
This work by John Galeotti and Damion Shelton, © 2004-2025, was made possible in part by NIH NLM contract#
HHSN276201000580P, and is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 2nd Street, Suite 300, San
Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via http://itk.galeotti.net/

(Bio)Medical Image Analysis - Spring 2025
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Based in part on Damion Shelton’s slides from 2006

Lecture 19
Write Your Own ITK Filters, Part2

http://creativecommons.org/licenses/by/3.0/

What are “advanced” filters?

§More than one input
§Support progress methods
§Output image is a different size than input
§Multi-threaded

2

Details, details

§In the interests of time I’m going to gloss over
some of the finer details

§I’d like to make you aware of some of the more
complicated filter issues, but not scare you
away

§See book 1, chapter 8 of the software guide!

3

Different output size

§Overload
§This allows you to change the output image’s:
§ Largest possible region (size in pixels)
§Origin & spacing

§By default, the output image has the same size,
origin, and spacing as the input

§See

4

Propagation of requested region size

§Remember that requested regions propagate
back up the pipeline from output to input

§Therefore, it’s likely that if we are messing with
the output image size, then we will also need to
alter the input requested region

5

Changing the input requested region

§Overload
§Generate the input requested region based on:
§ The output region
§ Out algorithm’s input-padding requirements/preferences

§WARNING: Never set the input requested region
larger than the input’s largest possible region!
§ If input image is too small, handle the problem gracefully
§ E.g. throw an exception or degrade output at boundaries

§See:

6

An aside: base class implementations

§In general, when overloading base class
functionality you should first call the base class
function

§You do this with a line like this:

§This ensures that the important framework
stuff still happens

7

Multi-threaded

§Actually relatively simple
§Implement instead

of
§A few things look different…

8

Multi-threaded: overview

§The pipeline framework “chunks” the output
image into regions for each thread to process

§Each thread gets its own region and thread ID
§Keep in mind that this will not (and can not)

work in all cases
§Some filters can’t be multi-threaded

9

Multi-threaded: output regions

§The output target is now:

§You iterate over this rather than over the entire
output image

§Each thread can read from the entire input image
§Each thread can write to only its specific output

region

10

Multi-threaded: output allocation

 does NOT
allocate the memory for its output image!

 is instead responsible
for allocating output memory

§The default function:
§Sets each output’s buffered region = requested region
§Allocates memory for each buffered region

11

Multi-threaded: order of operations

§Execution of multi-threaded filters is controlled
by the inherited

 will:
1. Call
2. If exists, call it
3. Divide the output image into chunks, one per thread
4. Spawn threads (usually one per CPU core)

§ Each thread executes on its own
particular output region, with its own particular thread ID

5. If exists, call it

12

ThreadID

§This deserves a special note…
§In the naïve case a thread would not know how

many other threads were out there
§If a thread takes a non thread-safe action (e.g.,

file writing) it’s possible other threads would do
the same thing

13

ThreadID, cont.

§This could cause major problems!
§The software guide suggests:

1. Don’t do “unsafe” actions in threads

 -or-
2. Only let the thread with ID 0 perform unsafe

actions

14

Multiple inputs

§It’s fairly straightforward to create filter that
has multiple inputs – we will use 2 inputs as an
example

§For additional reference see:

15

Step 1: Define Number of Inputs

§In the constructor, set:

16

Step 2:

§Optional: Write named functions to set inputs 1
and 2, they look something like:

17

Step 3

§Implement or

§Caveat: you now have to deal with input
regions for both inputs, or N inputs in the
arbitrary case

18

Multiple outputs?

§Not many examples
and only

 recently gained full support for multiple outputs
§ Previously, special calls were needed to

§The constructor of the filter must:
§ Allocate the extra output, typically by calling
§ Indicate to the pipeline the # of outputs

§What if the outputs are different types?
§ More complex
§ Example:

§ Also try searching online: itk multiple output filter

19

Progress reporting

§A useful tool for keeping track of what your
filters are doing

§Initialize in or
:

20

Progress reporting cont.

21

Pointer to the filter

ThreadID, or 0 for ST

Total pixels or steps (for iterative filters)

Progress reporting, cont.

