Dependent Session Types
via Intuitionistic Linear Type Theory

Frank Pfenning
[with Luis Caires and Bernardo Toninho]

Department of Computer Science
Carnegie Mellon University

Workshop on Behavioural Types
April 20, 2010 / Lisbon

Caires, Pfenning, Toninho (UNL&CMU) Behavioural Types WS 1/32



Outline

G Introduction

e Value Types

© Interface Contracts and Quantification
© An Extended Example

e Proof Irrelevance

6 Conclusion

Caires, Pfenning, Toninho (UNL&CMU)



Outline

@ Introduction

Caires, Pfenning, Toninho (UNL&CMU)



Overview

@ Session types are mostly “simple” types

» Emphasis on communication behavior

» No complex contracts on values
@ Exploit logical foundations of session types

» Proof-theoretic semantics

» Computation derived from cut reduction
@ An analogy
Simple types as propositions [Curry-Howard’69]
Dependent types for expressive specifications [Martin-L6f'80]
Session types as linear propositions
Dependent session types for expressive contracts
@ Proof irrelevance

» Bridge between dependent and simple types
» May erase computationally irrelevant proofs
» New considerations in distributed settings

vV vy vYyy

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 4/32



Why Curry-Howard?

@ Orthogonality of constructs, properties
» ND/FUN: —, x,1,+,0
» DILL/SES: —, ®, 1, &, &, !

@ Systematic proof-theoretic foundation

» ND/FUN: proof reduction gives rise to computation
» DILL/SES: cut reduction gives rise to computation

@ Co-design of computational system with logic for reasoning

» ND/FUN: Dependent types, inductive types and recursion
» DILL/SES: Quantification and contracts

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 5/32



How to Read the Judgments

Ur:A1, ..., UntAn s X1:By, ..., xkBx —= P :z:C

-~

r A

@ Process P provides service C along channel z . ..
@ ... when composed with processes

» providing persistent services A; along u; and
» providing (linear) services B; along x;

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 6/32



Linear Session Type Summary

2z:A&B Offer both Aand B along z

P:z:A—- B Inputan Aalong z and behave as B
P:z:A® B Output a new x:A along z and behave as B
P:z:1 Terminate

P:z: 1A Persistently offer A along z

P

P

2z:A®d B  Offer either Aor B along z

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 7132



Outline

e Value Types

Caires, Pfenning, Toninho (UNL&CMU)



Value Types
@ So far, we type only channels
@ Add values from an underlying (functional) language
@ P :: z: %7 — Provide value of type 7 along z

@ Examples:
P:z:%nat - $nat® 1 Increment argument
P :: z: $string — $nat ® 1 Balance inquiry
P :: z : $string — $nat —o $string ® 1 Deposit with receipt
P :: z :1(($string — $nat ® 1)

& ($(string x nat) — $string ® 1)) A Bank

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 9/32



Logical Rules = Typing Rules

@ Give right and left rules, as usual
@ Aux. judgment xq:7q,..., Xp:Th = M : T
\
@ Generalize sequentto V; A= P:z: C
@ V is persistent (not the only choice .. .)

@ Right rule
V-M:r

V.l =[x M]:x:%7

@ Left rule
U xr A= Q:z:C

UV:TAXxS$ST=— Q:z:C

$L

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 10/32



Cut Reduction = Computation

VEM:T V. xm I A= Q(x):z:C
Ul =[x — M]:x:9%7 SR VLA XxST—=— Q(x):z:C
V.l A= (vx)([x —M] | Q(x))::z:C

$L
Cut

— UL A=QM):z:C

@ Reduction (vx)([x — M] | Q(x)) — Q(M)
@ Requires substitution principle:
IfVEM:TandV, x:T = J(x) thenV = J(M).

Caires, Pfenning, Toninho (UNL&CMU) Behavioural Types WS 11/32



Examples

@ Increment

inc : z:$nat — $nat® 1
= z(n).(vx)z(x).([x — n+1]|0)

@ Balance inquiry, with bal : string — nat

ing : Zz:$string — $nat® 1
= z(8).(vx) z(x).([x < bal(s)] | 0)

@ Deposit with receipt, with rct : string x nat — string

dep : Zz:9$string — $nat — $string ® 1
= 2(8).z(n).(vx) z(x).([x < rct(s,n)] | 0)

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 12/32



Outline

© Interface Contracts and Quantification

Caires, Pfenning, Toninho (UNL&CMU)



Interface Contracts

@ Types so far are imprecise
@ Interface contract examples

» Increment returns greater number

» Increment returns n+ 1

» Balance inquiry for authenticated user receives a signed statement
» Deposit of authenticated user receives a signed receipt

» ATM deducts a fee of at most $2 per transaction

@ Solution

» Quantification in session types
» Dependent types in (functional) substrait

@ Purely logical!
» Follow the proof theory ...

