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Overview

@ Session types are mostly “simple” types

» Emphasis on communication behavior

» No complex contracts on values
@ Exploit logical foundations of session types

» Proof-theoretic semantics

» Computation derived from cut reduction
@ An analogy
Simple types as propositions [Curry-Howard’69]
Dependent types for expressive specifications [Martin-L6f'80]
Session types as linear propositions
Dependent session types for expressive contracts
@ Proof irrelevance

» Bridge between dependent and simple types
» May erase computationally irrelevant proofs
» New considerations in distributed settings

vV vy vYyy
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Why Curry-Howard?

@ Orthogonality of constructs, properties
» ND/FUN: —, x,1,+,0
» DILL/SES: —, ®, 1, &, &, !

@ Systematic proof-theoretic foundation

» ND/FUN: proof reduction gives rise to computation
» DILL/SES: cut reduction gives rise to computation

@ Co-design of computational system with logic for reasoning

» ND/FUN: Dependent types, inductive types and recursion
» DILL/SES: Quantification and contracts
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How to Read the Judgments

Ur:A1, ..., UntAn s X1:By, ..., xkBx —= P :z:C

-~

r A

@ Process P provides service C along channel z . ..
@ ... when composed with processes

» providing persistent services A; along u; and
» providing (linear) services B; along x;
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Linear Session Type Summary

2z:A&B Offer both Aand B along z

P:z:A—- B Inputan Aalong z and behave as B
P:z:A® B Output a new x:A along z and behave as B
P:z:1 Terminate

P:z: 1A Persistently offer A along z

P

P

2z:A®d B  Offer either Aor B along z
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Value Types
@ So far, we type only channels
@ Add values from an underlying (functional) language
@ P :: z: %7 — Provide value of type 7 along z

@ Examples:
P:z:%nat - $nat® 1 Increment argument
P :: z: $string — $nat ® 1 Balance inquiry
P :: z : $string — $nat —o $string ® 1 Deposit with receipt
P :: z :1(($string — $nat ® 1)

& ($(string x nat) — $string ® 1)) A Bank
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Logical Rules = Typing Rules

@ Give right and left rules, as usual
@ Aux. judgment xq:7q,..., Xp:Th = M : T
\
@ Generalize sequentto V; A= P:z: C
@ V is persistent (not the only choice .. .)

@ Right rule
V-M:r

V.l =[x M]:x:%7

@ Left rule
U xr A= Q:z:C

UV:TAXxS$ST=— Q:z:C

$L
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Cut Reduction = Computation

VEM:T V. xm I A= Q(x):z:C
Ul =[x — M]:x:9%7 SR VLA XxST—=— Q(x):z:C
V.l A= (vx)([x —M] | Q(x))::z:C

$L
Cut

— UL A=QM):z:C

@ Reduction (vx)([x — M] | Q(x)) — Q(M)
@ Requires substitution principle:
IfVEM:TandV, x:T = J(x) thenV = J(M).
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Examples

@ Increment

inc : z:$nat — $nat® 1
= z(n).(vx)z(x).([x — n+1]|0)

@ Balance inquiry, with bal : string — nat

ing : Zz:$string — $nat® 1
= z(8).(vx) z(x).([x < bal(s)] | 0)

@ Deposit with receipt, with rct : string x nat — string

dep : Zz:9$string — $nat — $string ® 1
= 2(8).z(n).(vx) z(x).([x < rct(s,n)] | 0)
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Interface Contracts

@ Types so far are imprecise
@ Interface contract examples

» Increment returns greater number

» Increment returns n+ 1

» Balance inquiry for authenticated user receives a signed statement
» Deposit of authenticated user receives a signed receipt

» ATM deducts a fee of at most $2 per transaction

@ Solution

» Quantification in session types
» Dependent types in (functional) substrait

@ Purely logical!
» Follow the proof theory ...
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Quantification

P: z:V¥x:r.A(x) Inputan M:7 along z and behave as A(M)
P::z:3x:m. A(x) Output an M:7 along z and behave as A(M)

@ Increment returns larger result
P:: z:Vnnat.3n'nat.$(n' > n)®1
@ Increment increments
P:: z:Vnnat.3n":nat.$(n = n+1) 1
@ Balance inquiry for auth’'d user receives a signed statement

