
15712 Advanced Operating and Distributed System

Android and iOS Platform Study

Final Report

Lucas Tan
lucastan@cmu.edu

Fuyao Zhao
fuyaoz@cmu.edu

Xu Zhang
xuzhang@cmu.edu

1 Introduction

With smart phones becoming more ubiquitous than ever before, lots of applications are being
developed for these devices instead of traditional computing platforms such as the desktop. It
is thus worthwhile and interesting to conduct a study on mobile platforms and applications.

Better understanding the performance characteristics of the platforms open the path for
future improvements by system designers, and might even lead to new classes of applications,
for example, applications that can better utilize mobile hardware resources.

Helping mobile developers to understand better the behavior of their applications could
provide opportunities for improvement in performance and perhaps even user experience. An
application might have different performance characteristics and behavior on each platform
even though it could come from the same developer. Any difference in performance could be
attributed to the fundamental differences between the platforms.

Our study is based on Apple iOS and Google Android, the two most popular mobile platforms
which have a combined market share of 77% [4]. More specifically, our goal is to find out how the
differences between both platforms can cause applications to behave in a certain way and how
the same application behave on both platforms. Our study focuses on file I/O, and is based on
analyzing traces of system calls made by the same set of applications running on each platform.

During the course of the study, we encountered difficulties collecting system call traces for
iOS. We thus developed our own system call tracing tool called iTrace. We show that iTrace
performs faster than existing tools due to a novel tracing technique we used. We also think it
is possible to port iTrace over to Android and even other Linux-based operating systems.

To summarize, our contributions are the findings from the collected traces, iTrace tool and
the technique involved, and the traces we collected.

1.1 Related work

It is especially interesting to conduct a study on iOS from a systems perspective since so far
there is no such study as far as we know. Most of the studies on iOS are in the fields of privacy,
security and application designs [9]. Furthermore, the only work we know that compares the
two platforms, provides only a high-level overview and lacks concrete statistics [1]. Our study
attempts to fill in this gap in existing literature. We believe the lack of research in this area for
iOS can be attributed to the difficulty of collecting traces due to the closed-source nature of the
platform.

1

lucastan@cmu.edu
fuyaoz@cmu.edu
xuzhang@cmu.edu

On the other hand, due to the open nature of the platform, much research have been done
on Android in many areas including power management, network performance, security, and
storage system.

A recent paper [10] investigates the I/O behavior of common productivity applications on
Mac OS X. Though we would be using the same methodologies in analyzing our traces, our
work differs in that we investigate mobile applications, as well as a different operating system,
Android which is based on Linux, rather than the BSD-derived Mac OS X.

Another recent paper focuses on the storage system [13]. It shows that the underlying flash
storage device from various manufacturers could have a significant impact on the performance of
commonly used applications. The authors monitored the /proc virtual file system periodically
to get various system statistics and used the blktrace tool [3] to trace block-level events for
device I/O. In contrast, we use the strace tool [7] to trace file system calls, which is at a logical
level rather than physical level. Thus, we can gather information about files and the range
of bytes accessed, instead of the physical disk blocks. Furthermore, we aim to provide more
fine-grained statistics and findings, as opposed to aggregated and throughput statistics.

[8] also uses strace, in fact, strace is a common tool in Android research. But as far as we
can tell, most uses of strace is for analyzing a programs system calls frequency for detecting
malware.

[14] and [15] investigated the various factors in web browsers performance on smart phones
and the effectiveness of web browser caches. They show several interesting findings but as the
research is based only on Android, the results are not generic enough to convince the reader
that their suggestions for improvements would also be effective on other platforms.

Yet another study [11] compares various platforms, but only in the area of network perfor-
mance.

