* Improved B-Spline registration approach available and bug fixes to old
framework

= Accurately transform and reorient covariant tensors and vectors

List taken from http://www.itk.org/Wiki/ITK Release 4/Why Switch to ITKv4 and
http://www.itk.org/Wiki/ITK Release 4/Migration Plan/Release Notes/ITKv4 Final Release Notes

Bl| 1TKv4 Registration

m Uses a different framework than “traditional” ITK

registration. The new framework is designated with a
“v4” suffix.

= You must use a v4 metric and a v4 optimizer when
doing a v4 registration!

= Take a look here:

http://www.itk.org/Doxygen53/html/group __ ITKRegistrationMethodsv4.html
http://www.itk.org/Doxygen53/html/group __ ITKMetricsv4.html
http://www.itk.org/Doxygen53/html/group__ ITKOptimizersv4.html

ITK source code: Modules/Registration/RegistrationMethodsv4/include/
ITK source code: Modules/Registration/Metricsv4/include/

ITK source code: Modules/Numerics/Optimizersv4/include/

= Pay special attention to:
= MattesMutuallnformationlmageTolmageMetricv4
=" DemonsimageTolmageMetricv4
= QuasiNewtonOptimizerv4d (an improved gradient descent)

BB Typical registration terminology ||

" Fixed image f(x) - stationary in space
" Moving image m(x) - the fixed image with an
unknown transform applied

" Goal: recover the transform T(x) which maps
points in f(x) to m(x)

.l Typical registration framework |.

"2 input images, fixed and moving

= Metric - determines the “fitness” of the current
registration iteration

" Optimizer - adjusts the transform in an attempt
to improve the metric

" nterpolator - applies transform to image and
computes sub-pixel values

.l Typical registration flowchart

~ pixels fitness value
[Fixed Image | ™| Metric
Plxels C (()purmzer
[Interpolatorj
Transform
h /‘ parameters
[Moving Image Ve Transform)

pixels points

Figure 8.2 from the ITK Software Guide v 2.4, by Luis |bafiez, et al.

10

M| 1TK v4 registration flowchart [

Figure 3.3 from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al.

11

B| ITK v4: key differences

"Both input images are transformed into a
common virtual domain, which determines:

" The output resampled-image dimensions and spacing
" The sampling grid (not necessarily a uniform grid)

" Defaults to the fixed image domain
"Only the Moving Transform is Optimized
" Fixed Transform defaults to identity transform

" But it could be set to the result of a previous
registration, etc.

12

M| ITK v4 Virtual Domain

/N [1=Index Location
()= Physical Location
_|-—> =Transform
(0, 600) = Call out to location
:‘n.)
(0, 500) —4— A
400)—— .f'
(0,400) (100, 400) :
(0,300) +— 5

Figure 3.8 from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al. 13

ITK’s “Hello world” registration
.I example I.

|II

" Uses ITK's v4 framework, but in the “typica
traditional style

"Please see the software guide (Book 2, Section
3.2) for code specifics

"| am going to cover what each piece does, not
look at code per se

14

ITK’s “Hello World” Example:

Flow Chart for Everyth

Registration Method

INg

Reader

Reader

f) Resample
R . I
e) -~ e ;
-
Parameters
I 1 —»[Transfonn
ntelpo ator
ot gt (rrstom)] | J] R] -
\) Filter -

Figure 8.5 from the ITK Software Guide v 2.4, by Luis |bafiez, et al.

Subtract
Filter

Writer

Subtract
Filter

Writer

15

B| Inputimages [

= 2D floating point

" Floating point avoids loss of precision problems
with integer pixel types

16

B| Transform

=»TranslationTransform
" Permits translation only in 2D

" |[TKv4 still uses the same legacy transforms
" TKv4 also supports new composite transforms:

" Two or more successive transforms...
" Combined into a single transform object

" Can initialize with one transform and optimize
another

17

B Metric

" MeanSquaresimageTolmageMetricv4

=" Sum of squared differences between 2 images
on a “pixel-by-pixel” basis
" Remember that both images are transformed to the
virtual domain before doing the comparisons

= A bit naive
»\Works for 2 images that were acquired with the
same imaging modality

