

On Order and Linearity in Logical Frameworks: The Lambek Calculus Revisited

Frank Pfenning

Workshop on Logic and Computational Linguistics

Ottawa, Canada, June 2003

Warning: Work in progress!

Joint work with Jeff Polakow and Kevin Watkins

Outline

- Logical Frameworks
- Ordered Logical Framework (OLF)
- Linear Destination-Passing
- Example: Sequential Evaluation
- Ordered Concurrent Logical Framework (OCLF)
- Examples: Parallel Evaluation, [Futures]
- A Unifying Framework for Syntax and Semantics?

Logical Frameworks

- Meta-languages for deductive systems
 - Specification (abstract syntax and rules)
 - Implementation (reasoning *within*)
 - Meta-theory (reasoning *about*)
- Applications
 - Logics
 - Programming languages

Design Criteria

- Support common concepts in logics and programming languages
 - Concise and direct specification
 - High-level implementation of algorithms
 - Effective meta-theoretic reasoning
- Example concepts
 - variable binding
 - capture-avoiding substitution
 - hypothetical judgments
 - parametric judgments

The Story So Far

- Discuss only LF-family:
 - LF [Harper, Honsell & Plotkin'93]
 - Linear LF [Cervesato & Pf'96]
 - Ordered LF [Polakow & Pf'93]
 - Concurrent LF [Watkins, Cervesato, Pf, Walker'02]
 - This talk: Ordered Concurrent LF
- All of the above are *intuitionistic*
- Emphasize *specification* in this talk
- Future work: search algorithms, meta-reasoning

Representation Principles

- Logical framework characteristics
 - Type-theoretic language (“syntax”)
 - Typing and equality (“semantics”)
 - Representation principles (“pragmatics”)
- Examine for each framework
- Other criteria for search and meta-reasoning

The Logical Framework LF

- LF [Harper, Honsell & Plotkin'93]
- Language

Atomic Types $P ::= a \mid P M$

Types $A ::= P \mid A_1 \rightarrow A_2 \mid \Pi u : A_1. A_2$

Objects $M ::= c \mid u \mid \lambda u. M \mid M_1 M_2$

Contexts $\Gamma ::= \cdot \mid \Gamma, u : A$

- Main judgments

$\Gamma \vdash_{\Sigma} M : A$ M has type A

$\Gamma \vdash_{\Sigma} M = N : A$ M is equal to N at type A

LF — Some Critical Rules

- Dependent functions

$$\frac{\Gamma, u:A \vdash M : B(u)}{\Gamma \vdash \lambda u. M : \Pi u:A. B(u)}$$

$$\frac{\Gamma \vdash M : \Pi u:A. B(u) \quad \Gamma \vdash N : A}{\Gamma \vdash M\ N : B(N)}$$

- Equality is $\beta\eta$ -conversion
- Equality and type-checking are decidable
- Canonical (β -normal, η -long) forms exist

LF Representation Principles

- Higher-order abstract syntax
 - Object logic variables as framework variables
- *Judgments as types*
- *Deductions as objects*
 - Proof checking reduces to framework type checking
- Hypothetical judgments as function types
 - Object-logic assumptions as framework assumptions
 - Object-logic parameters as framework parameters

Brief Example: Natural Semantics

- Object language: call-by-value λ -calculus

Expressions $e ::= \text{fn } x.e \mid e_1 \ e_2$
Values $v ::= \text{fn } x.e$

- Higher-order abstract syntax representation

exp : type.
fun : (exp \rightarrow exp) \rightarrow exp.
app : exp \rightarrow (exp \rightarrow exp).