DTrace is a powerful tracing tool that is available on Mac OS X but unfortunately not on
iOS. Consequently, we had to use the official Instruments tool [5] from Apple initially. Even
though it can dynamically trace and profile both Mac OS X and iOS applications, there are
three problems we experienced that prompted us to develop iTrace. First, Instruments exports
traces in an unknown proprietary binary format. Second, Instruments can only display the
address of a string argument for a system call, it does not display the actual contents of the
string. Third, it is very slow as tracing is done over a USB connection with a computer. iTrace
is thus developed to solve all of these problems.

1.2 Software Architecture

We provide a brief high-level overview of the software architecture of both platforms.
An iOS application is developed in the Objective-C language and is compiled into native

ARM instructions. An application binary and all of its required resource files are stored in a
single directory in /var/mobile/Applications. Each application gets its own directory. All
files are stored individually as such in the file system.

On the other hand, an Android application is developed in Java and is eventually translated
to Dalvik bytecodes for execution in the Dalvik Virtual Machine. Unlike iOS, an application
and all of its required resources are packaged as a single APK file which is essentially a ZIP file.

On both platforms, applications use either directly or indirectly through frameworks, the
lightweight database library SQLite to manage application data.

1.3 Overview

The rest of the report is organized as follows: Section 2 describes our methodology and how
we collect system call traces on Android and iOS. Details of our experiments and findings are

2

presented in sections 3 and 4 respectively. A discussion of how iTrace works is in section 5.
Section 6 concludes and section 7 lists future work.

2 Method

We collected system call traces for the following popular applications: Facebook, Dropbox, An-
gry Birds (ad supported version) and the native web browser on each platform. They represent
a good mix of the types of applications.

We used methodologies from [10] to analyze the traces. In section 4, we compare our findings
with those presented in the paper.

2.1 Limitations

We summarize the limitations of our study as follows.
Runtime environment and programming model. We assume the differences between the run-

time environment and programming model for each platform have little, if any at all, impact on
file I/O statistics.

No timing involved. Due to the differences in the runtime environment and the fact that
strace on Android has a much higher overhead than iTrace (as explained in section 5), we do
not have any reference to timing in our analysis.

Incomplete tracing. Since we could not figure out how to start an iOS application program-
matically, we could only activate tracing after manually starting an application. This might
potentially omit much important information during the application initialization phase.

Lastly, though our study is by no means complete, we attempt to present as much information
as possible. More work is needed to extract further useful information from the traces.

2.2 Android

strace is a tool available on many Linux-based operating systems. It relies on the ptrace [6]
system call for its functionalities. strace can attach to an existing process or fork a new process
for tracing. It can trace all the system calls made by each thread in a process, complete with
timestamps, call arguments and return values.

The Android Open Source project contains a port of the strace tool. We downloaded the
source code, modified and re-compiled strace in order to suppress a harmless (yet annoying)
error message that is written to stderr every time the strace process tries to read an invalid
memory region in the process being traced. This modification speeds up the tracing slightly.

A partial sample of the trace log file when we attached strace to the web browser application,
is as shown below:

1345 22:02:36.843001 open("/data/data/com.android.browser/databases",

O_RDONLY|O_LARGEFILE) = 46

1345 22:02:36.843220 fcntl64(46, F_GETFD) = 0

1345 22:02:36.843663 lseek(36, 0, SEEK_SET) = 0

.

1345 22:02:48.640407 ioctl(47, 0xc01c67230x81, 1, MSG_OOB) = 0

The first column is the thread ID, the second the timestamp with up to microseconds pre-
cision and the third the system call along with its arguments and return value.

3

Initially we also used the Dalvik Debug Monitor Server (DDMS) to collect VM method calls,
that is, calls to the Android API framework. However, since there is no equivalent way in iOS,
we abandoned the use of DDMS.

2.3 iOS

We used our own iTrace tool to collect system call traces on iOS. iTrace logs system calls to a
file in the exact same format as strace. A discussion of how iTrace works is in section 5.

