
The Fast Loaded Dice Roller
A Near-Optimal Exact Sampler for Discrete Probability Distributions

Feras Saad, Cameron Freer,
Martin Rinard, Vikash Mansinghka

Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR
108:1036-1046, 2020. http://proceedings.mlr.press/v108/saad20a.html
Github: https://github.com/probcomp/fast-loaded-dice-roller/

http://proceedings.mlr.press/v108/saad20a.html
https://github.com/probcomp/fast-loaded-dice-roller/

 What is a random sampling algorithm?

Suppose p := (p1, ..., pn) is a list of n probabilities between 0 and 1.

A sampling algorithm (sampler) for p is a randomized
algorithm A such that:

Pr[A returns integer i] = pi (i = 1, ..., n)1 2 3 n...

...

p1 p2 p3 pn...

 Sampling is a fundamental operation in many fields

Efficient dice rolling is a classic problem in CS theory

It is also a foundational operation in many fields

Robotics Probabilistic Robotics, Thrun et al. 2005
Artificial Intelligence Artificial Intelligence: A Modern Approach, Russell & Norvig 1994
Computational Statistics Random Variate Generation, Devroye 1986
Operations Research Simulation Techniques in Operations Research, Harling 1958
Statistical Physics Monte Carlo Methods in Statistical Physics, Binder 1986
Financial Engineering Monte Carlo Methods in Financial Engineering, Glasserman 2003
Machine Learning An Introduction to MCMC for Machine Learning, Andrieu et al. 2003
Systems Biology Randomization and Monte Carlo Methods in Biology, Manly 1991
Scientific Computing Monte Carlo Strategies in Scientific Computing, Liu 2001

1 2 3 n...

...

p1 p2 p3 pn...

 Key ingredients of a sampling algorithm

Entropy Source Sampling Algorithm

(emits fair coin flips)

b1

0

b2

1

b3

1

b4

0 …

1 2 3 n...

...

p1 p2 p3 pn...

Target Dice
(n sides)

Random Outcome

1

1010

0 10 10 1 0

 Every sampling algorithm is a tree

1

0

A sampler A for distribution p is a complete binary tree T

1. Start at root
2. Call flip, if 0 go to left child, if 1 go to right child
3. If child is leaf, return the label of that node, else goto 2.

T is called a discrete distribution-generating (DDG) tree.

Example DDG tree for a fair dice, p = (⅙,⅙,⅙,⅙,⅙,⅙)

111→repeat 011→4
110→1 010→5
101→2 001→6
110→3 000→repeat

We assess the “efficiency” of a sampler for p according to two criteria:

1. Runtime
Minimize average number of flips
needed to generate a sample
(i.e., average depth of leaf in the tree)

2. Memory
Minimize number of nodes in the tree

 Key objectives for designing efficient samplers

We assess the “efficiency” of a sampler for p according to two criteria:

Example: 3-sided dice, p = (½, ¼, ¼)

1. Runtime
Minimize average number of flips 1.5 bits / sample 2.25 bits / sample
needed to generate a sample
(i.e., average depth of leaf in the tree)

2. Memory
Minimize number of nodes in the tree 5 nodes 11 nodes

 Key objectives for designing efficient samplers

 Knuth & Yao solved the runtime problem in 1976

Knuth & Yao (1976) solve the problem for
building the fastest sampler for any loaded
dice by giving an explicit construction

1. Runtime
Minimize average number of flips
needed to generate a sample
(i.e., average depth of leaf in the tree)

D. Knuth, A. Yao. The complexity of nonuniform random number generation. In Algorithms and Complexity: New Directions and Recent Results. 1976.

https://b-ok.cc/book/3518287/39ce5f

Theorem Entropy-optimal tree has leaf i at level j iff jth bit in binary expansion of pi = 1.

 Example 1

 Example 2

 Entropy-optimal sampling (Knuth-Yao 1976)

Theorem Entropy-optimal tree has leaf i at level j iff jth bit in binary expansion of pi = 1.

