Lecture 19
ITK’s Path Framework

(Bio)Medical Image Analysis - Spring 2025
16-725 (CMU RI) : BioE 2630 (Pitt)
Dr. John Galeotti

The content of these slides by John Galeotti, © 2012-2025 Carnegie Mellon University (CMU), was made possible in part by NIH NLM

® contract# HHSN276201000580P, and is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco,

California, 94105, USA. Permissions beyond the scope of this license may be available either from CMU or by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via http://itk.galeotti.net/

http://creativecommons.org/licenses/by/3.0/

M| Preface

" This is based on the slides | presented at
MICCAI 05’s ITK workshop.

" They discuss the motivation and usage for the
unified path framework | added to ITK.

"You can see the related Insight Journal article at
http://hdl.handle.net/1926/40

" (Note: It used to be one of the top-rated journal

articles until I.J. was redone, and all the old reviews
were scrapped.)

B| Introduction

"The need for paths in ITK

" Basic concepts and path types
" Implementation details
"Example usage

B| The Need for Paths in ITK [

" A path is a curve that maps a scalar value to a
point in n-dimensional space

N

B| The Need for Paths in ITK [

" Paths are useful for:
= Segmentation algorithms
= Active contours, snakes, LiveWire
= Ridge tracking
= Path planning
= User interaction
" Implementation of the above in ITK can be
simplified by having a common, existing path
framework.

M| The Need for Paths in ITK [

" Unfortunately, the ITK pipeline was originally
designed to operate on image and mesh data
types

= Neither images nor meshes are well suited for path
representation

Bl| Basic Concepts and Path Types

"Two common types of paths:
®"Chain codes are a type of discrete curve

e ,

" Parametric curves are continuous

O\ U

®Other types of paths are also possible

M| Chain Codes

e L,

"Represent a path as as sequence of offsets
petween adjoining voxels

" Provide efficient incremental access and
comparatively poor random index access

.I 2D Chain Code Example:
Freeman Code

= "18765432"

M| Parametric Curves

G G

1

P

0
= Represent a path as an algebraically defined curve
parameterized over a scalar input
" Provide efficient random access and comparatively
poor incremental index access

= Difficult to know how much to increment the
parameterized input to reach the next voxel

10

B| Implementation Details

" Necessary Functionality
" Path class hierarchy
= Path iterators

" Path filter hierarchy

11

BB| Necessary Functionality

" Efficiency
"Handle open, closed, & self-crossing paths
" |terate along a path through an image

"Examine image data in an arbitrarily defined
neighborhood surrounding any given point
along a path

12

BB| Necessary Functionality

" Create and modify arbitrary chain codes

"Smooth paths in continuous index space

" Find exact normals to smooth paths

" Distort paths by orthogonal offsets at regular
spacing

=Support user interaction

13

M| Path Class Hierarchy [

| DataObJectl | FunctionBase< Tfnput TOutput> (API)|

| Path<TInput TOutput, VDimension> |
—

- —

Path<int, Offset | Path<double, Continuousindex]
L< VDimension>, VDimension> i <VDimension>,VDimension> |

ChainCodePath<VDimension> | ParametricPath<\VDimension> |

- FourierSeriesPath OrthogonallyCorrected
ChainCodePath2D <VDimension> 2DParametricPath
Key PolyLineParametricPath<VvDimension>

14

Bl| PolyLineParametricPath

" Represents a path as a series of vertices
connected by line segments

"Provides a simple means of creating a path that
can then be converted to other path types

15

M| FourierSeriesPath

= Represents a closed t " \ vt
path by its Fourier / Y@ (
coefficients in each B I
dimension

= Has continuous well- U

defined derivatives
with respect to its
input
= At all points along the
curve, the normal

direction is well-defined
and easy to compute.