3 Experiments

3.1 Equipment

We used iPhone 4 and Samsung Nexus S for all our experiments. Both phones are chosen as
they have similar hardware characteristics. Both phones use the ARM architecture due to its
low power usage. Table 1 shows the comparison of the hardware and software components of
both phones:

iPhone 4 Samsung Nexus S
OS iOS 4.1 Android 2.3.6 (Linux 2.6.35)

CPU Cortex A8, 1 GHz (ARM architecture)
RAM 512 MB

Graphics PowerVR SGX 535 / 540 (200 MHz)
File System HFS+ ext4 (/system and /data partitions)

YAFFS2 (/efs and /cache partitions)
vfat (SD card partition)

Table 1: Comparison between iPhone 4 and Nexus S.

We are not sure of the exact file system used in iOS, since there is no official information
available. Several sources suggested a variant of HFS. The Android OS uses ext4 for system
files and data including applications, YAFFS2 for infrequently accessed files such as recovery
and update files, and vfat for the SD card partition which contain user files. It should be noted
that the SD card partition is a logical one as the phone has no physical SD card. Out of all the
filesystems, only YAFFS2 is log-based and designed specifically for flash storage.

The iPhone is jailbroken so that GDB (GNU Debugger) and SSH (Secured SHell) could be
installed. We could then launch an SSH session to issue commands on the iPhone. We used
SuperOneClick to gain root access to the Android phone. We were then able to launch a regular
Linux terminal session on our computer to communicate with the phone, using the adb tool
provided by the Android SDK.

3.2 Workload

We decided on the actions to perform for each application when tracing is activated. The actions
are intended to represent common usage. We manually execute each action since there is no
programmatic nor automatic way to do so in iOS. Thus it is hard to be very precise on the timing
of each action but we believe any small variation in timings should have negligible impact on
the traces collected.

4

Before we start collecting traces, we used a fresh installation of each application so that
any cached files would be removed. For the web browser application, we manually cleared the
history and cache since it cannot be re-installed.

The workload for each application is summarized below:

Application Actions
Dropbox When the user interface is ready, open text files of the following sizes in

sequence: 64B, 256B, 1KB, 4KB, 16KB and 64KB. Opening a new file
not in the cache will trigger downloading of the file.

Facebook Login and visit 3 friends’ profiles. Wait for each profile to be fully loaded.
Angry Birds Enter level 1 and finish the game with 0 point. Stop right after the score

screen is shown.
Web Browser Load "http://rng.io/" to perform the Ringmark mobile browser

benchmark test. Wait for the test to finish.

Table 2: Experiment Workload.

Dropbox behaves differently on the two platforms: the iOS version would display PDF
documents and multimedia files within the same process (app), while the Android version would
display them in an external process. strace would not be able to attach to the external process
for an unknown reason, although normally it would. We suspect the new process is started
using the Android API framework which strace cannot capture. So for Dropbox, we only test
by using plain-text files, which could be displayed in-process on both platforms.

4 Analysis

Our analysis aims to answer the following questions:

• What are the types of files accessed?

• Are files still accessed sequentially most of the time?

• How often is fsync used?

4.1 File types

We group the files into six types: Resource: non-executable such as image, audio, and video files.
Temp: temporary or cache files. SQLite: database and journal files. Journal files are used for
write-ahead logging and are created and deleted within a second. plist : store serialized objects
and settings (iOS only). Strings: files containing localized application text (iOS only). Other :
all other file types including binary, plain-text and log files. The Android system frequently
uses /dev/ashmem which is a virtual device that can be used to create shared memory amongst
processes. This is also included in the Other category. For the Dropbox application on both
platforms, this also includes the workload files.

Figure 1 shows the frequencies with which each application open and access files of each
type for both platforms. On Android, the four applications have similar pattern on the files
accessed: other, SQLite, and temp are the most frequently accessed file types. The Android web
browser stores cache files individually on the file system and metadata in one or two SQLite
databases. This results in a larger number of files accessed as compared to AngryBirds and
Dropbox. Facebook stores every picture, news feed posts, and etc. individually as a cache file

5

on the file system. As a result, it accessed the most number of files. Database files occupy a
significant percentage as well because write-ahead logging occurred very frequently. Other files
are the most common among the four applications due to the fact that most of them are shared
memory files.