P :: z : Vs:string. $auth(s) — 3n:nat. $bal(s, n) ® 1
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Logical Rules = Typing Rules
@ P:z:Vxit.A(x) Inputan M:r along z and behave as A(M)
@ Give right and left rules, as always
@ Right rule
V oy A= P(y) = x:Aly)
VT A= x(y). P(y) = x:Yy:1. A(y)

o Left rule

VEM:7 VU, A xXAM)= Q:z:C
v
U, A XYy Aly) = x(M).Q::z: C

L
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Cut Reduction = Computation

= P(y) :: x: A(Y) M:7 xAM)=Q:z:C
y
= x(y). P(y) = x : Vy:7. A(y) A xVy:r. Aly) = x(M).Q::z: C ijt
= (vx)(x(y).P(y) | x(M). Q) ::z: C

= P(M) :x:AM) xAM)=Q:z:C
— = (vX)(PM) | Q)::z:C

Cut

@ (omitted contexts)
@ Reduction rule extracted

x(y)-P(y) | x(M).Q — P(M) | Q

@ Already known, except passing values, not channels
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Existential Quantification
@ P: z:3x:t. A(x) Output an M:7 along z and behave as A(M)
@ Existential quantification is dual to universal quantification
@ Right rule
VEM:7 V,TA= P:x:AM)
VA= x(M).P::x:3y1.Aly)

R

@ Left rule
VEM:7 V. ynT A XAY) = Q(y):z:C
VT A x:3y:m Aly) = x(y).Q(y) = z: C

@ No new reduction

X(M). P | x(y)-Q(y) — P| QM)
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Example Revisited: Increment

@ Types such as m > nor m = n are inhabited by proofs; this
applies to full functional specifications in type theory

@ Use standard Nx:7. o and X x:7. o from type theory in functional
substrait

@ Increment returns a larger result, using gt : Nkmat. k +1 > k

inc :: z:Vmnat.3n':nat.$(n" > n) ®1
= 2(n).z(n+1). (wx)([x — gt;(n)] | 0)

@ Increment increments, using refl : Nk:nat. k = k

inc : z:Vmnat.3n'nat.$(n" =n+1)x1
= z(n).z(n+1). (vx)([x < refl(n+1)] | 0)
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Example Revisited: Balance Inquiry

@ Balance inquiry for auth’d user receives a signed statement
P :: z : Vs:string. $auth(s) — Jn:nat. $bal(s,n) 1

@ Types such as auth(s) or bal(s, n) are inhabited by
cryptographically signed certificates, or proofs in an authorization
logic constructed from them

@ Process, with bl : MNs:string. X n:nat. bal(s, n)

ing :: Zz:Vs:string. $auth(s) — Jn:nat. $bal(s, n) ® 1
= 2z(8).z(a).z(m1(bl(s))). (vx)([x < m2(bl(s))] | 0)
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Example: An ATM

@ Mediate between client and bank
@ Don’'t need — ® 1 to terminate session
@ BANK provides deposit for any client and provides signed receipt

Bank = Vs:string. Vn:nat. 3r:string. $receipt(s, n, r)
- =— BANK :: b* : Bank

@ ATM provides deposit for authenticated client and provides signed
receipt. It may deduct at most $2.

Atm = Vs:string. $auth(s) — Vn:nat.
—o dn':nat. $(’ > n— 2) ® 3r:string. $receipt(s, ', r)
b* : Bank = ATM :: a* : Atm
@ CLIENT uses ATM
a* : Atm = CLIENT :: _:1
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Cut as Composition
@ We compose BANK and ATM using cut
-=— BANK :: b* : Bank b*: Bank — ATM :: a* : Atm
- = (vb*)(BANK | ATM) :: a* : Atm

Cut

@ We compose result and CLIENT using cut
- = (vb*)(BANK | ATM) :: a* : Atm a* : Atm = CLIENT :: _:1
- = (va*)(((vb*)(BANK | ATM)) | CLIENT) :: _: 1

Cut

@ Composition in the other order is structurally congruent
(va*)(vb*)(BANK | ATM | CLIENT)

