
university-logo

Dependent Session Types
via Intuitionistic Linear Type Theory

Frank Pfenning
[with Luı́s Caires and Bernardo Toninho]

Department of Computer Science
Carnegie Mellon University

Workshop on Behavioural Types
April 20, 2010 / Lisbon

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 1 / 32

university-logo

Outline

1 Introduction

2 Value Types

3 Interface Contracts and Quantification

4 An Extended Example

5 Proof Irrelevance

6 Conclusion

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 2 / 32

university-logo

Outline

1 Introduction

2 Value Types

3 Interface Contracts and Quantification

4 An Extended Example

5 Proof Irrelevance

6 Conclusion

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 3 / 32

university-logo

Overview
Session types are mostly “simple” types

I Emphasis on communication behavior
I No complex contracts on values

Exploit logical foundations of session types
I Proof-theoretic semantics
I Computation derived from cut reduction

An analogy
I Simple types as propositions [Curry-Howard’69]
I Dependent types for expressive specifications [Martin-Löf’80]
I Session types as linear propositions
I Dependent session types for expressive contracts

Proof irrelevance
I Bridge between dependent and simple types
I May erase computationally irrelevant proofs
I New considerations in distributed settings

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 4 / 32

university-logo

Why Curry-Howard?
Orthogonality of constructs, properties

I ND/FUN:→, ×, 1, +, 0
I DILL/SES: (, ⊗, 1, ⊕, N, !

Systematic proof-theoretic foundation
I ND/FUN: proof reduction gives rise to computation
I DILL/SES: cut reduction gives rise to computation

Co-design of computational system with logic for reasoning
I ND/FUN: Dependent types, inductive types and recursion
I DILL/SES: Quantification and contracts

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 5 / 32

university-logo

How to Read the Judgments

u1:A1, . . . ,un:An︸ ︷︷ ︸
Γ

; x1:B1, . . . , xk :Bk︸ ︷︷ ︸
∆

=⇒ P :: z : C

Process P provides service C along channel z . . .
. . . when composed with processes

I providing persistent services Ai along ui and
I providing (linear) services Bj along xj

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 6 / 32

university-logo

Linear Session Type Summary

P :: z : A (B Input an A along z and behave as B

P :: z : A⊗ B Output a new x :A along z and behave as B

P :: z : 1 Terminate

P :: z : !A Persistently offer A along z

P :: z : A N B Offer both A and B along z

P :: z : A⊕ B Offer either A or B along z

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 7 / 32

university-logo

Outline

1 Introduction

2 Value Types

3 Interface Contracts and Quantification

4 An Extended Example

5 Proof Irrelevance

6 Conclusion

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 8 / 32

university-logo

Value Types
So far, we type only channels
Add values from an underlying (functional) language
P :: z : $τ — Provide value of type τ along z
Examples:

P :: z : $nat ($nat⊗ 1 Increment argument

P :: z : $string ($nat⊗ 1 Balance inquiry

P :: z : $string ($nat ($string⊗ 1 Deposit with receipt

P :: z :!(($string ($nat⊗ 1)

N ($(string× nat) ($string⊗ 1)) A Bank

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 9 / 32

university-logo

Logical Rules = Typing Rules
Give right and left rules, as usual
Aux. judgment x1:τ1, . . . , xn:τn︸ ︷︷ ︸

Ψ

` M : τ

Generalize sequent to Ψ; Γ; ∆ =⇒ P :: z : C
Ψ is persistent (not the only choice . . .)
Right rule

Ψ ` M : τ

Ψ; Γ; · =⇒ [x ← M] :: x : $τ
$R

Left rule
Ψ, x :τ ; Γ; ∆ =⇒ Q :: z : C

Ψ; Γ; ∆, x :$τ =⇒ Q :: z : C
$L

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 10 / 32

university-logo

Cut Reduction = Computation

Ψ ` M : τ

Ψ; Γ; · =⇒ [x ← M] :: x : $τ
$R

Ψ, x :τ ; Γ; ∆ =⇒ Q(x) :: z : C

Ψ; Γ; ∆, x :$τ =⇒ Q(x) :: z : C
$L

Ψ; Γ; ∆ =⇒ (νx)([x ← M] | Q(x)) :: z : C
Cut

−→ Ψ; Γ; ∆ =⇒ Q(M) :: z : C

Reduction (νx)([x ← M] | Q(x)) −→ Q(M)

Requires substitution principle:
If Ψ ` M : τ and Ψ, x :τ ` J(x) then Ψ ` J(M).