On iOS, every application has very different file type distribution. Like the Android version,
iOS Facebook accessed a lot of cache files. However there is much less write-ahead logging
activity. For Web Browser, plist files are accessed many times. It is due to the fact that the
browser loaded many plugins which store their settings in plist files. Cookies are also stored in
plist files. However cache files are stored in only one or two SQLite databases. HTML5 has a
local persistent storage technology that results in a localstorage database file to be created for
each web domain that uses it. The Ringmark test creates a localstorage container as one of the
tests. For the iOS version of AngryBirds, all of the file I/O is done during the startup phase,
and hence there is no captured file activity after that. For the Android version, there is some
activity due to diagnostics logging and a different advertising system it uses.

111 179 112 713

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Resource Tmp & Cache Sqlite plist String Other

(a) Android

 0 26 88 650

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Resource Tmp & Cache Sqlite plist String Other

(b) iOS

Figure 1: Types of Files Accessed By Number of Opens. This plot shows the relative
frequency with which file descriptors are opened upon different file types. The number at the
end of each bar indicates the total number of unique file descriptors opened on files

Summary: On Android, the applications usually have similar file types distribution, and
shared memory files take a large part in all applications. It would be interesting to find out
what shared memory is used exactly for. We believe it might be used for sharing memory with
the graphics device, that is, transferring of graphics data for rendering. For iOS, the distribution
of file types differ widely for each application. When compared with [10], we find that only the
iOS web browser accesses many plist files. This might be because the web browser is the only
one out of the four applications produced by Apple.

4.2 Access Patterns

In this section, we examine the file natures in the two platform. More specifically, we study the
patterns whether the file used for reading, writing or for both. We also measured how files are
accessed, sequentially or randomly,

6

4.2.1 File Access

One file could be used for reading, writing, and for both. If the file only be used for reading, or
only used for writing, the system may have more chance to do optimization in the file system.

As we know, the file could be opened for reading, writing, or both by passing a flag to the
open function. We also divide the file descriptors into three types, for read, for write, and for
both. However, we cannot use the flags in the open function since they cant reflect the real
behavior, since the programmer may open all file by using O RDWR flag, but they only use the
file descriptor for reading or only for writing. We also measured how many bytes performed on
each type of file descriptor.

Figure 2 shows how many file descriptor for each type of accesses for different application on
two platform. For both platforms, the nearly all the file descriptors are used only for reading
or writing. For Android, write only file descriptor is the most common. For iOS read only file
descriptor is more common on the Browser application and Dropbox, but Facebook use lots of
write only file because of writing the cache files.

 28 54 60 613

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Read only Write only for Both

(a) Android

 0 17 20 346

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Read only Write only for Both

(b) iOS

Figure 2: Read/Write Distribution By File Descriptor. This plot shows the percentage
of the file descriptors in which category: read, write or both. This plot is based on the real
usage, not open function flags

Figure 3 shows how much I/O performed on each type of file descriptor. We found the
pattern is similar to the pattern in the Figure 6(a) and Figure 2 . The most majority of I/O
are performed on write only file descriptor, and the write-only file descriptor occupied more I/O
amount than the read-only descriptor.

Summary: File open flags cannot be used to predict how a file will be accessed. On mobile
device platform, there are few file descriptor both for reading and writing.

4.2.2 Sequentiality

Historically, files are usually been read or written entirely sequentially. Recently, the study on
Apple desktop shows the similar results on modern desktop, and they used a new metric called
nearly sequential. In this section, we will examine the sequentiality on mobile device.