§To update progress, each time you successfully
complete operations on one pixel (or one
iteration), call:

22

Querying progress from outside your
filter

§How does your program query the total progress?
§Short answer is to use the inherited method:

ProcessObject::ReportProgress()
§ All filters (including ones that you write) automatically

have this function, since it is provided by ProcessObject.

§Typically you create an external observer to both
query your filter’s total progress and then update
your GUI
§ In particular, you write an observer that calls your filter’s

ReportProgress() method and then calls some other
“short” function to update your GUI accordingly.

23

Helpful ITK features to use when
writing your own filter

§Points and vectors
§VNL math
§Functions
§Conditional iterators
§Other useful ITK filters

24

Points and Vectors

is the representation of a point in
n-d space

is the representation of a vector
in n-d space

§Both of these are derived from ITK’s non-
dynamic array class (meaning their length is
fixed)

25

Interchangability

§You can convert between Points and Vectors in
a logical manner:
§Point + Vector = Point
§Vector + Vector = Vector
§Point + Point = Undefined

§This is pretty handy for maintaining clarity,
since it distinguishes between the intent of
different arrays

26

Things to do with Points

§Get a vector from the origin to this Point

§Get the distance to another Point

§Set the location of this point to the midpoint of
the vector between two other points

27

Things to do with Vectors

§Get the length (norm) of the vector

§Normalize the vector

§Scale by a scalar value
§Use the operator

28

Need more complicated math?

§ITK includes a copy of the VNL numerics library
§You can get vnl_vector objects from both Points

and Vectors by calling
§Ex: You can build a rotation matrix by knowing basis

vectors

29

VNL

§VNL could easily occupy an entire lecture
§Extensive documentation is available at:
 http://vxl.sourceforge.net/
§Click on the the VXL book link and look at

chapter 6

30

Things VNL can do

§Dot products

§Create a matrix

31

More VNL tricks

§If it were just good at simple linear algebra, it
wouldn’t be very interesting

§VNL can solve generalized eigenproblems:

32

Solves the generalized eigenproblem
Matrix_1 * x = Matrix_2 * x
(Matrix_2 will often be the identity matrix)

VNL take home message

§VNL can do a lot more cool stuff that you do
not want to write from scratch
§SVD
§Quaternions

§C++ can work like Matlab!
§It’s worth spending the time to learn VNL
§Especially true for C++ programmers!
§But Python programmers may rather learn NumPy:

http://www.scipy.org/NumPy_Tutorial

33

Change of topic

§Next we’ll talk about how ITK encapsulates the
general idea of functions

§Generically, functions map a point in their
domain to a point in their range

34

Functions

§ITK has a generalized function class called
FunctionBase

§By itself it’s pretty uninteresting, and it’s purely
virtual

35

Domain Range

What good is FunctionBase?

§It enforces an interface...

§The evaluate call is common to all derived
classes; pass it an object in the domain and you
get an object in the range

36

Spatial functions

§Spatial functions are functions where the
domain is the set of N-d points in continuous
space

§The base class is
§Note that the range (TOutput) is still templated

37

Spatial function example

 evaluates an N-d
Gaussian

§It forms the basis for ,
which evaluates the function at all of the pixels
in an image and stores the value

38

Interior-exterior spatial functions

§These are a further specialization of spatial
functions, where the range is enforced to be of
type

§Semantically, the output value is taken to mean
“inside” the function if true and “outside” the
function if false

39

IE spatial function example

 let’s you determine whether or not
a point lies within the volume of a truncated
cone

 does the
same thing for a N-d sphere (circle, sphere,
hypersphere...) - note a naming inconsistency
here

40

Image functions

§Image functions are functions where the
domain is the pixels within an image

§The function evaluates based on the value of a
pixel accessed by its position in:
§Physical space (via)
§Discrete data space (via)
§Continuous data space (via

)

41

Image function examples

returns true if the value being accessed lies
within the bounds of a lower and upper
threshold

 is the
base class for image functions that allow you to
access subpixel interpolated values

42

Hey - this is messy...