- Example: $\lceil \text{fn } f. \text{fn } x. f \ x \rceil = \text{fun } (\lambda f. \text{fun } (\lambda x. \text{app } f \ x))$

Evaluation Semantics

- Evaluation judgment $e \hookrightarrow v$

$$\frac{}{\text{fn } x.e \hookrightarrow \text{fn } x.e} \quad \frac{e_1 \hookrightarrow \text{fn } x.e'_1 \quad e_2 \hookrightarrow v_2 \quad [v_2/x]e'_1 \hookrightarrow v}{e_1 \ e_2 \hookrightarrow v}$$

- Judgments as types representation (omitting quant's)

`eval : exp → exp → type.`

`evfun : eval (fun (λx. E x)) (fun (λx. E x)).`

`evapp : eval E1 (fun (λx. E'1 x))
→ eval E2 V2
→ eval (E'1 V2) V
→ eval (app E1 E2) V.`

Adequacy of Representations

- There is a *compositional bijection* between expressions and *canonical* objects $M : \text{exp}$
- There is a *compositional bijection* between deductions of $e \hookrightarrow v$ and *canonical* objects $D : \text{eval} \vdash e \sqsupseteq \vdash v \sqsupseteq$
- Canonical objects are β -normal, η -long forms
- Critical role of definitional equality
- Deemphasize in this talk

Scope of LF

- Many examples
 - Logic: natural deduction and sequent calculi for classical, intuitionistic, modal, temporal logics; normalization and cut-elimination procedures; translations between them; program extraction and optimization
 - Programming languages: functional and logic programming languages with a variety of features, type soundness and progress theorems, Church-Rosser theorem
- Some limitations for state and concurrency

The Linear Logical Framework

- LLF [Cervesato & Pf'96]
- Language

Types $A ::= P \mid A_1 \rightarrow A_2 \mid \Pi u:A_1. A_2$

$\mid A_1 \multimap A_2 \mid A_1 \& A_2 \mid \top$

Objects $M ::= \dots$

- Main judgment

$\Gamma; \Delta \vdash_{\Sigma} M : A \quad M \text{ has type } A$

- Γ are *unrestricted* assumptions (as before)
- Δ are *linear* assumptions (but order irrelevant)

Linear LF — Some Critical Rules

- Linear functions

$$\frac{\Gamma; \Delta, x:A \vdash M : B}{\Gamma; \Delta \vdash \lambda x. M : A \multimap B}$$

$$\frac{\Gamma; \Delta_1 \vdash M : A \multimap B \quad \Gamma; \Delta_2 \vdash N : A}{\Gamma; (\Delta_1, \Delta_2) \vdash M \wedge N : B}$$

- Unrestricted application

$$\frac{\Gamma; \Delta \vdash M : \Pi u:A. B(u) \quad \Gamma; \cdot \vdash N : A}{\Gamma; \Delta \vdash M N : B(N)}$$

Linear LF Representation Principles

- Canonical forms and decidability extend
- Linear LF conservatively extends LF
- All LF representation principles still apply
- *State as linear hypotheses*
- *Imperative computations as linear objects*

Scope of Linear LF

- New examples
 - Logic: classical and intuitionistic linear logic, cut-elimination, translation
 - Programming languages: imperative languages, functional languages with imperative features, lower-level languages
- Some limitations for concurrency and order

Concurrency and Order

- Divergent subsequent developments:
 - Ordered Logical Framework [Polakow'01]
 - Concurrent Logical Framework
[Watkins, Cervesato, Pf, Walker'02]
- This talk: a speculative synthesis of the ideas

The Ordered Logical Framework

- Ordered LF (OLF) [Polakow'01]
- Language

Types $A ::= P \mid A_1 \rightarrow A_2 \mid \Pi u : A_1. A_2$

$\mid A_1 \multimap A_2 \mid A_1 \& A_2 \mid \top$

$\mid A_1 \backslash A_2 \mid A_2 / A_1$

- Main judgment

$\Gamma; \Delta; \Omega \vdash_{\Sigma} M : A$

- Γ is *unrestricted*, Δ is *linear*
- Ω is *ordered* (as in the Lambek calculus)