Figure 4 and Figure 5 shows the measurement results for read sequentiality and write sequen-
tiality. For read operations on iOS device, we observe high read sequentiality for all applications.
But for Android platform, less sequentiality observed on Browser and Angry Bird. For write

7

 88626 369433 299121 2662697

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Read Only Write Only Both <Read> Both <Write>

(a) Android

 0 91383 188235 8826391

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Read Only Write Only Both <Read> Both <Write>

(b) iOS

Figure 3: Read/Write Distribution By Bytes. This plot shows how I/O bytes are dis-
tributed among the three access categories

operations, we could observe the similar results. But the we observe more random write happens
on iOS application, which may cause by using database to manage the cache data.

For both platform, we hardly observe nearly-sequential access pattern. That because the
nearly-sequential access result from metadata stored at the beginning of complex multimedia
files, and the applications often touch a few bytes at the beginning of the file before it sequentially
reading or writing the bulk of the file. But our workload dont have too many complex large
multimedia files. The most complex file might be the resource image files in Facebook, but they
are usually small size.

Summary: the applications on two platform contain lots of purely sequential accesses but
few nearly sequential access.

 5368 9832 184849 150442

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Sequential Non−sequential

(a) Android

 0 89398 99502 77214

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Sequential Non−sequential

(b) iOS

Figure 4: Read Sequentiality. This plot shows the portion of file read accesses (weighted by
bytes) that sequentially accessed

8

 83258 362697 114272 2512514

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Sequential Non−sequential

(a) Android

 0 14821 245909 8850421

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Sequential Non−sequential

(b) iOS

Figure 5: Write Sequentiality. This plot shows the portion of file write accesses (weighted by
bytes) that sequentially accessed

4.2.3 Durability

For write operations, the system has write-back cache to improve the write performance. But
some application may require the data to be flush to the disk for higher durability. From the
recent study on modern Apple desktop, developers are more likely to intentionally use fsync

operations to ensure data enters stable storage, and some of fsync operations are only for small
amounts of data[10].

For our study, we also measured how the system perform fsync operations on mobile device
applications. Figure 6 shows total number of fsync operations and the distribution of fsync

sizes, where we group fsync calls based on the amount of I/O performed on each file descriptor
when fsync is called.

Since on both iOS and Android, applications use SQLite data for medata read and write,
which might cause lot of fsync calls. For both platform, we observe all the fsync operations
are all for the files which are less than 64KB. For android, more than 60

Summary: we observe the similar behavior on mobile device system. Developers want to
ensure data durability, the applications frequently issue fsync operations, and most of them are
only for small size of data. Most of them are caused by the side effect of using database. And
we observe iOS issues less fsync operations for larger data than Android.

5 iTrace

The official Instruments tool from Apple can collect traces of system calls and their respective
arguments, but as mentioned earlier, there are some problems that could not be resolved. As
such we developed our own iTrace tool.

The main technique used in iTrace is in-process tracing. We first present an overview on
existing tools before we discuss this technique in depth.

9

 56 80 24 858

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

0B <4KB <64KB <1MB

(a) Android

 0 10 73 319

Angry Birds Browser Dropbox Facebook
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

0B <4KB <64KB <1MB

(b) iOS

Figure 6: Fsync Sizes. This plot shows a distribution of fsync sizes. The total number of fsync
calls appears at the end of the bars.

5.1 Overview of tracing tools

strace is a popular tool for system call tracing and uses the ptrace system call found in many
Linux-based operating systems. ptrace allows reading and writing of memory from the tracees
address space as well as notification of the entry and exit of every system call. The tracee is
the process to be traced. However, in iOS, the ptrace implementation excludes the ability to
monitor system call.

strace uses ptrace to attach to the tracee so that it can use the capabilities of ptrace. The
following steps describe how strace interacts with the tracee through the use of ptrace:

• strace uses the PTRACE SYSCALL request to inform the kernel to suspend the tracee and to
notify strace whenever the tracee enters a system call.

• When the tracee enters a system call, its process is suspended and a SIGCHLD signal is sent
to the strace process.

• strace then uses ptrace to read the system call arguments off the tracee address space.

• strace resumes the tracee until the tracee is suspended again when it is about to exit the
system call.

