
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Bug Localization using Classification for Behavior Graph

Fuyao Zhao, fuyaoz@cs.cmu.edu

Carnegie Mellon University, School of Computer Science

Problem & Motivation

The size of the program is growing, and the

number of bugs is also growing. And

debugging become much harder. So we want

some algorithms that can automatically help

localize bugs for us.

Background

To characterize the program runs, we use

behavior graph, which contains a set of nodes

represent the function, a set of solid arrows

represent function calls and a set of dash

arrows represent transitions between each

function.

Part I: Graph Classification

2. Weighted Graph Model

We use weighted model for the behavior

graph. For edge e = (u, v), let

where ce is the number of times u calls v.

And the weight for a subgraph is

which indicate how import is the subgraph in

the graph. Following example shows the

weights for two subgraph in left graph. The

edges of left graph are labeled as numbers,

which are the call numbers.

3. Graph Classification

We use the subgraphs we mined in 1 as

features for data, and calculate the value of

each feature use the model in 2. Then,

SVMlight with linear kernel is used for final

classification.

4. Performance Measurement

To measure the performance of the graph

classifier, we use 5-fold cross validation. and

since the number of incorrect runs in the

dataset is very small, accuracy is not a good

measurement to evaluate the classifier. So we

use F-Score, defined as below:

Part II: Bug Localization

1. Generate Behavior Graph

Run the program using different inputs under

debug mode, using gprof to generate the

program run details for behavior graph from

the debug information.

2. Checkpoint

Each function Fi has two checkpoints:

and , correspond to the entrance and

the exit of Fi. is the classification

performance in . We propose a

simplified and more efficient form, which

assume

, where Fj be the first function called by Fi,

and Fk be the last called by Fi, to reduce the

number of checkpoints. For every program

runs, each checkpoint also corresponds to a

behavior graph. Following example shows a

run that generate 4 graphs for its checkpoints.

3. Graph Set Collection

Now, collect all graphs on same checkpoint

generated by different runs. For each set of

these graphs, we run graph classification for

it to get . And use our assumption to

get for all others.

4. Bug Like Function Detection

Define a function Fi is said bug like if

Then a set of bug like function could be

found. And we could line them up in a back

trace order form on the call graph of an

incorrect run, which will hopefully help the

programmers to indentify and correct the

bugs.

i

in
B

i

out
B

,i i

in out
P P

,i i

in out
B B

,i j i k

in in out out
P P P P 

,i i

in out
P P

i i

out in
P P  

Experiment

1. Dataset:

We use the program replace in Siemens

Program Set. It has a standard version and

several bug version, (version 1, 2, 3, 4, 5, 6

are used here).

2. Graph Classification:

3. Bug Localization:

In above behavior graph, we found two

sequence of bug like functions:

 main > getpat > matpat

 main > change > subline > amatch

> patsize > in_pat_set

Conclusion

 In software testing phrase, it can

successfully reduce the work for

programmers to find bugs.

 Highly depend on a good graph mining

and classification algorithm since the

negative example is scarce.

replace version 4

,i i

in out
P P

int main() {
scanf(“%d”, &x);
y = get(x);
printf(“%d”, x);

}
int get(x) {
if (x > 1)
return get(x-1)+1;

return 0;
}

Behavior graph if your input is 2

Part I: Graph Classification

1. Subgraph Extraction

For a set of behavior graph D, we mine

closed subgraphs that whose support >

threshold. Where support means the frequent

that the subgraph appears in D, closed means

there is no supergraph has same support.

Graph Set

Frequent Closed Subgraphs

0.8125 0.3125

2
2

1

2

1

2

1

1
1

1
1

1

Bug here!