§You might be wondering why there are so many
levels in this hierarchy

§The goal is to enforce conceptual similarity in
order to better organize the toolkit

§In particular, the interior-exterior functions
have a specific reason for existence

43

Change of topic

§You may have observed that we have (at least)
two ways of determining whether or not a
point/pixel is “included” in some set
§Within the bounds of a spatial function
§Within a threshold defined by an image function

§Useful for, e.g., connected component
labeling...

44

Conditional iterators

§One way to think about iterators is that they
return all of the objects within a certain set

§With , the set is all
pixels within a particular image region

§What about more complicated sets?

45

The “condition”

§The condition in a is
the test that you apply to determine whether
or not a pixel is included within the set of
interest

§Examples:
§ Is the pixel inside a spatial function?
§ Is the pixel within a certain threshold?

46

Using the condition - brute force

§If the pixel passes the test, it can be accessed
by the iterator

§Otherwise, it’s not part of the set
§The brute force implementation is to visit all

pixels in an image, apply the test, and return
the pixel if it passes

47

Conditional iterators - UI

§The interface to conditional iterators is
consistent with the other iterators:

 means get the next pixel
 returns the index of the current pixel

 returns true if there are no more pixels
to access

48

Conditional iterators - guts

§What’s happening “underneath” may be quite
complex, in general:
1. Start at some pixel
2. Find the next pixel
3. Next pixel exists? Return it, otherwise we’re

finished and returns true.
4. Go to 2.

49

Special case - connected regions

§For small regions within large, high-dimension
images, applying this test everywhere is
needlessly expensive

§Moreover, the brute-force method can’t handle
region growing, where the “condition” is based
on neighbor inclusion (in an iterative sense)

50

Flood filled iterators

§Flood filled iterators get around these
limitations by performing an N-d flood fill of a
connected region where all of the pixels meet
the “condition”

51

How they work

§Create the iterator and specify an appropriate
function

§You need a seed pixel(s) to start the flood - set
these a priori or find them automatically with
FindSeedPixel(s)

§Start using the iterator as you normally would

52

“Drawing” geometric objects

§ Given an image, spatial function, and seed position:

§ This code sets all pixels “inside” the function to 255

§ The cool part: the function can be arbitrarily complex - we
don’t care!

53

Flood filled spatial function example

§Here we’ll look at some C++ code:

 found in the InsightApplications downloadable
archive of examples.

§This code illustrates a subtlety of spatial
function iterators - determining pixel inclusion
by vertex/corner/center inclusion

§Inclusion is determined by the “inclusion
strategy”

54

Origin Strategy

55

Center Strategy

56

Complete Strategy

57

Intersect Strategy

58

Useful ITK filters

§These are filters that solve particularly common
problems that arise in image processing

§You can use these filters at least 2 ways:
§ In addition to your own filters
§ Inside of your own filters

§Don’t re-invent the wheel!
§This list is not comprehensive (obviously)
§Specific filter documentation is an EFTR

59

Padding an image

§Problem: you need to add extra pixels outside
of an image (e.g., prior to running a filter)

§Solution: and its derived
classes

60

Cropping an image

§Problem: trimming image data from the outside
edges of an image (the inverse of padding)

§Solution:

61

Rescaling image intensity

§Problem: you need to translate between two
different pixel types, or need to shrink or
expand the dynamic range of a particular pixel
type

§Solutions:

62

Computing image derivatives

§Problem: you need to compute the derivative
at each pixel in an image

§Solution: , which is a
wrapper for the neighborhood tools discussed
in a previous lecture

§See also

63

Compute the mirror image

§Problem: you want to mirror an image about a
particular axis or axes

§Solution: - you specify
flipping on a per-axis basis

64

Rearrange the axes in an image

§Problem: the coordinate system of your image
isn’t what you want; the x axis should be z, and
so on

§Solution: - you
specify which input axis maps to which output
axis

65

Resampling an image

§Problem: you want to apply an arbitrary
coordinate transformation to an image, with
the output being a new image

§Solution: - you control
the transform and interpolation technique
§ (This is used when doing registration)

66

Getting a lower dimension image

§Problem: you have read time-series volume
data as a single 4D image, and want a 3D “slice”
of this data (one frame in time), or want a 2D
slice of a 3D image, etc.

§Solution: - you specify
the region to extract and the “index” within the
parent image of the extraction region

67