Ordered LF — Some Critical Rules

- Left implication

$$\frac{\Gamma; \Delta; (w:A, \Omega) \vdash M : B}{\Gamma; \Delta; \Omega \vdash \lambda^< w. M : A \setminus B}$$

$$\frac{\Gamma; \Delta_1; \Omega_1 \vdash N : A \quad \Gamma; \Delta_2; \Omega_2 \vdash M : A \setminus B}{\Gamma; (\Delta_1, \Delta_2); (\Omega_1, \Omega_2) \vdash N \setminus M : B}$$

- Functions expect argument on the left
- Note Ω_1, Ω_2 is ordered, Δ_1, Δ_2 just linear

Ordered LF — Some Critical Rules

- Right implication

$$\frac{\Gamma; \Delta; (\Omega, w:A) \vdash M : B}{\Gamma; \Delta; \Omega \vdash \lambda^> w. M : B/A}$$

$$\frac{\Gamma; \Delta_1; \Omega_1 \vdash M : B/A \quad \Gamma; \Delta_2; \Omega_2 \vdash N : A}{\Gamma; (\Delta_1, \Delta_2); (\Omega_1, \Omega_2) \vdash M/N : B}$$

- Functions expect argument on the right
- Note Ω_1, Ω_2 is ordered, Δ_1, Δ_2 just linear

OLF Representation Principles

- Canonical forms and decidability extend
- OLF conservatively extends Linear LF
- All Linear LF principles still apply
- *Ordered structures as ordered hypotheses*
- Examples: queues, stacks, CPS transformations
- Example: parsing, in the style of Lambek
- Limitation: concurrency
- “Missing” connectives (e.g., ordered conjunction)

Framework Applications

- Operational semantics of programming languages
- Earlier: Natural Semantics
 - Semantics via natural deduction
 - Not modular
- Next: Linear Destination-Passing
 - Semantics via substructural deduction
 - Modular

Semantic Modularity

- Natural semantics is not modular:
 - Need to change judgments and rules
- Example: mutable store — from $e \hookrightarrow v$ to

$$\frac{\overline{\langle s, \text{fn } x.e \rangle \hookrightarrow \langle s, \text{fn } x.e \rangle}}{\langle s_1, e_1 e_2 \rangle \hookrightarrow \langle s_4, v \rangle} \quad \frac{\begin{array}{c} \langle s_1, e_1 \rangle \hookrightarrow \langle s_2, \text{fn } x.e'_1 \rangle \\ \langle s_2, e_2 \rangle \hookrightarrow \langle s_3, v_2 \rangle \\ \langle s_3, [v_2/x]e'_1 \rangle \hookrightarrow \langle s_4, v \rangle \end{array}}{\langle s_1, e_1 e_2 \rangle \hookrightarrow \langle s_4, v \rangle}$$

- Also: concurrency, exceptions, continuations, etc.
- More abstract, *modular* presentation?

Linear Destination-Passing

- New semantic presentation:
Linear Destination-Passing (LDP)
- Usually: dest-passing as a compiler optimization
- Here: destinations d as names for values
- Frames f for intermediate states
- Basic judgments J
 - $e \mapsto d$ evaluate e with destination d
 - $f \rightarrowtail d$ compute f with destination d
 - $d=v$ value of destination d is v

Linear Destination-Passing

- Judgment form H

$$H ::= \cdot \mid e \mapsto d, H \mid f \rightarrowtail d, H \mid d=v, H$$

- H ordered (later consider also linear, unrestricted)
- Overall deduction and value rule

$$\frac{d_0=v, \cdot \quad \vdots \quad d=v, H}{v \mapsto d, H}$$
$$e \mapsto d_0, \cdot$$

LDP Examples

- This talk:
 - Sequential evaluation
 - Parallel application
 - Futures
- Other have been worked out:
continuations, mutable references, call-by-need, exceptions, heaps, Petri nets, π -calculus, concurrent ML

Design Criteria

- Modularity
 - Do not revise earlier specifications
- Orthogonality
 - No cross-references between features
- Substructural properties
 - Which judgments are ordered, linear, affine, unrestricted