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 11 / 32

university-logo

Examples
Increment

inc :: z : $nat ($nat⊗ 1
= z(n). (νx) z〈x〉. ([x ← n + 1] | 0)

Balance inquiry, with bal : string→ nat

inq :: z : $string ($nat ⊗ 1
= z(s). (νx) z〈x〉. ([x ← bal(s)] | 0)

Deposit with receipt, with rct : string× nat→ string

dep :: z : $string ($nat ($string⊗ 1

= z(s). z(n). (νx) z〈x〉. ([x ← rct(s,n)] | 0)

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 12 / 32

university-logo

Outline

1 Introduction

2 Value Types

3 Interface Contracts and Quantification

4 An Extended Example

5 Proof Irrelevance

6 Conclusion

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 13 / 32

university-logo

Interface Contracts
Types so far are imprecise
Interface contract examples

I Increment returns greater number
I Increment returns n + 1
I Balance inquiry for authenticated user receives a signed statement
I Deposit of authenticated user receives a signed receipt
I ATM deducts a fee of at most $2 per transaction

Solution
I Quantification in session types
I Dependent types in (functional) substrait

Purely logical!
I Follow the proof theory . . .

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 14 / 32

university-logo

Quantification

P :: z : ∀x :τ.A(x) Input an M:τ along z and behave as A(M)

P :: z : ∃x :τ.A(x) Output an M:τ along z and behave as A(M)

Increment returns larger result

P :: z : ∀n:nat. ∃n′:nat. $(n′ > n)⊗ 1

Increment increments

P :: z : ∀n:nat.∃n′:nat. $(n′ = n + 1)⊗ 1

Balance inquiry for auth’d user receives a signed statement

P :: z : ∀s:string. $auth(s) (∃n:nat. $bal(s,n)⊗ 1

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 15 / 32

university-logo

Logical Rules = Typing Rules
P :: z : ∀x :τ.A(x) Input an M:τ along z and behave as A(M)

Give right and left rules, as always
Right rule

Ψ, y :τ ; Γ; ∆ =⇒ P(y) :: x : A(y)

Ψ; Γ; ∆ =⇒ x(y).P(y) :: x : ∀y :τ.A(y)
∀R

Left rule

Ψ ` M : τ Ψ; Γ; ∆, x :A(M) =⇒ Q :: z : C

Ψ; Γ; ∆, x :∀y :τ.A(y) =⇒ x〈M〉.Q :: z : C
∀L

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 16 / 32

university-logo

Cut Reduction = Computation

=⇒ P(y) :: x : A(y)

=⇒ x(y).P(y) :: x : ∀y :τ.A(y)
∀Ry

M : τ x :A(M) =⇒ Q :: z : C

x :∀y :τ.A(y) =⇒ x〈M〉.Q :: z : C
∀L

=⇒ (νx)(x(y).P(y) | x〈M〉.Q) :: z : C
Cut

−→

=⇒ P(M) :: x : A(M) x :A(M) =⇒ Q :: z : C

=⇒ (νx)(P(M) | Q) :: z : C
Cut

(omitted contexts)
Reduction rule extracted

x(y).P(y) | x〈M〉.Q −→ P(M) | Q

Already known, except passing values, not channels

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 17 / 32

university-logo

Existential Quantification
P :: z : ∃x :τ.A(x) Output an M:τ along z and behave as A(M)

Existential quantification is dual to universal quantification
Right rule

Ψ ` M : τ Ψ; Γ; ∆ =⇒ P :: x : A(M)

Ψ; Γ; ∆ =⇒ x〈M〉.P :: x : ∃y :τ.A(y)
∃R

Left rule

Ψ ` M : τ Ψ, y :τ ; Γ; ∆, x :A(y) =⇒ Q(y) :: z : C

Ψ; Γ; ∆, x :∃y :τ.A(y) =⇒ x(y).Q(y) :: z : C
∃L

No new reduction

x〈M〉.P | x(y).Q(y) −→ P | Q(M)