Clearly, at least two context switches are involved at the points of entry and exit. Using
ptrace to read the system call arguments is also inefficient, since ptrace itself is a system call
and ptrace can only read a machine word at a time, that is, 4 bytes for a 32-bit machine. There
is a lot of overhead involved when recording a system call and its arguments.

A relatively new entrant to this instrumentation space is utrace. [12] Utrace works by placing
tracepoints at strategic points in kernel code. For traced threads, these tracepoints yield calls
into the registered utrace clients. These callbacks, though happening in the context of a user
process, happen when the process is executing in kernel mode. In other words, utrace clients
run in the kernel. In some operating systems, ptrace is a utrace client that lives in the kernel.
Other clients – especially those used for ad hoc instrumentation – may be implemented as kernel
modules.

10

5.2 In-process tracing

The key idea of in-process tracing is to load a tracing library into the tracee address space and
to redirect system call stubs to the tracing library. There are four benefits. First, recording
of each system call and its arguments in the userspace, that is, in the context of the tracee
process, is much faster. Second, since there is no need to write custom kernel modules (as in
the case of utrace), this technique provides a safer and easier way to collect traces. Third, there
is no performance penalty at all when tracing is not activated, since the stubs are redirected
only when tracing is activated. This is unlike utrace which has to explicitly check for registered
callbacks even when tracing is not activated. Fourth, iTrace allows specific system calls to be
traced unlike strace and utrace which trace all system calls. We discuss the technique in the
context of iOS since it is the first target platform for which iTrace is developed. We plan to
port iTrace to Linux in the future.

Every program in iOS is linked against the system call stubs library libSystem.B.dylib.
A system call stub does a software interrupt to invoke the relevant kernel routine, and after
returning from the routine, the stub checks for errors and if necessary, returns the appropriate
error code as the return value.

iTrace uses GDB to attach to the tracee and to load our tracing library into its address
space. GDB is also used to rewrite parts of a system call stub to redirect the execution control
to our tracing library before the software interrupt is invoked. The library then records the
system call arguments, and invokes the software interrupt on behalf of the stub. Control is then
transferred back to the stub so that the appropriate return value can be set and captured by
our tracing library. This is necessary as we do not know how the error code is determined when
error occurrs. Figure 7 shows how iTrace changes the program control flow without changing
the original system call semantics.

(a) Before change (b) After change

Figure 7: How the original control flow of calling open is changed by iTrace.

Reliance on GDB could be removed in the future by extracting the relevant features iTrace
requires.

5.3 Performance comparison

Unfortunately, in the interests of time, we were unable to compare with utrace. We timed the
overhead of calling the gettid system call 100,000 times. gettid is chosen as we believe its
implementation is simple and it has no argument, and hence the timing would be fairly stable

11

and largely consists of the tracing tool overhead. For a fair comparison, iTrace and strace both
log to a file in the exact same format.

The average across ten runs are reported below. All timings are in milliseconds.

No tracing With tracing Overhead
iTrace (iOS) 80 870 11x
strace (Android) 72 9900 138x

Even though both tools run on different platforms with different hardware, from the timing
without tracing, we can see that both platforms have similar performance for the gettid system
call. Furthermore, we believe that the differences between both platforms and hardware could
not possibly contribute a lot to the large difference in the overhead ratios. The disparity in
overhead ratios should be due to the in-process tracing technique we used.

For a more accurate timing, we could turn off logging for both tools, which is impossible
for strace currently. We could also use a version of iTrace ported to Android. Yet another
possibility is to time how long it would take to produce the same log file on both platforms
without doing any tracing at all, and subtract it off the timings shown in the table above. We
delegate these as a future work.

6 Conclusions

Our study shares similar findings with [10]:

• Auxiliary files dominate: On iOS, applications access resource, temp, and plist files very
often. This is especially true for Facebook which uses a large number of cache files. We
are not sure why this is the case since small pieces of data like comments and news feed
could be stored in a database. Also for iOS resource files such as icons and thumbnails
are stored individually on the file system.