Sequential Evaluation

- Abstractions handled by value rule
- Applications (new parameters noted $[-]$)

$$\frac{e_1 \mapsto d_1, d_1 e_2 \rightarrow d, H}{e_1 e_2 \mapsto d, H} [d_1]$$

$$\frac{e_2 \mapsto d_2, d_1 = v_1, d_1 d_2 \rightarrow d, H}{d_1 = v_1, d_1 e_2 \rightarrow d, H} [d_2]$$

$$\frac{[v_2/x]e'_1 \mapsto d, H}{d_2 = v_2, d_1 = (\text{fn } x. e'_1), d_1 d_2 \rightarrow d, H}$$

Representing Basic Judgments

- Judgments as types

$$\Gamma e \mapsto d \vdash = \text{eval } \Gamma e \vdash d : \text{type}$$
$$\Gamma f \rightarrowtail d \vdash = \text{comp } \Gamma f \vdash d : \text{type}$$
$$\Gamma d = v \vdash = \text{is } d \Gamma v \vdash : \text{type}$$

- Resulting signature

eval : exp \rightarrow dest \rightarrow type.

comp : frame \rightarrow dest \rightarrow type.

is : dest \rightarrow val \rightarrow type.

State as Ordered Hypotheses

- First approximation: if \mathcal{D} deduction of H then

$$\Gamma; \cdot; \Gamma H \vdash \Gamma \mathcal{D} : C$$

where

- Γ declares all destinations in H , unrestricted
- ΓH is ordered
- C is a goal (e.g., repn. of $\exists v. d_0 = v$)
- Extend for more complex examples

Example: Sequential Evaluation

- Value rule

$$\frac{d=v, H}{v \mapsto d, H}$$

evval : eval (value V) D \rightarrow is D V.

- Here $A \rightarrow B$ stands for $A \setminus B$ or B/A when the choice does not matter.

Example: Sequential Evaluation

- Applications

$$\frac{e_1 \mapsto d_1, d_1 e_2 \rightarrow d, H}{e_1 e_2 \mapsto d, H} [d_1]$$

evapp : eval (app E₁ E₂) D
→ • (exists d₁. eval E₁ d₁ • comp (app₁ d₁ E₂) D)

- Use \exists and \bullet (ordered conjunction) freely
- Add to framework later

Example: Sequential Evaluation

- App₁ frame

$$\frac{e_2 \mapsto d_2, d_1 = v_1, d_1 \ d_2 \rightarrow d, H}{d_1 = v_1, d_1 \ e_2 \rightarrow d, H} [d_2]$$

is D₁ V₁ • comp (app₁ D₁ E₂) D
→ • (exists d₂. eval E₂ d₂ • is D₁ V₁ • comp (app₂ D₁ d₂) D)

Example: Sequential Evaluation

- App₂ frame

$$\frac{[v_2/x]e'_1 \mapsto d, H}{d_2=v_2, d_1=(\text{fn } x. e'_1), d_1\ d_2 \rightarrow d, H}$$

is D₂ V₂ • is D₁ (fun (λx. E'₁ x)) • comp (app₂ D₁ D₂) D
—• eval (E'₁ V₂) D.

Consequences for Frameworks

- Rules have forms such as $A \bullet B \multimap \exists d. C \bullet D$
- Not available in LLF ($\Pi, \rightarrow, \multimap, \&, \top$) or OLF
- \bullet, \exists do not permit unique canonical forms
- Two prior approaches
 - Convert to classical linear logic (LO, Forum)

$$A \otimes B \multimap \forall d. C \otimes D$$

- Convert to continuation-passing style (LLF, OLF)

$$(\Pi d. C \multimap D \multimap g) \multimap (A \multimap B \multimap g)$$

Limitations of Prior Frameworks

- Classical linear logic (Forum) [Miller'94] [Chirimar'95]
 - No dependencies or internal notation for proofs
 - No distinguished goal
 - Which deductions are equal?
 - Operational semantics?
- Continuation-passing style (LLF, OLF)
 - Dependencies and internal notation for proofs
 - Distinguished, but generic goal g
 - Too few deductions are equal
 - Inappropriate don't-know nondeterminism