@ BANK provides b*, ATM uses b* and provides a*, CLIENT uses
a*
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Implementing ATM

@ Recall
Bank = |Vs:string. Vn:nat. 3r:string. $receipt(s, n, r)

Atm = IVs:string. $auth(s) — Vn:nat.
—o 3n":nat. $(r’ > n — 2) ® 3r:string. $receipt(s, ', r)
b* : Bank = ATM :: a* : Atm
@ An implementation, with ge, : Mk:nat.k +1 > k, only b* free
ATM = la*(a).a(s). a(cert). a(n).
(vb)(b*(b). b(s).b(n—1).
b(r). b(rct).
a(n—1). (vx)([x —gey(n—2)] |

a(r).[a « rct]))
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Proof Irrelevance

@ Sometimes proofs are a burden

» Can be decided effectively (e.g., increment)
» Partner can be trusted (e.g., authentication of receipt)
» Computation is concurrent, but not distributed

@ May erase if not computationally relevant

» Must verify relevant computation does not depend on them
» Can be checked effectively in a type system

@ New type [7], computationally irrelevant terms of type
@ Defined by introduction and elimination rules [Pf.08]

@ May decide to erase or not
» Progress and preservation hold in either case
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Irrelevance as a Modality

@ Example: We check the fee ourselves and trust the ATM/Bank

Atm = Ws:string. $auth(s) — Vn:nat.
—o 3dn":nat. $[’ > n — 2] ® 3r:string. $[receipt(s, ', r)]
@ Example: We don’t want a receipt at all
Atm = Ws:string. $auth(s) — Vn:nat.
—o dn':nat. $[’ > n— 2] ® 3r:[string]. $[receipt(s, ', r)]
@ Statically, evidence [M] : [r] must be provided or inferred
@ Atruntime, []: [r] is sufficient; erase [7] to []
@ We can further optimize using erased type isomorphisms, e.g.
[[x771~[]x7 $[|@A~A~ARY[]
Yx|lo~o Ix: [ A~A
(=77 $[] cA~A
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Variations and Extensions

@ Functional substrait is not necessary ...
» Can derive concurrent evaluation strategies for functional language
1. Embed functional language in linear A-calculus (std.)
2. Embed linear A-calculus in linear sequent calculus (std.)
» Result is well-typed in session types
@ ... but good design
» Separation of concerns
@ Inductive and co-inductive types mix with linearity [Baelde’08]

» Cut reduction (= computation) straightforward unrolling
» Termination more difficult or does not hold
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Ongoing and Future Work

@ Observational equivalence as proof conversion
@ Irrelevant sessions (speculative)

» Interaction of linearity and irrelevance [Ley-Wild&Pf’07]
@ Towards a programming language (speculative)

» Monadic encapsulation of session types?
» Connection to ML5 (sequential, distributed)? [Murphy’08]

@ Towards multiparty session/conversation types (speculative)

» (Kripke) worlds as conversations?
» Introducing modalities or hybrid logic formulation
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Summary

@ Session types as intuitionistic linear propositions:

A— B input Vx:T. A(x) value/proof input
A® B  (bound) output Ix:T. A(x) value/proof output
1 inaction $r value/proof

A replication [7] irrelevant term
A& B  external coice AoB internal choice

@ Dependent sessions types via quantification
» Can express value and proof passing
» Adherence to expressive logical contracts
» Satisfies progress and preservation
@ Overhead reduction via proof irrelevance
» Selective hiding based on decidability or trust
» Avoiding communication by applying type isomorphisms
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Soap Box

@ Co-design of terms, types, proofs!

vV vy VvYy

Constructs can be understood in isolation

Reasoning principles built in, not grafted on

Path towards extensibility (quantifiers, dependent types)
Computation rules as proof reductions

@ Draw upon rich intensional concepts in logic!

>

vV VY VY VY VY VY VY

Linearity and sharing — how resources are used

Order — how resources are connected

Necessity — everwhere and always

Possibility — somewhere and sometimes

Knowledge — information (flow)

Linear knowledge — possession

Affirmation — authorization

Linear affirmation — use-once authorization

Irrelevance — optimizing computation and communication

@ Why start from scratch every time?
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