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 14/32



Quantification

P: z:V¥x:r.A(x) Inputan M:7 along z and behave as A(M)
P::z:3x:m. A(x) Output an M:7 along z and behave as A(M)

@ Increment returns larger result
P:: z:Vnnat.3n'nat.$(n' > n)®1
@ Increment increments
P:: z:Vnnat.3n":nat.$(n = n+1) 1
@ Balance inquiry for auth’'d user receives a signed statement

P :: z : Vs:string. $auth(s) — 3n:nat. $bal(s, n) ® 1

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 15/32



Logical Rules = Typing Rules
@ P:z:Vxit.A(x) Inputan M:r along z and behave as A(M)
@ Give right and left rules, as always
@ Right rule
V oy A= P(y) = x:Aly)
VT A= x(y). P(y) = x:Yy:1. A(y)

o Left rule

VEM:7 VU, A xXAM)= Q:z:C
v
U, A XYy Aly) = x(M).Q::z: C

L

Caires, Pfenning, Toninho (UNL&CMU) Behavioural Types WS 16/32



Cut Reduction = Computation

= P(y) :: x: A(Y) M:7 xAM)=Q:z:C
y
= x(y). P(y) = x : Vy:7. A(y) A xVy:r. Aly) = x(M).Q::z: C ijt
= (vx)(x(y).P(y) | x(M). Q) ::z: C

= P(M) :x:AM) xAM)=Q:z:C
— = (vX)(PM) | Q)::z:C

Cut

@ (omitted contexts)
@ Reduction rule extracted

x(y)-P(y) | x(M).Q — P(M) | Q

@ Already known, except passing values, not channels

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 17/32



Existential Quantification
@ P: z:3x:t. A(x) Output an M:7 along z and behave as A(M)
@ Existential quantification is dual to universal quantification
@ Right rule
VEM:7 V,TA= P:x:AM)
VA= x(M).P::x:3y1.Aly)

R

@ Left rule
VEM:7 V. ynT A XAY) = Q(y):z:C
VT A x:3y:m Aly) = x(y).Q(y) = z: C

@ No new reduction

X(M). P | x(y)-Q(y) — P| QM)

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 18/32



Example Revisited: Increment

@ Types such as m > nor m = n are inhabited by proofs; this
applies to full functional specifications in type theory

@ Use standard Nx:7. o and X x:7. o from type theory in functional
substrait

@ Increment returns a larger result, using gt : Nkmat. k +1 > k

inc :: z:Vmnat.3n':nat.$(n" > n) ®1
= 2(n).z(n+1). (wx)([x — gt;(n)] | 0)

@ Increment increments, using refl : Nk:nat. k = k

inc : z:Vmnat.3n'nat.$(n" =n+1)x1
= z(n).z(n+1). (vx)([x < refl(n+1)] | 0)

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 19/32



Example Revisited: Balance Inquiry

@ Balance inquiry for auth’d user receives a signed statement
P :: z : Vs:string. $auth(s) — Jn:nat. $bal(s,n) 1

@ Types such as auth(s) or bal(s, n) are inhabited by
cryptographically signed certificates, or proofs in an authorization
logic constructed from them

@ Process, with bl : MNs:string. X n:nat. bal(s, n)

ing :: Zz:Vs:string. $auth(s) — Jn:nat. $bal(s, n) ® 1
= 2z(8).z(a).z(m1(bl(s))). (vx)([x < m2(bl(s))] | 0)

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 20/32



Outline

© An Extended Example

Caires, Pfenning, Toninho (UNL&CMU)



Example: An ATM

@ Mediate between client and bank
@ Don’'t need — ® 1 to terminate session
@ BANK provides deposit for any client and provides signed receipt

Bank = Vs:string. Vn:nat. 3r:string. $receipt(s, n, r)
- =— BANK :: b* : Bank

@ ATM provides deposit for authenticated client and provides signed
receipt. It may deduct at most $2.

Atm = Vs:string. $auth(s) — Vn:nat.
—o dn':nat. $(’ > n— 2) ® 3r:string. $receipt(s, ', r)
b* : Bank = ATM :: a* : Atm
@ CLIENT uses ATM
a* : Atm = CLIENT :: _:1

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 22/32



Cut as Composition
@ We compose BANK and ATM using cut
-=— BANK :: b* : Bank b*: Bank — ATM :: a* : Atm
- = (vb*)(BANK | ATM) :: a* : Atm

Cut

@ We compose result and CLIENT using cut
- = (vb*)(BANK | ATM) :: a* : Atm a* : Atm = CLIENT :: _:1
- = (va*)(((vb*)(BANK | ATM)) | CLIENT) :: _: 1