X(t)

16

Bl| Orthogonally Corrected Path

[
Interpolated ‘

length offset
Orthogonal Desired ,

offsets from path

offset list Original

N ¢"

M| Path Iterators

" |terators traverse paths through images
= Allows const paths
= Necessary for path inputs in pipeline

" Implemented a universal path iterator

18

.l Path Iterators: Implementation

" |terators traverse paths through images
» Paths do not store a current position; iterators do
" Allows const paths with many concurrent positions
" The path iterator is able to traverse any type of path

" Path iterators are supported by the Path::
IncrementInput (InputType & Input) function

= All paths must know how much to increment a given path
input to advance the path output to the next neighboring
voxel along the path

" For efficiency, IncrementInput () returns the offset
resulting from its modification of Input

19

M| Current Base Class AP [

= Path<TInput, TOutput,VDimension>

s virtual InputType StartOfInput() const
s virtual InputType EndOfInput () const
s yvirtual OutputType Evaluate (InputType) const =0

s virtual IndexType EvaluateToIndex(InputType) const =0
syvirtual OffsetType IncrementInput (InputType) const =0

= PathConstlIterator<TImage, TPath>
= GoToBegin ()
" bool IsAtEnd()
= operator++ ()
® IndexType GetIndex()
= PathInputType GetPathPosition()

20

M| Subclass APl Extensions [

= ChainCodePath<VDimension>
= SetStart (IndexType)
® IndexType GetStart() const
"unsigned NumberOfSteps() const
= InsertStep (InputType position, OffsetType step)
= ChangeStep (InputType position, OffsetType step)
= Clear()

= ParametricPath<VDimension>
= VectorType EvaluateDerivative (InputType) const

" FourierSeriesPath<VDimension>
= AddHarmonic (VectorType CosCoef, VectorType SinCoef)
® Clear()

21

M| Path Filter Hierarchy [
| ProcessObject |

e e
I PathSource<T0utputPath> I I ImageSource<TOutputimage> I
PathToPathFilter ImageToImagefFilter

<TInputPath, TOutputPath> <TInputimage, TOutputimage>

|
PathAndImageToPathFilter ImageAndPathToImagefFilter

<TInputPath, TInputimage, <TInputimage, TInputPath,
TOutputPath> TOutputimage>

22

M| Conversion Filters

AllowDiagonalSteps (bool=true)

SetNumHarmonics (int=8)

23

.I Philosophical Comparison with I.
Spatial Objects

= Spatial Objects represent geometric shapes
(and therefore their associated boundaries)

= A Spatial Object’s interior is well defined

" Paths represent sequences of connected
indices
= A path may not be closed (no interior defined)
= A closed path’s interior is difficult to compute

24

.I Empirical Comparison with Spatial
Objects

= Spatial Objects are well suited to rendering,
analysis, and data interchange

" Paths are well suited to computation,
optimization, and iterator direction control

" |TK could be extended to enable simple
conversion by:

= Making a Spatial Object that uses one or more paths
as an internal representation

= Making a Path that uses one or more intersecting
spatial objects as an internal representation

25

M| Example Usage

" Implementation of a published 2D active
contour algorithm

" Finds optimal orthogonal offsets at evenly spaced
points along an initial path

= Requires that neighboring offsets differ in value by at
most one
" Added to ITK, including demonstration test

code

®" Modules/Filtering/Path/test/itkOrthogonalsSw
ath2DPathFilterTest.cxx

26

M| OrthogonalSwath2DPathFilter

| PolyLineParametricPath (closed) |
v
| PathToChainCodePathFilter | “““““““
St
| ChainCodeToFourierSeriesPathFilter | |Image|

1 1

|ExtractOrthogonaISwachDImageFiIter| ----- >

}

| DerivativelmagekFilter (vertical) |

! }

| OrthogonalSwath2DPathFilter |

l

| orthogonalCorrected2DParametricPath fr=-=-===-=x===r==xsx >

27

M| Conclusion

" Added user-extensible path support to ITK
= Data type hierarchy
= [terators
= Filter hierarchy
= Example implementation in test code

"New core data types can be added to ITK!

28

