15-259/559: Probability and Computing Due Friday 09/12/2025 at 12:50PM

Show all your work. Work through the problems carefully and **do not use online references, mathematical solvers, or GenAI** as a shortcut for finding the solutions. You will regret it in the quizzes and examinations.

Part I

Exercises 3.8, 3.10, 3.12, 4.5, 4.11, 4.12, 4.13, 4.15, 4.16, 4.18 in the textbook.

Part II

In class, we discussed Simpson's paradox. Consider again Table 4.4 from the textbook.

	Drug A	Drug B
small kidney stones	$\approx 90\%$ Effective	$\approx 80\%$ Effective
v	(90/100 Successes)	(800/1000 Successes)
large kidney stones	pprox 60% Effective	$\approx 50\%$ Effective
	(600/1000 Successes)	(50/100 Successes)
	$\approx 63\%$ Effective	pprox 77% Effective
aggregate mix	(690/1100 Successes)	(850/1100 Successes)

Based on our clinical trial data, Drug A is more effective than Drug B on small stones, and Drug A is also more effective than Drug B on large stones. But if we mix the groups, Drug A is less effective than Drug B, a misleading conclusion given the per-stone data.

- (a) Explain the so-called paradox in the above table using the law of total probability for $\Pr[E \mid A]$ and $\Pr[E \mid B]$, where E is the event that the drug is effective, and A and B are events for Treatments A and B, respectively. Identify the expressions in your equations that have no relevance to the drug itself, and are purely artifacts of how the trial was conducted.
- (b) How would you design a clinical trial to avoid Simpson's paradox?