Cut

@ Composition in the other order is structurally congruent
(va*)(vb*)(BANK | ATM | CLIENT)

@ BANK provides b*, ATM uses b* and provides a*, CLIENT uses
a*

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 23/32



Implementing ATM

@ Recall
Bank = |Vs:string. Vn:nat. 3r:string. $receipt(s, n, r)

Atm = IVs:string. $auth(s) — Vn:nat.
—o 3n":nat. $(r’ > n — 2) ® 3r:string. $receipt(s, ', r)
b* : Bank = ATM :: a* : Atm
@ An implementation, with ge, : Mk:nat.k +1 > k, only b* free
ATM = la*(a).a(s). a(cert). a(n).
(vb)(b*(b). b(s).b(n—1).
b(r). b(rct).
a(n—1). (vx)([x —gey(n—2)] |

a(r).[a « rct]))

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 24/32



Outline

@ Proof Irrelevance

Caires, Pfenning, Toninho (UNL&CMU)



Proof Irrelevance

@ Sometimes proofs are a burden

» Can be decided effectively (e.g., increment)
» Partner can be trusted (e.g., authentication of receipt)
» Computation is concurrent, but not distributed

@ May erase if not computationally relevant

» Must verify relevant computation does not depend on them
» Can be checked effectively in a type system

@ New type [7], computationally irrelevant terms of type
@ Defined by introduction and elimination rules [Pf.08]

@ May decide to erase or not
» Progress and preservation hold in either case

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 26/32



Irrelevance as a Modality

@ Example: We check the fee ourselves and trust the ATM/Bank

Atm = Ws:string. $auth(s) — Vn:nat.
—o 3dn":nat. $[’ > n — 2] ® 3r:string. $[receipt(s, ', r)]
@ Example: We don’t want a receipt at all
Atm = Ws:string. $auth(s) — Vn:nat.
—o dn':nat. $[’ > n— 2] ® 3r:[string]. $[receipt(s, ', r)]
@ Statically, evidence [M] : [r] must be provided or inferred
@ Atruntime, []: [r] is sufficient; erase [7] to []
@ We can further optimize using erased type isomorphisms, e.g.
[[x771~[]x7 $[|@A~A~ARY[]
Yx|lo~o Ix: [ A~A
(=77 $[] cA~A

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 27/32



Outline

G Conclusion

Caires, Pfenning, Toninho (UNL&CMU)



Variations and Extensions

@ Functional substrait is not necessary ...
» Can derive concurrent evaluation strategies for functional language
1. Embed functional language in linear A-calculus (std.)
2. Embed linear A-calculus in linear sequent calculus (std.)
» Result is well-typed in session types
@ ... but good design
» Separation of concerns
@ Inductive and co-inductive types mix with linearity [Baelde’08]

» Cut reduction (= computation) straightforward unrolling
» Termination more difficult or does not hold

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 29/32



Ongoing and Future Work

@ Observational equivalence as proof conversion
@ Irrelevant sessions (speculative)

» Interaction of linearity and irrelevance [Ley-Wild&Pf’07]
@ Towards a programming language (speculative)

» Monadic encapsulation of session types?
» Connection to ML5 (sequential, distributed)? [Murphy’08]

@ Towards multiparty session/conversation types (speculative)

» (Kripke) worlds as conversations?
» Introducing modalities or hybrid logic formulation

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 30/32



Summary

@ Session types as intuitionistic linear propositions:

A— B input Vx:T. A(x) value/proof input
A® B  (bound) output Ix:T. A(x) value/proof output
1 inaction $r value/proof

A replication [7] irrelevant term
A& B  external coice AoB internal choice

@ Dependent sessions types via quantification
» Can express value and proof passing
» Adherence to expressive logical contracts
» Satisfies progress and preservation
@ Overhead reduction via proof irrelevance
» Selective hiding based on decidability or trust
» Avoiding communication by applying type isomorphisms

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS 31/32



Soap Box

@ Co-design of terms, types, proofs!

vV vy VvYy

Constructs can be understood in isolation

Reasoning principles built in, not grafted on

Path towards extensibility (quantifiers, dependent types)
Computation rules as proof reductions

@ Draw upon rich intensional concepts in logic!

>

vV VY VY VY VY VY VY

Linearity and sharing — how resources are used

Order — how resources are connected

Necessity — everwhere and always

Possibility — somewhere and sometimes

Knowledge — information (flow)

Linear knowledge — possession

Affirmation — authorization

Linear affirmation — use-once authorization

Irrelevance — optimizing computation and communication

@ Why start from scratch every time?

Caires, Pfenning, Toninho (UNL&CMU) DSILL Behavioural Types WS

32/32



	Introduction
	Value Types
	Interface Contracts and Quantification
	An Extended Example
	Proof Irrelevance
	Conclusion