18

M| Optimizer

" RegularStepGradientDescentOptimizerv4
" Follows the derivative of the metric

= Step size depends on rapid changes in the
gradient’s direction

= Step size eventually reaches a user-defined
value that determines convergence

19

M| Interpolator

" LinearInterpolatelmageFunction
" Fast and conceptually simple

20

M| Wrapper

" ImageRegistrationMethodv4

"Combines all of the previous classes into a
master class

registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
metric->SetFixedInterpolator(FixedInterpolator):;
metric->SetMovingInterpolator (MovingInterpolator);

" Registration method automatically instantiates
its own internal transform

" Based on its template parameters

21

M| Other steps [

= Read the input images

= Setup the virtual domain
= Defaults to the fixed image

= Set the region of the fixed image the registration will
operate on

= Useful for ignoring bad data
" [nitialize the transforms
= Fixed transform defaults to identity
= Setup multi-level registration
= Like image-pyramids, but better
= Defaults to a single level
= Use a C++ try/catch block to avoid crashing on errors

» Twiddle the optimizer for best performance”

*may 1nvolve pain and suffering

22

Bl Hello world input

Figure 8.3 from the ITK Software Guide v 2.4, by Luis |bafiez, et al.

23

B| X &Y translation vs. time [

20 T T

18 |-

16

14 |

12 |

Y Translations (mm)

Figure 3.7 (left) from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al. 24

4500 :

B Metricvs. time ..

3500

3000

Figure 3.7 (left) from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al. 25

Bl| Registration results

= After registration converges/terminates, you
recover the optimized transform with:

registration->GetTransform()

"For the Hello World example there are 2
parameters, X & Y translation

" |f you used a separate initial moving transform,

create a composite to get the total transform:

outputCompositeTransform->AddTransform (
movingInitialTransform);

outputCompositeTransform->AddTransform (
registration->GetModifiableTransform());

26

Bl| Double checking results

= Use ResamplelmageFilter to apply the
transform for the fixed and moving images

" Take the outputs, and compute their difference
" |n this case, just subtract the registered images

" Good registration results in nothing much to see

27

B| Image comparison

Registered Difference before Difference after
moving image registration registration

Figure 8.4 from the ITK Software Guide v 2.4, by Luis |bafiez, et al.

28

M| Keeping tabs on registration [

" Registration is often time consuming

"|t’s nice to know that your algorithm isn’t just
spinning it’s wheels

»Use the observer (itk::Command) mechanism in
ITK to monitor progress

" ITK software guide, book 1: 3.2.6 and book 2: 3.4

=\We'll see this again later, when we discuss how
to write your own ITK filters

= jtk::ProgressEvent is one example

29

M| Observer steps

="\Write an observer class that will process
“iteration” events

" (Just copy some code from an example)

= Add the observer to the optimizer

" As a generic note, observers can observe any class
derived from itk::Object

= Start registration as usual

30

.l Things observers can do

"Print debugging info

" Update GUI

" Other small management functions

= Should not do anything too processor intensive

31

M| 17K v4 Registration Observer [

....................

~— |

<
-+
c
o
3
o
Q
)
L J
VS

Figure 3.9 from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al.

32

B Multi-modality registration [

"Remember how | said sum-of-squares
difference is relatively naive?

" Mutual information helps overcome this
problem

=Section 3.5 shows how to implement a simple
MI registration

" Note that Mattes Ml is usually easier to use than
Viola-Wells Ml

33

B| Notes about the Ml example [

= Significantly, largely the same piece of code as
Hello World

" Mutual Information is a metric, so we can keep
the optimizer, the interpolator, and so on

" Majority of differences are in tweaking the
metric, not in rewriting code

34

T1 MRI Proton density MRI

Figure 8.9 from the ITK Software Guide v 2.4, by Luis Ibafiez, et al.