• Writes are forced: This is true for both platforms, especially for the Facebook application.
On iOS, Facebook calls fsync even on cache files, resulting in the largest number of fsync
calls out of the applications. On Android, fsync is called for each temporary write-ahead
logging journal files, which we think is reasonable. However, we think that the Facebook
app on Android has much more write-ahead logging due to the use of frameworks since
write-ahead logging is typically not controlled by the application itself.

• Frameworks influence I/O: The SQLite database library is used often on both platforms
to store cache files and metadata. Since the library supports atomic transactions, there is
a need for write-ahead logging which creates many short-lived temporary journal files and
calls fsync often.

From the analysis, it is clear that the same application has very different I/O behavior on
each platform. This might be due to the difference in frameworks being used or the developer
using a different implementation (logically) to achieve the same functionalities. The latter is
unlikely due to development time and maintenance issues. We believe a lot of undesirable I/O
behavior can be resolved through careful application design and programming. But the fact that
this is not done suggests that mobile devices today are sufficiently powerful that optimizations in
I/O are not required. We think the single most significant conclusion is that mobile applications
behave very similarly to their desktop counterparts, in terms of I/O, and yet mobile devices are
more typically hardware-constrained. Furthermore, we did not notice any poor user experience,

12

such as lagging or hanging, when we run the applications without tracing. This means that
mobile devices today are already powerful enough to run day-to-day, albeit simple productive
applications. It may just be a matter of time before more complex applications like Microsoft
Word could run on mobile devices.

Applications like Facebook and browser which create many temporary files might have a
negative impact on the durability of the flash storage device. File system designers could keep
this mind when designing a file system for flash devices. Also, creating many files result in storage
fragmentation. The temporary files usually reside in system-designated temporary directories.
Perhaps file system designers could use this as a hint to optimize storage for temporary files.

We collected system call traces for commonly-used applications and summarized and pre-
sented our findings from these traces. Our hope is that they shed light on application behavior
and open up areas for further investigation.

We also demonstrated the use of iTrace to collect traces on iOS. This creates opportunities
for many types of research that were previously impossible to conduct on iOS. iTrace superior
speed enables time-sensitive analysis to be conducted as well.

7 Future Work

• Deeper analysis. We would like to analyze the traces in greater depth. Specifically, we
are interested in these questions: how does the use of mmap affect I/O, what are the pros
and cons of packaging an app as an APK file, what are the underlying reasons behind the
different I/O behavior between Android and iOS applications, how does the use of Dalvik
VM affect the performance of an application. Furthermore, there are some interesting
areas in the traces that are worth analyzing further.

• Broader study. We would also like to investigate other areas such as network activities
and memory management. We already have some interesting observations, for example,
iOS has a high failure rate for reading from a socket.

• Tracing. We wish to be able to activate tracing the instant an iOS application is launched.
Also we would like to port iTrace over to Android.

• Experiments. More apps from other categories such as Youtube and music player could be
included so as to make the study more complete. We also wish to automate the workload
(actions) that we carried out manually in this study. On Android, we could use the
Monkey script [2] runner which can execute predefined actions in any application. We
could develop a similar tool for iOS.

• File system. It is interesting that both platforms do not use a log-filesystem. Instead
they use traditional filesystems designed for desktops. Android does use YAFFS2 which
is designed specifically for flash storage, but it is only used for non-critical partitions. It
is worthwhile to investigate the impact of filesystem on the flash storage device.

• Other platforms. We wish to extend our study to other platforms such as Windows mobile.
Also we want to investigate whether newer devices such as iPhone 4S / 5 and Google Nexus
would produce different findings.

References

[1] Analysis and comparison with android and iphone operating system. http://www.eecs.

ucf.edu/~dcm/Teaching/COP5611Spring2010/Project/AmberChang-Project.pdf.