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 18 / 32

university-logo

Example Revisited: Increment
Types such as m > n or m = n are inhabited by proofs; this
applies to full functional specifications in type theory
Use standard Πx :τ. σ and Σx :τ. σ from type theory in functional
substrait
Increment returns a larger result, using gt1 : Πk :nat. k + 1 > k

inc :: z : ∀n:nat. ∃n′:nat. $(n′ > n)⊗ 1
= z(n). z〈n + 1〉. (νx)([x ← gt1(n)] | 0)

Increment increments, using refl : Πk :nat. k = k

inc :: z : ∀n:nat. ∃n′:nat. $(n′ = n + 1)⊗ 1
= z(n). z〈n + 1〉. (νx)([x ← refl(n + 1)] | 0)

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 19 / 32

university-logo

Example Revisited: Balance Inquiry
Balance inquiry for auth’d user receives a signed statement

P :: z : ∀s:string. $auth(s) (∃n:nat. $bal(s,n)⊗ 1

Types such as auth(s) or bal(s,n) are inhabited by
cryptographically signed certificates, or proofs in an authorization
logic constructed from them
Process, with bl : Πs:string.Σn:nat.bal(s,n)

inq :: z : ∀s:string. $auth(s) (∃n:nat. $bal(s,n)⊗ 1
= z(s). z(a). z〈π1(bl(s))〉. (νx)([x ← π2(bl(s))] | 0)

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 20 / 32

university-logo

Outline

1 Introduction

2 Value Types

3 Interface Contracts and Quantification

4 An Extended Example

5 Proof Irrelevance

6 Conclusion

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 21 / 32

university-logo

Example: An ATM
Mediate between client and bank
Don’t need −⊗ 1 to terminate session
BANK provides deposit for any client and provides signed receipt

Bank = !∀s:string. ∀n:nat. ∃r :string. $receipt(s,n, r)

· =⇒ BANK :: b∗ : Bank

ATM provides deposit for authenticated client and provides signed
receipt. It may deduct at most $2.

Atm = !∀s:string. $auth(s) (∀n:nat.

(∃n′:nat. $(n′ ≥ n − 2)⊗ ∃r :string. $receipt(s,n′, r)

b∗ : Bank =⇒ ATM :: a∗ : Atm

CLIENT uses ATM

a∗ : Atm =⇒ CLIENT :: : 1

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 22 / 32

university-logo

Cut as Composition
We compose BANK and ATM using cut

· =⇒ BANK :: b∗ : Bank b∗ : Bank =⇒ ATM :: a∗ : Atm

· =⇒ (νb∗)(BANK | ATM) :: a∗ : Atm
Cut

We compose result and CLIENT using cut

· =⇒ (νb∗)(BANK | ATM) :: a∗ : Atm a∗ : Atm =⇒ CLIENT :: : 1

· =⇒ (νa∗)(((νb∗)(BANK | ATM)) | CLIENT) :: : 1
Cut

Composition in the other order is structurally congruent

(νa∗)(νb∗)(BANK | ATM | CLIENT)

BANK provides b∗, ATM uses b∗ and provides a∗, CLIENT uses
a∗

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 23 / 32

university-logo

Implementing ATM
Recall

Bank = !∀s:string.∀n:nat.∃r :string. $receipt(s,n, r)

Atm = !∀s:string. $auth(s) (∀n:nat.

(∃n′:nat. $(n′ ≥ n − 2)⊗ ∃r :string. $receipt(s,n′, r)

b∗ : Bank =⇒ ATM :: a∗ : Atm

An implementation, with ge1 : Πk :nat.k + 1 ≥ k , only b∗ free

ATM = !a∗(a).a(s).a(cert).a(n).

