On Order and Linearity

In Logical Frameworks:
The Lambek Calculus Revisited

Frank Pfenning

Workshop on Logic and Computational Linguistics

Ottawa, Canada, June 2003

Warning: Work in progress!

Joint work with Jeff Polakow and Kevin Watkins I

| Outline

 Logical Frameworks

e Ordered Logical Framework (OLF)

 Linear Destination-Passing

« Example: Sequential Evaluation

e Ordered Concurrent Logical Framework (OCLF)

« Examples: Parallel Evaluation, [Futures]

« A Unifying Framework for Syntax and Semantics?

|

I Logical Frameworks

« Meta-languages for deductive systems
Specification (abstract syntax and rules)
Implementation (reasoning within)

Meta-theory (reasoning about)
« Applications

Logics

Programming languages

I Design Criteria

e Support common concepts in logics and
programming languages

Concise and direct specification
High-level implementation of algorithms
Effective meta-theoretic reasoning

« Example concepts
variable binding
capture-avoiding substitution

hypothetical judgments

parametric judgments I

I The Story So Far

e Discuss only LF-family:
LF [Harper, Honsell & Plotkin’93]
Linear LF [Cervesato & Pf’96]
Ordered LF [Polakow & Pf'93]
Concurrent LF [Watkins, Cervesato, Pf, Walker'02]
This talk: Ordered Concurrent LF

« All of the above are Intuitionistic
« Emphasize specification in this talk

 Future work: search algorithms, meta-reasoning I

I Representation Principles

 Logical framework characteristics
Type-theoretic language (“syntax”)
Typing and equality (“semantics”)
Representation principles (“pragmatics™)

« Examine for each framework
« Other criteria for search and meta-reasoning

|

The Logical Framwork LF

e LF [Harper, Honsell & Plotkin’93]

 Language
Atomic Types P :=a|P M
Types A:=P| A — Ay | TTu: A;. A
Objects M:=c|ul| .M | M; M,
Contexts =T u:A

« Main jJudgments
I'Fs M: A M has type A

I'Fs M =N:A Misequalto N attype A I

| LLF — Some Critical Rules

* Dependent functions

[u:AF M : B(u)
' A u. M - Tlu: A. B(u)

'-M:Tlu:A.B(u) THFN:A
[+ M N : B(N)

« Equality Is n-conversion
« Equality and type-checking are decidable

« Canonical (5-normal, n-long) forms exist I

I LLF Representation Principles

« Higher-order abstract syntax
Object logic variables as framework variables

e Judgments as types

e Deductions as objects
Proof checking reduces to framework type checking

« Hypothetical judgments as function types
Object-logic assumptions as framework assumptions
Object-logic parameters as framework parameters

B

I Brief Example: Natural Semantics

* Object language: call-by-value A-calculus

Expressions e ::= fnx.e|eq ey
Values v ::= fnzx.e

« Higher-order abstract syntax representation
exp : type.

fun : (exp — exp) — exp.
app : exp — (exp — exp).

« Example: "fn f.fnz. f 7 = fun (Af.fun (Ax.app f x)) I

| Evaluation Semantics

« Evaluation judgment e — v

er — fmx.e] ey — vy |vg/zle] — v

fnr.e — tnx.e €1 €9 < U

« Judgments as types representation (omitting quant’s)

eval : exp — exp — type.

evfun : eval (fun (Ax. Ex)) (fun (Ax. Ex)).
evapp : eval E; (fun (Ax. E/ x))
— eval EQ VQ

— eval (Ell VQ) V

— eval (app E; E3) V. I

I Adequacy of Representations

* There is a compositional bijection between
expressions and canonical objects M : exp

* There is a compositional bijection between
deductions of e — v and canonical objects
D:evalTe'Tvy

« Canonical objects are #-normal, n-long forms
« Critical role of definitional equality
 Deemphasize in this talk

B

| Scope of LF

* Many examples

Logic: natural deduction and sequent calculi for classical,
Intuitionistic, modal, temporal logics; normalization and
cut-elimination procedures; translations between them;
program extraction and optimization

Programming languages: functional and logic
programming languages with a variety of features, type
soundness and progress theorems, Church-Rosser

theorem

« Some limitations for state and concurrency I

I The Linear Logical Framework

e LLF [Cervesato & P{'96]

* Language
Types A:=P| A — Ay |TTu: A;. A
| A] 0 Ay | A1 & Ay | T
Objects M ::= ...