 Example 1

 Example 2

 Entropy-optimal sampling (Knuth-Yao 1976)

 Main challenge with Knuth-Yao optimal sampler

Theorem The Knuth-Yao sampler is runtime optimal: H(p)≤ E[# flips] < H(p) + 2

However, the memory (number of nodes) can scale exponentially

Good Case Bad Case
p = (2/4, 1/4, 1/4) p = (7/19, 4/19, 8/19)
(sum of weights is power of two)

height = 2
= log2(4)

height = 18
≫ log2(19)

Example

Knuth-Yao tree for Binomial(n=50, p=61/500) has 10104 levels (i.e., ~1091 terabytes)

“Most of the algorithms which achieve these optimum bounds are very complex, requiring a
tremendous amount of space”. [KY76]

We will develop an algorithm where the memory scales linearly in the size of the dice.

 Exact entropy-optimal samplers = exponential size

We present an algorithm (FLDR) whose memory scales linearly in the input size

 This work: The Fast Loaded Dice Roller

The Knuth & Yao sampler is fast and small when sum of weights m = power of 2.

For n-sided dice with sum of weights m
we create an (n+1)th side to ensure the new weights m’ = 2k, where 2k-1 < m < 2k.

original dice new dice
(n sides, weight sum m) (n+1 sides, weight sum 2k)

Build Knuth & Yao sampler for the new dice.

Roll the new dice, if shows up, then reject the outcome and roll again.

 Main intuition of FLDR

+ “reject side”

The Knuth & Yao sampler is fast and small when sum of weights m = power of 2.

For n-sided dice with sum of weights m
we create an (n+1)th side to ensure the new weights m’ = 2k, where 2k-1 < m < 2k.

original dice new dice
(n sides, weight sum m) (n+1 sides, weight sum 2k)

p ∝ (2, 5, 3) p’ ∝ (2, 5, 3, 6)
m = 10 m = 16

 Main intuition of FLDR

+ “reject side”

The Knuth & Yao sampler is fast and small when sum of weights m = power of 2.

For n-sided dice with sum of weights m
we create an (n+1)th side to ensure the new weights m’ = 2k, where 2k-1 < m < 2k.

original dice new dice
(n sides, weight sum m) (n+1 sides, weight sum 2k)

Build Knuth & Yao sampler for the new dice.

Roll the new dice, if shows up then reject the outcome and roll again.

 Main intuition of FLDR

+ “reject side”

FLDR has near-optimal runtime

Exponential decrease in memory as compared to optimal KY sampler.

n = number of faces in the dice
m = sum of weights of the dice faces

 Main theorems of FLDR

Average # of bits / sample Tree Size

Knuth & Yao (1976) H(p) ≤ E [#flips] ≤ H(p) + 2 Θ(n m)

FLDR (this work) H(p) ≤ E [#flips] ≤ H(p) + 6 Θ(n log2(m))

 Implementing FLDR using fast integer arithmetic

Create Knuth & Yao sampler
for the new dice.

Roll the new dice.
If shows up, then reject & roll again.

+ “reject side”

 Comparing FLDR to baseline exact samplers

We benchmark FDLR against six baselines for exact sampling:

1. Entropy-optimal sampler [KY76]

2. Rejection sampler with uniform proposal

3. Rejection sampler with dyadic proposal + lookup table [Dev86]

4. Rejection sampler with dyadic proposal + binary search [Dev86]

5. Interval sampler [HH97], using exact implementation of [DG15]

6. Exact alias sampler [Wal77], using one-table implementation [Vos91]

https://github.com/probcomp/fast-loaded-dice-roller-experiments

https://github.com/probcomp/fast-loaded-dice-roller-experiments

 Comparing memory versus runtime

https://github.com/probcomp/fast-loaded-dice-roller-experiments

https://github.com/probcomp/fast-loaded-dice-roller-experiments

 Software libraries are starting to incorporate FLDR

Reference implementation (C) https://github.com/probcomp/fast-loaded-dice-roller/tree/master/src/c

