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M| Preface

" This is based on the slides | presented at
MICCAI 05’s ITK workshop.

" They discuss the motivation and usage for the
unified path framework | added to ITK.

"You can see the related Insight Journal article at
http://hdl.handle.net/1926/40

" (Note: It used to be one of the top-rated journal

articles until I.J. was redone, and all the old reviews
were scrapped.)




B| Introduction

"The need for paths in ITK

" Basic concepts and path types
" Implementation details
"Example usage



B| The Need for Paths in ITK [

" A path is a curve that maps a scalar value to a
point in n-dimensional space
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B| The Need for Paths in ITK [

" Paths are useful for:
= Segmentation algorithms
= Active contours, snakes, LiveWire
= Ridge tracking
= Path planning
= User interaction
" Implementation of the above in ITK can be
simplified by having a common, existing path
framework.



M| The Need for Paths in ITK [

" Unfortunately, the ITK pipeline was originally
designed to operate on image and mesh data
types

= Neither images nor meshes are well suited for path
representation



Bl| Basic Concepts and Path Types

"Two common types of paths:
®"Chain codes are a type of discrete curve

e ,

" Parametric curves are continuous
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®Other types of paths are also possible




M| Chain Codes

e L,

"Represent a path as as sequence of offsets
petween adjoining voxels

" Provide efficient incremental access and
comparatively poor random index access



.I 2D Chain Code Example:
Freeman Code

= "18765432"




M| Parametric Curves
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= Represent a path as an algebraically defined curve
parameterized over a scalar input
" Provide efficient random access and comparatively
poor incremental index access

= Difficult to know how much to increment the
parameterized input to reach the next voxel
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B| Implementation Details

" Necessary Functionality
" Path class hierarchy
= Path iterators

" Path filter hierarchy
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BB| Necessary Functionality

" Efficiency
"Handle open, closed, & self-crossing paths
" |terate along a path through an image

"Examine image data in an arbitrarily defined
neighborhood surrounding any given point
along a path
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BB| Necessary Functionality

" Create and modify arbitrary chain codes

"Smooth paths in continuous index space

" Find exact normals to smooth paths

" Distort paths by orthogonal offsets at regular
spacing

=Support user interaction
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M| Path Class Hierarchy [

| DataObJectl | FunctionBase< Tfnput TOutput> (API )|

| Path<TInput TOutput, VDimension> |
—

-  —

Path<int, Offset | Path<double, Continuousindex]
L< VDimension>, VDimension> i <VDimension>,VDimension> |

ChainCodePath<VDimension> | ParametricPath<\VDimension> |

- FourierSeriesPath OrthogonallyCorrected
ChainCodePath2D <VDimension> 2DParametricPath
Key PolyLineParametricPath<VvDimension>
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Bl| PolyLineParametricPath

" Represents a path as a series of vertices
connected by line segments

"Provides a simple means of creating a path that
can then be converted to other path types
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M| FourierSeriesPath

= Represents a closed t " \ vt
path by its Fourier / Y@ (
coefficients in each B I
dimension

= Has continuous well- U

defined derivatives
with respect to its
input
= At all points along the
curve, the normal

direction is well-defined
and easy to compute.

X(t)
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Bl| Orthogonally Corrected Path

[
Interpolated ‘

length offset
Orthogonal Desired ,

offsets from path

offset list Original
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M| Path Iterators

" |terators traverse paths through images
= Allows const paths
= Necessary for path inputs in pipeline

" Implemented a universal path iterator
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.l Path Iterators: Implementation

" |terators traverse paths through images
» Paths do not store a current position; iterators do
" Allows const paths with many concurrent positions
" The path iterator is able to traverse any type of path

" Path iterators are supported by the Path::
IncrementInput (InputType & Input) function

= All paths must know how much to increment a given path
input to advance the path output to the next neighboring
voxel along the path

" For efficiency, IncrementInput () returns the offset
resulting from its modification of Input
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M| Current Base Class AP [

= Path<TInput, TOutput,VDimension>

s virtual InputType StartOfInput() const
s virtual InputType EndOfInput () const
s yvirtual OutputType Evaluate (InputType) const =0

s virtual IndexType EvaluateToIndex(InputType) const =0
syvirtual OffsetType IncrementInput (InputType) const =0

= PathConstlIterator<TImage, TPath>
= GoToBegin ()
" bool IsAtEnd()
= operator++ ()
® IndexType GetIndex()
= PathInputType GetPathPosition()
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M| Subclass APl Extensions [

= ChainCodePath<VDimension>
= SetStart (IndexType)
® IndexType GetStart() const
"unsigned NumberOfSteps() const
= InsertStep (InputType position, OffsetType step)
= ChangeStep (InputType position, OffsetType step)
= Clear()

= ParametricPath<VDimension>
= VectorType EvaluateDerivative (InputType) const

" FourierSeriesPath<VDimension>
= AddHarmonic (VectorType CosCoef, VectorType SinCoef)
® Clear()
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M| Path Filter Hierarchy [
| ProcessObject |

e e
I PathSource<T0utputPath> I I ImageSource<TOutputimage> I
PathToPathFilter ImageToImagefFilter

<TInputPath, TOutputPath> <TInputimage, TOutputimage>

|
PathAndImageToPathFilter ImageAndPathToImagefFilter

<TInputPath, TInputimage, <TInputimage, TInputPath,
TOutputPath> TOutputimage>
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M| Conversion Filters

AllowDiagonalSteps (bool=true)

SetNumHarmonics (int=8)
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.I Philosophical Comparison with I.
Spatial Objects

= Spatial Objects represent geometric shapes
(and therefore their associated boundaries)

= A Spatial Object’s interior is well defined

" Paths represent sequences of connected
indices
= A path may not be closed (no interior defined)
= A closed path’s interior is difficult to compute

24



.I Empirical Comparison with Spatial
Objects

= Spatial Objects are well suited to rendering,
analysis, and data interchange

" Paths are well suited to computation,
optimization, and iterator direction control

" |TK could be extended to enable simple
conversion by:

= Making a Spatial Object that uses one or more paths
as an internal representation

= Making a Path that uses one or more intersecting
spatial objects as an internal representation
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M| Example Usage

" Implementation of a published 2D active
contour algorithm

" Finds optimal orthogonal offsets at evenly spaced
points along an initial path

= Requires that neighboring offsets differ in value by at
most one
" Added to ITK, including demonstration test

code

®" Modules/Filtering/Path/test/itkOrthogonalsSw
ath2DPathFilterTest.cxx
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M| OrthogonalSwath2DPathFilter

| PolyLineParametricPath (closed) |
v
| PathToChainCodePathFilter | “““““““
St
| ChainCodeToFourierSeriesPathFilter | |Image|

1 1

|ExtractOrthogonaISwachDImageFiIter| ----- >

}

| DerivativelmagekFilter (vertical) |

! }

| OrthogonalSwath2DPathFilter |

l

| orthogonalCorrected2DParametricPath fr=-=-===-=x===r==xsx >
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M| Conclusion

" Added user-extensible path support to ITK
= Data type hierarchy
= [terators
= Filter hierarchy
= Example implementation in test code

"New core data types can be added to ITK!

28