Monadic Encapsulation

- Idea: Encapsulate state in a *monad*!
- Move from

$$A \bullet B \multimap \exists d. C \bullet D$$

to

$$B \backslash (A \backslash \{\exists d. C \bullet D\})$$

where $\{-\}$ is a monadic type constructor

- Definition similar to monadic meta-language and lax logic [Moggi'89] [Pf & Davies'01]
- Use different from functional programming

Ordered Concurrent LF

- Type theory
 - Asynchronous connectives $\backslash, /, \multimap, \&, \top, \rightarrow, \Pi$ as in OLF
 - Canonical forms as in OLF
 - Synchronous connectives $\bullet, 1, !, i, \exists$ only in monad
 - Equations for true concurrency [omitted from this talk]
- Representation principle:
Concurrent computations as monadic expressions
- Conservative over LF, LLF, and OLF!

Ordered Concurrent LF

- Language

Types

$$A ::= P \mid A_1 \rightarrow A_2 \mid \Pi u : A_1. A_2$$
$$\mid A_1 \multimap A_2 \mid A_1 \& A_2 \mid \top$$
$$\mid A_1 \backslash A_2 \mid A_2 / A_1$$
$$\mid \{S\}$$

Synch Types $S ::= S_1 \bullet S_2 \mid 1 \mid !A \mid \mathbf{i}A \mid \exists u : A. S \mid A$

- Main judgments

$\Gamma; \Delta; \Omega \vdash_{\Sigma} M : A$ object M has type A

$\Gamma; \Delta; \Omega \vdash_{\Sigma} E \div S$ monadic expression E has synch type S

OCLF — Some Critical Rules

- Omit proof terms

$$\frac{\Gamma; \Delta; \Omega \vdash \div S}{\Gamma; \Delta; \Omega \vdash : \{S\}}$$

$$\frac{\Gamma; \Delta; \Omega \vdash : S_1 \bullet S_2 \quad \Gamma; \Delta'; (\Omega_1, S_1, S_2, \Omega_2) \vdash \div S}{\Gamma; (\Delta, \Delta'); (\Omega_1, \Omega, \Omega_2) \vdash \div S}$$

$$\frac{\Gamma; \Delta_1; \Omega_1 \vdash \div S_1 \quad \Gamma; \Delta_2; \Omega_2 \vdash \div S_2}{\Gamma; (\Delta_1, \Delta_2); (\Omega_1, \Omega_2) \vdash \div S_1 \bullet S_2}$$

$$\frac{\Gamma; \Delta; \Omega \vdash : A}{\Gamma; \Delta; \Omega \vdash \div A}$$

OCLF Properties

- Official rules permit only canonical forms
- Important for adequacy theorems
- Outside monad $(:)$ just as in OLF
- Inside monad (\div) “true” concurrency
 - Independent elimination forms can be commuted
 - Cannot observe order of independent concurrent computation steps
- Type checking and equality are decidable

Example: Parallel Application

- Execute function and argument in parallel
- Replace application rules by:

$$\frac{H', e_1 \mapsto d_1, e_2 \mapsto d_2, d_1 d_2 \rightarrow d, H}{H', e_1 e_2 \mapsto d, H} [d_1, d_2]$$

$$\frac{H', [v_2/x]e'_1 \mapsto d, H}{H', d_1 = (\text{fn } x. e'_1), d_2 = v_2, d_1 d_2 \rightarrow d, H}$$

Example: Parallel Application

- Application rule in LDP

$$\frac{H', e_1 \mapsto d_1, e_2 \mapsto d_2, d_1 d_2 \rightarrow d, H}{H', e_1 e_2 \mapsto d, H} [d_1, d_2]$$