35

.l MI Output: Image Comparison

Before After

This 1s an example of a checkerboard visualization

Taken from Figure 8.10 of the ITK Software Guide v 2.4, by Luis Ibafez, et al. 36

B| Centered transforms

" More natural (arguably) reference frame than
having the origin at the corner of the image

"Big picture is not appreciably different from
other rigid registrations

"But, for the moment there are implementation
complexities and differences, see 3.6

37

B| An aside: “Twiddling”

= A common criticism of many/most registration
techniques is their number of parameters

" A successful registration often depends on a
very specific fine-tuning of the algorithm

" “Generalized” registration is an open problem

38

Bl| Multi-Resolution registration [

= Useful to think of this as algorithmic
“squinting” by using image pyramids

= Start with something simple and low-res

= Use low-res registration to seed the next higher
step

" Eventually run registration at high-res
= Also called “coarse to fine”

39

M| Multi-resolution idea

[Optimizer]
[Interpolator) J
/ \—[Transform]

Moving Image

Pyramid

Fixed Image ()
- ’ Metric ‘
Pyramid T C

Figure 8.36 from the ITK Software Guide v 2.4, by Luis Ibafiez, et al.

40

B| Image pyramids

Registration Level 0 j

Transform

Registration Level 1 j

Transform

Registration Level 2]
Y_\ Transform \/\

\
Registration Level 3]/—#(\ /\
\
\
y Transform /%(\/
Registration Level 4 }

¢, Fixed Image
Pyramid

TN Y

N

Moving Image

Figure 8.37 from the ITK Software Guide v 2.4, by Luis |Ibafiez, et al.

41

M| Optimization

" Parameter dependency rears its ugly head

"You often/usually need to adjust optimizer
parameters as you move through the pyramid

"You can do this using the Observer mechanism

42

B Multi-resolution example [

" Again, mostly the same code as Hello World

= Multi-Resolution is now built into all of ITKv4
registration, so no need for extra classes or
image pyramids

43

M| Benefits of multi-resolution [

= Often faster
" More tolerant of noise (from “squinting”)

=" Minimizes initialization problems to a certain
extent, though not perfect

44

B Multi-resolution

"Remember, at large (high) scale only large
objects are visible

"Higher scale is higher in the image pyramid
" So higher scale has lower resolution

" Lower scale is lower in the image pyramid

" So lower scale has higher resolution

45

Bl| See the software guide for... [

" Detailed list of:
" Transforms
= Optimizers
" Interpolation methods

"You're encouraged to mix and match!

46

Bl Deformable registration

"Three common techniques:

" Finite element: treat small image regions as having
physical properties that control deformation

" Bsplines: deform a mapping grid

" Demons: images are assumed to have iso-intensity
contours (isophotes); image deformations occur by
pushing on these contours

47

B Model based registration [

= Software guide, book 2, ch. 3, section 16.

"Build a simplified geometric model from a
training set

" |dentify parameters that control the
characteristics of the model

"Register the model to a target image to adapt
to a particular patient

48

B Model based, cont.

" Uses the Spatial Objects framework for
representing geometry

» Useful because it derives analytical data from
the registration process, not just a pixel-to-pixel

mapping

49

M| Model-based example

Model and Image Before Registration Model and Image After Registration

Note: This is what we want, NOT the output of an actual registration

Figure 8.60 from the ITK Software Guide v 2.4, by Luis Ibafiez, et al.

50

B| Model-based reg. schematic [

i/ points fitness Value
C SpatialObject D—’ Metric |

p 1xels C (Optlrmzel

(Inte1polat01] j
(Moving Image) _ f Ty ansform] Parameters

pixels points

Figure 8.59 from the ITK Software Guide v 2.4, by Luis Ibafiez, et al.

51

.l Model-based registration: Warning! |.

" |TK does not yet directly support generic model-
based registration “out of the box”

= |TKv4 does support point-set to image registration

= Otherwise, model-based reg. requires writing your
own custom ITK transform, with new parameters
» Transform’s new parameters = Spatial Object parameters

= You must individually map your custom transform’s new
parameters to the specific spatial object parameters you
want to allow registration to adjust

" This isn’t too complicated if you know what you’re doing
= Search Insight Journal for examples

52

M| Speed issues

" Execution time can vary wildly
»" Optimizer (more naive = faster)
" Image dimensionality (fewer = faster)
" Transform (fewer DOF = faster)

" Interpolator (less precise = faster)

53

B| Take home messages [

" Exactly what parameters do what is not always
obvious, even if you are familiar with the code

» Successful registrations can be something of an
art form

" Multi-resolution techniques can help
="\Work within the framework!

54