(νb)(b∗〈b〉.b〈s〉.b〈n − 1〉.
b(r).b(rct).

a〈n − 1〉. (νx)([x ← ge1(n − 2)] |
a〈r〉. [a← rct]))

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 24 / 32

university-logo

Outline

1 Introduction

2 Value Types

3 Interface Contracts and Quantification

4 An Extended Example

5 Proof Irrelevance

6 Conclusion

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 25 / 32

university-logo

Proof Irrelevance
Sometimes proofs are a burden

I Can be decided effectively (e.g., increment)
I Partner can be trusted (e.g., authentication of receipt)
I Computation is concurrent, but not distributed

May erase if not computationally relevant
I Must verify relevant computation does not depend on them
I Can be checked effectively in a type system

New type [τ], computationally irrelevant terms of type τ
Defined by introduction and elimination rules [Pf.’08]
May decide to erase or not

I Progress and preservation hold in either case

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 26 / 32

university-logo

Irrelevance as a Modality
Example: We check the fee ourselves and trust the ATM/Bank

Atm = !∀s:string. $auth(s) (∀n:nat.

(∃n′:nat. $[n′ ≥ n − 2]⊗ ∃r :string. $[receipt(s,n′, r)]

Example: We don’t want a receipt at all

Atm = !∀s:string. $auth(s) (∀n:nat.

(∃n′:nat. $[n′ ≥ n − 2]⊗ ∃r :[string]. $[receipt(s,n′, r)]

Statically, evidence [M] : [τ] must be provided or inferred
At run time, [] : [τ] is sufficient; erase [τ] to []

We can further optimize using erased type isomorphisms, e.g.

[]× τ ' τ ' []× τ $[]⊗ A ' A ' A⊗ $[]

Σx :[]. σ ' σ ∃x :[].A ' A

[]→ τ ' τ $[] (A ' A

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 27 / 32

university-logo

Outline

1 Introduction

2 Value Types

3 Interface Contracts and Quantification

4 An Extended Example

5 Proof Irrelevance

6 Conclusion

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 28 / 32

university-logo

Variations and Extensions
Functional substrait is not necessary . . .

I Can derive concurrent evaluation strategies for functional language
1. Embed functional language in linear λ-calculus (std.)
2. Embed linear λ-calculus in linear sequent calculus (std.)
I Result is well-typed in session types

. . . but good design
I Separation of concerns

Inductive and co-inductive types mix with linearity [Baelde’08]
I Cut reduction (= computation) straightforward unrolling
I Termination more difficult or does not hold

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 29 / 32

university-logo

Ongoing and Future Work
Observational equivalence as proof conversion
Irrelevant sessions (speculative)

I Interaction of linearity and irrelevance [Ley-Wild&Pf.’07]
Towards a programming language (speculative)

I Monadic encapsulation of session types?
I Connection to ML5 (sequential, distributed)? [Murphy’08]

Towards multiparty session/conversation types (speculative)
I (Kripke) worlds as conversations?
I Introducing modalities or hybrid logic formulation

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 30 / 32

university-logo

Summary
Session types as intuitionistic linear propositions:

A (B input ∀x :τ.A(x) value/proof input
A⊗ B (bound) output ∃x :τ.A(x) value/proof output
1 inaction $τ value/proof
!A replication [τ] irrelevant term
A N B external coice A⊕ B internal choice

Dependent sessions types via quantification
I Can express value and proof passing
I Adherence to expressive logical contracts
I Satisfies progress and preservation

Overhead reduction via proof irrelevance
I Selective hiding based on decidability or trust
I Avoiding communication by applying type isomorphisms

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 31 / 32

university-logo

Soap Box
Co-design of terms, types, proofs!

I Constructs can be understood in isolation
I Reasoning principles built in, not grafted on
I Path towards extensibility (quantifiers, dependent types)
I Computation rules as proof reductions

Draw upon rich intensional concepts in logic!
I Linearity and sharing — how resources are used
I Order — how resources are connected
I Necessity — everwhere and always
I Possibility — somewhere and sometimes
I Knowledge — information (flow)
I Linear knowledge — possession
I Affirmation — authorization
I Linear affirmation — use-once authorization
I Irrelevance — optimizing computation and communication

Why start from scratch every time?

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 32 / 32

	Introduction
	Value Types
	Interface Contracts and Quantification
	An Extended Example
	Proof Irrelevance
	Conclusion

