Bug Localization using Classification for Behavior Graph

Fuyao Zhao, fuyaoz@cs.cmu.edu

Carnegie Mellon University, School of Computer Science

Problem & Motivation

The size of the program is growing, and the
number of bugs Is also growing. And
debugging become much harder. So we want
some algorithms that can automatically help
localize bugs for us.

Background

To characterize the program runs, we use
behavior graph, which contains a set of nodes
represent the function, a set of solid arrows
represent function calls and a set of dash
arrows represent transitions between each
function.

int main () {
scant (“sd”, &x);
y = get(x);
printf (“sd”, x);
}
int get(x) {
1f (x > 1)
return get (x-1)+1;
return 0;

Behavior graph if your input is 2

Part I: Graph Classification

1. Subgraph Extraction

For a set of behavior graph D, we mine
closed subgraphs that whose support >
threshold. Where support means the frequent
that the subgraph appears in D, closed means
there Is no supergraph has same support.

Graph Set

Frequent Closed Subgraphs

Part |: Graph Classification

2. Weighted Graph Model
We use weighted model for the behavior
graph. For edge e = (u, v), let

Ce
Ze’Eg w(e’)
where ¢, Is the number of times u calls v.
And the weight for a subgraph is
w(g') =) wle)

ecqg’
which indicate how import Is the subgraph in

the graph. Following example shows the
weights for two subgraph in left graph. The
edges of left graph are labeled as numbers,
which are the call numbers.

w(e) =

3. Graph Classification

We use the subgraphs we mined in 1 as
features for data, and calculate the value of
each feature use the model In 2. Then,
SVMhehtwith linear kernel is used for final
classification.

4. Performance Measurement

To measure the performance of the graph
classifier, we use 5-fold cross validation. and
since the number of Incorrect runs in the
dataset Is very small, accuracy Is not a good
measurement to evaluate the classifier. So we
use F-Score, defined as below:

#succefully classified incorrect runs

recall = :
#incorrect runs

#succefully classified incorrect runs

Precision = , :
#all runs classified as incorrect

precision - recall

F-Score = 2 - —
precision + recall

Part |1 Bug Localization

1. Generate Behavior Graph

Run the program using different inputs under
debug mode, using gprof to generate the
program run details for behavior graph from
the debug information.

2. Checkpoint
Each function F; has two checkpoints:
B., and B,,, correspond to the entrance and
the exit of F.. P!, P! is the classification
performance in B! , B'. We propose a
simplified and more efficient form, which
assume | | |

Pr=P., Pu=P.
, where F; be the first function called by F;
and F, be the last called by F;, to reduce the
number of checkpoints. For every program
runs, each checkpoint also corresponds to a

behavior graph. Following example shows a

run that generate 4 graphs for its checkpoints.

3. Graph Set Collection

Now, collect all graphs on same checkpoint
generated by different runs. For each set of
these graphs, we run graph classification for
it to get P!, P! . And use our assumption to

get P!, P! for all others.

4. Bug Like Function Detection

Define a function F; is said bug like if
F&t_'eﬁ:>6)

Then a set of bug like function could be

found. And we could line them up In a back

trace order form on the call graph of an

Incorrect run, which will hopefully help the

programmers to indentify and correct the

bugs.

institute for
I S SOFTWARE
RESEARCH

Experiment

1. Dataset:

We use the program replace in Siemens
Program Set. It has a standard version and
several bug version, (version 1, 2, 3, 4,5, 6
are used here).

2. Graph Classification:

Correct Incorrect | F-Score Features
version 1 5478 64 0.44 103
version 2 5507 35 0.00 103
version 3 5414 128 0.37 105
version 4 5401 141 0.49 105
version 5 5280 262 0.31 105
version 6 5459 83 0.17 105

3. Bug Localization:

replace version 4

getsub change
[0.11,0.17] , 0. [0.17, 37]

subline]
[0.00, 0.11] [0.17, 0.33]
getccl amatch)
[0.00, 0.00] [0.17, 0.38]
\ -
atsize

p
[0.17, 0.38]

makesub stclose
[0.11, 0.17] [0.00, 0.00]
e dodash[0.00, 0.00] @

In above behavior graph, we found two

sequence of bug like functions:
Bug here!

v main > getpat > matpat \.

v' main > change > subline >

> patsize > 1n pat set
Conclusion

» In software testing phrase, It can
successfully reduce the work for
programmers to find bugs.

» Highly depend on a good graph mining
and classification algorithm since the
negative example Is scarce.