Reference implementation (Python) https://github.com/probcomp/fast-loaded-dice-roller/tree/master/src/python

randomgen library (Python) https://github.com/peteroupc/peteroupc.github.io/blob/master/randomgen.py

rust-random library (Rust) https://github.com/vks/rand/blob/fldr/rand_distr/src/weighted_fldr.rs

https://github.com/probcomp/fast-loaded-dice-roller/tree/master/src/c
https://github.com/probcomp/fast-loaded-dice-roller/tree/master/src/python
https://github.com/peteroupc/peteroupc.github.io/blob/master/randomgen.py
https://github.com/vks/rand/blob/fldr/rand_distr/src/weighted_fldr.rs

 Further directions

1. Speeding up LDA samplers using fast primitives
- Li, et. al. Reducing the Sampling Complexity of Topic Models. KDD 2014
- Magnusson et. al. Sparse Partially Collapsed MCMC for Parallel Inference in Topic Models. J. Comp. Graph Stat. 2018

2. Batch generation by recycling random bits
- Devroye and Gravel 2019. arXiv:1502.02539 [cs.IT]

3. Probabilistic hardware circuits for fast sampling
- Mansinghka, Jonas, & Tenenbaum. Stochastic Digital Circuits for Probabilistic Inference, MIT-CSAIL-TR-2008-069, 2008
- Roy, et al. High Precision Discrete Gaussian Sampling on FPGAs. SAC 2013
- Mansinghka & Jonas. Building Fast Bayesian Computing Machines out of Intentionally Stochastic, Digital Parts. 2014.

arXiv:1402.4914 [cs.AI]
- Du and Bai. Towards Efficient Discrete Gaussian Sampling for Lattice-based Cryptography. FPL 2015

 Applications to probabilistic hardware

Roy, et al. High Precision Discrete Gaussian Sampling on FPGAs. SAC 2013.

The (N × k) binary
probability matrix P is
encoded into ROM and
sampled as follows:

Algorithm Knuth-Yao Sampling
Input Probability Matrix P
Output Sample in [0, ..., N-1]

d = 0
col = 0
while True:

r = flip()
d = 2*d + (1-r)
for row in [N-1, …, 0]:

d -= P[row][col]
if d == -1:

return row
col = col + 1

https://link.springer.com/chapter/10.1007/978-3-662-43414-7_19

 Related work

1. Optimal sampling with a predefined precision (memory) budget.
Saad, Freer, Rinard, & Mansinghka [2020], POPL

2. Coalgebraic framework for implementing and composing entropy-preserving reductions
between arbitrary input sources to output distributions

Kozen & Soloviev [2018]; see also Pae & Loui [2006] for asymptotically-optimal
variable-length conversions using coins of unknown bias

3. Limited-precision samplers for discrete distributions
random graph [Blanca & Mihail 2012], geometric [Bringmann & Friedrich 2013],
uniform [Lumbroso 2013], discrete Gaussian [Folláth 2014], general [Uyematsu & Li 2003]

4. Variants of random bit model (biased/unknown/non-i.i.d. sources, variable precision)
[von Neumann 1951; Elias 1972; Stout & Warren 1984; Blum 1986; Roche 1991; Peres 1992;
Han & Verdú 1993; Vembu & Verdú 1995; Abrahams 1996; Cicalese et al. 2006; Kozen 2014]

Appendix

Example

Entropy-optimal tree for

Binomial(n=50, p=61/500)

has 10104 levels

(i.e., ~1091 terabytes)

 Exact entropy-optimal samplers = exponential size

log-linear plot
(exponential growth)

“Most of the algorithms
which achieve these
optimum bounds are very
complex, requiring a
tremendous amount of
space”. [KY76]

 Comparing preprocessing time vs Alias

To measure preprocessing time of alias
we used C GNU Scientific Library (GSL)
gsl_ran_discrete_preproc function,
which implements the alias preprocessing
algorithm from [Vos91]

https://github.com/ampl/gsl/blob/master/randist/discrete.c

https://github.com/probcomp/fast-loaded-dice-roller-experiments

https://www.gnu.org/software/gsl/doc/html/randist.html#general-discrete-distributions
https://github.com/ampl/gsl/blob/master/randist/discrete.c
https://github.com/probcomp/fast-loaded-dice-roller-experiments

 Comparing runtime and calls to the PRNG

https://github.com/probcomp/fast-loaded-dice-roller-experiments

https://github.com/probcomp/fast-loaded-dice-roller-experiments