13

http://www.eecs.ucf.edu/~dcm/Teaching/COP5611Spring2010/Project/AmberChang-Project.pdf
http://www.eecs.ucf.edu/~dcm/Teaching/COP5611Spring2010/Project/AmberChang-Project.pdf

[2] Android SDK tools. http://developer.android.com/guide/developing/tools/index.
html.

[3] blktrace manual page. http://linux.die.net/man/8/blktrace.

[4] comScore reports december 2011 u.s. mobile subscriber market share. http:

//www.comscore.com/Press_Events/Press_Releases/2012/2/comScore_Reports_

December_2011_U.S._Mobile_Subscriber_Market_Share.

[5] instruments. https://developer.apple.com/library/mac/#documentation/

developertools/conceptual/InstrumentsUserGuide/Introduction/Introduction.

html#//apple_ref/doc/uid/TP40004652-CH1-SW1.

[6] ptrace manual page. http://linux.die.net/man/2/ptrace.

[7] strace manual page. http://linux.die.net/man/1/strace.

[8] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. Crowdroid: behavior-based
malware detection system for android. In Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices (New York, NY, USA, 2011), SPSM ’11,
ACM, pp. 15–26.

[9] Egele, M., Kruegel, C., Kirda, E., and Vigna, G. PiOS: Detecting privacy leaks in
iOS applications. In Proceedings of the 18th Annual Network & Distributed System Security
Symposium (NDSS) (Feb. 2011).

[10] Harter, T., Dragga, C., Vaughn, M., Arpaci-Dusseau, A. C., and Arpaci-
Dusseau, R. H. A file is not a file: understanding the i/o behavior of apple desktop
applications. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2011), SOSP ’11, ACM, pp. 71–83.

[11] Huang, J., Xu, Q., Tiwana, B., Mao, Z. M., Zhang, M., and Bahl, P. Anatomizing
application performance differences on smartphones. In Proceedings of the 8th international
conference on Mobile systems, applications, and services (New York, NY, USA, 2010),
MobiSys ’10, ACM, pp. 165–178.

[12] Keniston, J. Ptrace, utrace, uprobes: Lightweight, dynamic tracing of user apps. In
Proceedings of the 2007 Linux Symposium, OSL’07.

[13] Kim, H., Agrawal, N., and Ungureanu, C. Revisiting storage for smartphones. In
10th USENIX Conference on File and Storage Technologies (2012), FAST ’12.

[14] Wang, Z., Lin, F. X., Zhong, L., and Chishtie, M. How effective is mobile browser
cache? In Proceedings of the 3rd ACM workshop on Wireless of the students, by the
students, for the students (New York, NY, USA, 2011), S3 ’11, ACM, pp. 17–20.

[15] Wang, Z., Lin, F. X., Zhong, L., and Chishtie, M. Why are web browsers slow on
smartphones? In ACM HotMobile 11 (2011), 11.

14

http://developer.android.com/guide/developing/tools/index.html
http://developer.android.com/guide/developing/tools/index.html
http://linux.die.net/man/8/blktrace
http://www.comscore.com/Press_Events/Press_Releases/2012/2/comScore_Reports_December_2011_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2012/2/comScore_Reports_December_2011_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2012/2/comScore_Reports_December_2011_U.S._Mobile_Subscriber_Market_Share
https://developer.apple.com/library/mac/#documentation/developertools/conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40004652-CH1-SW1
https://developer.apple.com/library/mac/#documentation/developertools/conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40004652-CH1-SW1
https://developer.apple.com/library/mac/#documentation/developertools/conceptual/InstrumentsUserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40004652-CH1-SW1
http://linux.die.net/man/2/ptrace
http://linux.die.net/man/1/strace

	Introduction
	Related work
	Software Architecture
	Overview

	Method
	Limitations
	Android
	iOS

	Experiments
	Equipment
	Workload

	Analysis
	File types
	Access Patterns
	File Access
	Sequentiality
	Durability

	iTrace
	Overview of tracing tools
	In-process tracing
	Performance comparison

	Conclusions
	Future Work