- Representation in OCLF (omitting rule name)

eval (app E₁ E₂) D

→ { $\exists d_1. \exists d_2. \text{eval } E_1 d_1 \bullet \text{eval } E_2 d_2 \bullet \text{comp } (\text{app}_2 d_1 d_2) D$ }

Example: Parallel Application

- Frame rule in LDP

$$\frac{H', [v_2/x]e'_1 \mapsto d, H}{H', d_1 = (\text{fn } x. e'_1), d_2 = v_2, d_1 d_2 \rightarrow d, H}$$

- Representation in CLF (omitting rule name)

is $D_1 (\text{fun } (\lambda x. E'_1 x))$ • is $D_2 V_2$ • comp (app₂ D₁ D₂) D
→ • {eval (E'_1 V₂) D}

- Curry • and →• to reduce to pure OCLF, e.g.

$$A \bullet B \rightarrow \{C \bullet D\} \equiv B \setminus A \setminus \{C \bullet D\}$$

Example: Parallel Application

- Adequacy
- Computations from $(e \mapsto d_0, \cdot)$ to $(d_0=v, \cdot)$ correspond to expressions E such that
$$d_0 : \text{dest}; \cdot; h \stackrel{\wedge}{:} \text{eval} \lceil e \rceil \quad d_0 \vdash E \div \text{is } d_0 \lceil v \rceil$$
- *Exactly one* such E (mod concurrent equality)
- *Concurrent computations as monadic expressions*

Sequential and Parallel Computation

- Retain order in specification
 - Sequential computation
 - Non-communicating parallel computation
- Relax order for communication
 - Example: encode Milner's *structural congruence* via structural properties of hypotheses
 - Example: mutable references
- Generalize judgment form to $H; L; P$ where H is ordered, L is linear, P is unrestricted

Other Modular Approaches

- Monadic Metalanguage [Moggi'89]
 - Insulate effects *inside* the language
- Contextual semantics [Wright & Felleisen'92]
 - Well-suited for continuations
 - Not as appropriate for concurrency?
- MSOS [Mosses'02]
 - Small-step *structured operational semantics*
 - Add effect annotations
 - Not as flexible or modular in effect notation

Future Work: More Examples

- Parsing (into higher-order abstract syntax!)
- Spatial computation [Cardelli & Gordon'98]
[Moody'03]
 - Index destinations by location
- Other concurrent calculi (action, join)
- Garbage collection
 - Index destinations by to-space or from-space
- Saturation-based procedures
[MacAllester, Ganzinger]
- Protocols [Cervesato] [Bozzano'02]

Future Work: Implementation

- Linear Destination Passing reverse engineered from Concurrent Logical Framework!
- With minor changes, all examples here can be readily implemented in OCLF ...
- ... when an implementation of OCLF exists
- Issues
 - Executing LDP using OCLF operational semantics
 - Interleaving don't-know (search) and don't-care (concurrency) non-determinism
 - Representation of meta-theoretic proofs

Future Work: Slick Proofs

- Best formulation of meta-theoretic properties?
 - Type preservation
 - Progress
 - Termination
 - Infinite computations
- Some modularity of proofs?

Summary: LDP

- *Linear Destination Passing*
as uniform and modular semantic framework for functional, imperative, and concurrent languages
- Structural properties
 - *Ordered* for pure, sequential computation
 - *Linear* for communicating concurrent computation; store
 - *Unrestricted* for memoization, continuations
- Readily specified in OCLF

Summary: OCLF

- Based on Lambek calculus, intuitionistic linear logic, and intuitionistic logic
- Conservatively extends LF, LLF, OLF
- Representation principle:
State as ordered or linear hypotheses
- Monadic encapsulation of state for concurrency
- True concurrency [omitted in this talk]

Discussion

- Uniform treatment of syntax (parsing), static semantics (typing), dynamic semantics (execution), and meta-theory (type soundness) of logic and programming languages in a single framework?
- Operational semantics for OCLF and parsing algorithms?
- Encoding of CCG in OCLF?
- Other applications in computational linguistics?