
The content of these slides by John Galeotti, © 2012-2025 Carnegie Mellon University (CMU), was made possible in part by NIH NLM
contract# HHSN276201000580P, and is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco,
California, 94105, USA. Permissions beyond the scope of this license may be available either from CMU or by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via http://itk.galeotti.net/

(Bio)Medical Image Analysis - Spring 2025
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Lecture 19
ITK’s Path Framework

http://creativecommons.org/licenses/by/3.0/

Preface

§This is based on the slides I presented at
MICCAI 05’s ITK workshop.

§They discuss the motivation and usage for the
unified path framework I added to ITK.

§You can see the related Insight Journal article at
http://hdl.handle.net/1926/40
§ (Note: It used to be one of the top-rated journal

articles until I.J. was redone, and all the old reviews
were scrapped.)

2

Introduction

§The need for paths in ITK
§Basic concepts and path types
§Implementation details
§Example usage

3

The Need for Paths in ITK

§A path is a curve that maps a scalar value to a
point in n-dimensional space

4

The Need for Paths in ITK

§Paths are useful for:
§Segmentation algorithms
§ Active contours, snakes, LiveWire

§Ridge tracking
§Path planning
§User interaction

§Implementation of the above in ITK can be
simplified by having a common, existing path
framework.

5

The Need for Paths in ITK

§Unfortunately, the ITK pipeline was originally
designed to operate on image and mesh data
types
§Neither images nor meshes are well suited for path

representation

6

Basic Concepts and Path Types

§Two common types of paths:
§Chain codes are a type of discrete curve

§Parametric curves are continuous

§Other types of paths are also possible

7

Chain Codes

§Represent a path as as sequence of offsets
between adjoining voxels

§Provide efficient incremental access and
comparatively poor random index access

8

2D Chain Code Example:
Freeman Code

9

7

2
1

3

8

6 45

0

= “18765432”

7

2

1

3

86

4

5

Parametric Curves

§Represent a path as an algebraically defined curve
parameterized over a scalar input

§Provide efficient random access and comparatively
poor incremental index access
§ Difficult to know how much to increment the

parameterized input to reach the next voxel

10

0

1

P 0 1

P

Implementation Details

§Necessary Functionality
§Path class hierarchy
§Path iterators
§Path filter hierarchy

11

Necessary Functionality

§Efficiency
§Handle open, closed, & self-crossing paths
§Iterate along a path through an image
§Examine image data in an arbitrarily defined

neighborhood surrounding any given point
along a path

12

Necessary Functionality

§Create and modify arbitrary chain codes
§Smooth paths in continuous index space
§Find exact normals to smooth paths
§Distort paths by orthogonal offsets at regular

spacing
§Support user interaction

13

Path Class Hierarchy

14

FunctionBase<TInput,TOutput> (API)DataObject

Path<TInput,TOutput,VDimension>

Path<int,Offset
<VDimension>,VDimension>

ChainCodePath<VDimension>

ChainCodePath2D

Path<double,ContinuousIndex
<VDimension>,VDimension>

ParametricPath<VDimension>

FourierSeriesPath
<VDimension>

PolyLineParametricPath<VDimension>

OrthogonallyCorrected
2DParametricPath

Key

Instantiatable Class

Abstract Base Class

PolyLineParametricPath

§Represents a path as a series of vertices
connected by line segments

§Provides a simple means of creating a path that
can then be converted to other path types

15

§Represents a closed
path by its Fourier
coefficients in each
dimension

§Has continuous well-
defined derivatives
with respect to its
input
§ At all points along the

curve, the normal
direction is well-defined
and easy to compute.

16

FourierSeriesPath

t y(t)

x(t)

Orthogonally Corrected Path

17

Path Iterators

§Iterators traverse paths through images
§Allows const paths
§Necessary for path inputs in pipeline

§Implemented a universal path iterator

18

PathConstIterator
 <TImage,TPath>

PathIterator
 <Timage,Tpath>

Path Iterators: Implementation

§ Iterators traverse paths through images
§ Paths do not store a current position; iterators do
§ Allows const paths with many concurrent positions
§ The path iterator is able to traverse any type of path

§Path iterators are supported by the
function

§ All paths must know how much to increment a given path
input to advance the path output to the next neighboring
voxel along the path

§ For efficiency, returns the offset
resulting from its modification of Input

19

Current Base Class API

20

Subclass API Extensions

21

Path Filter Hierarchy

22

ProcessObject

ImageSource<TOutputImage>

ImageToImageFilter
<TInputImage,TOutputImage>

PathSource<TOutputPath>

PathToPathFilter
<TInputPath,TOutputPath>

ImageAndPathToImageFilter
<TInputImage,TInputPath,

TOutputImage>

PathAndImageToPathFilter
<TInputPath,TInputImage,

TOutputPath>

OrthogonalSwath2DPathFilter
<TFourierSeriesPath,TSwathMeritImage>

ExtractOrthogonalSwath
2DImageFilter<Timage>

PathToImageFilter
<TInputPath,TOutputImage>

PathToChain
CodePathFilter
<TInputPath,

TOutputChainCodePath>

ChainCodeToFourier
SeriesPathFilter
<TInputChainCodePath,
TOutputFourierSeriesPath>

Conversion Filters

23

ChainCodeToFourier
SeriesPathFilter

FourierSeriesPath

PathToChain
CodePathFilter

ChainCode

Path

ChainCode

Philosophical Comparison with
Spatial Objects

§Spatial Objects represent geometric shapes
(and therefore their associated boundaries)
§A Spatial Object’s interior is well defined

§Paths represent sequences of connected
indices
§A path may not be closed (no interior defined)
§A closed path’s interior is difficult to compute

24

Empirical Comparison with Spatial
Objects

§Spatial Objects are well suited to rendering,
analysis, and data interchange

§Paths are well suited to computation,
optimization, and iterator direction control

§ITK could be extended to enable simple
conversion by:
§Making a Spatial Object that uses one or more paths

as an internal representation
§Making a Path that uses one or more intersecting

spatial objects as an internal representation

25

Example Usage

§Implementation of a published 2D active
contour algorithm
§Finds optimal orthogonal offsets at evenly spaced

points along an initial path
§Requires that neighboring offsets differ in value by at

most one

§Added to ITK, including demonstration test
code

26

OrthogonalSwath2DPathFilter

27

PolyLineParametricPath (closed)

Image

PathToChainCodePathFilter

ChainCodeToFourierSeriesPathFilter

ExtractOrthogonalSwath2DImageFilter

DerivativeImageFilter (vertical)

OrthogonalCorrected2DParametricPath

OrthogonalSwath2DPathFilter

Conclusion

§Added user-extensible path support to ITK
§Data type hierarchy
§ Iterators
§Filter hierarchy
§Example implementation in test code

§New core data types can be added to ITK!

28