* Main judgment
A M: A M hastype A

 I" are unrestricted assumptions (as before)

« A are linear assumptions (but order irrelevant) I

| Linear LF — Some Critical Rules

e Linear functions
I"Ax:A-M: B

AR M:A—oB

'’AfFM:A—oB TI''AyFN:A
F; (Al,AQ) - M"N : B

« Unrestricted application
AFM:Tlu:A.B(u) T';-FNA

I"AFMN: B(N) I

I Linear LF Representation Principles

« Canonical forms and decidability extend

 Linear LF conservatively extends LF

« All LF representation principles still apply
e State as linear hypotheses

e Imperative computations as linear objects

|

| Scope of Linear LF

 New examples

Logic: classical and intuitionistic linear logic,
cut-elimination, translation

Programming languages: imperative languages,
functional languages with imperative features, lower-level
languages

« Some limitations for concurrency and order

|

| Concurrency and Order

* Divergent subsequent developments:
Ordered Logical Framework [Polakow’01]

Concurrent Logical Framework
[Watkins, Cervesato, Pf, Walker'02]

« This talk: a speculative synthesis of the ideas

B

I The Ordered Logical Framework

e Ordered LF (OLF) [Polakow'01]
* Language
Types A:=P| A — Ay | Tu: Ay A,
| Aj 0 Ay | A1 & Ay | T
| A1\Az | Ax/ A

« Main judgment
I'"A;QFs M A

e ' IS unrestricted, A Is linear

« () Is ordered (as in the Lambek calculus) I

Ordered LF — Some Critical Rules

 Left implication
A (w:A,Q FM: B

A QF Xw. M. A\B

A ENGA T A0 M A\B
F, (Al,AQ); (Ql,QQ) - N\M . B

* Functions expect argument on the left
* Note 2,) IS ordered, A;, A, just linear

B

Ordered LF — Some Critical Rules

* Right implication
A (Quw:A)F M- B

A QF Xw. M : B/A

A EM:B/A T5A0,FN: A
F; (Al,AQ);(Ql,QQ) - M/N . B

* Functions expect argument on the right
* Note (24, ()5 Is ordered, A;, Ay just linear

B

| OLF Representation Principles

« Canonical forms and decidability extend

* OLF conservatively extends Linear LF

 All Linear LF principles still apply

e Ordered structures as ordered hypotheses

« Examples: queues, stacks, CPS transformations
« Example: parsing, in the style of Lambek
 Limitation: concurrency

« “Missing” connectives (e.g., ordered conjunction)

B

I Framework Applications

« Operational semantics of programming languages
« Earlier: Natural Semantics

Semantics via natural deduction

Not modular

* Next: Linear Destination-Passing
Semantics via substructural deduction
Modular

| Semantic Modularity

» Natural semantics is not modular:
Need to change judgments and rules

« Example: mutable store — from e — v to

(s1,€1) — (s9,fnx.€))

<827 62> — <83702>

(83, [v2/]ey) — (54,)
(s,fnz.e) — (s,fnx.e) (81, €1 €9) — (S4,V)

« Also: concurrency, exceptions, continuations, etc.

* More abstract, modular presentation? I

I Linear Destination-Passing

 New semantic presentation:
Linear Destination-Passing (LDP)

« Usually: dest-passing as a compiler optimization
* Here: destinations d as names for values
* Frames f for intermediate states

e Basic judgments J
er— d evaluate e with destination d
f—d compute f with destination d

d=v value of destination d is v I

I Linear Destination-Passing

e Judgment form H
H:=-le—dH|f—dH|d=v,H

« H ordered (later consider also linear, unrestricted)
« Overall deduction and value rule

dO:U7) d:’U, H
: vi—d, H

|

€|_>d07°

I LDP Examples

 This talk:
Sequential evaluation
Parallel application
Futures

« Other have been worked out:
continuations, mutable references, call-by-need, exceptions,
heaps, Petri nets, w-calculus, concurrent ML

B

I Design Criteria

« Modularity

Do not revise earlier specifications

e Orthogonality
NoO cross-references between features

e Substructural properties
Which judgments are ordered, linear, affine, unrestricted

|

| Sequential Evaluation

« Abstractions handled by value rule
« Applications (new parameters noted [-))

€1|—>d1,d162>—>d,H
e1e9—d, H

[d1]

€o dQ,dl—’Ul,dl d2 — d H
dl Ul,dleg — CZ H

[da]

vy /xle] — d, H
dQZUQ, dlz(fl’l (]3.6/1), dl dQ — d, H

|

I Representing Basic Judgments

« Judgments as types

"er—d' = eval'e'd : type
"fr—d' = comp"f'd : type
"d=v" = 1sd'v' . type

* Resulting signature

eval : exp — dest — type.
comp : frame — dest — type.
IS . dest — val — type.

B

| State as Ordered Hypotheses

 First approximation: if D deduction of H then
[":TH'-"D7:C

where
[' declares all destinations in H, unrestricted
"HIs ordered

C'Is a goal (e.g., repn. of dv. dy=v)
« Extend for more complex examples

|

I Example: Sequential Evaluation

 Value rule
d=v, H
vi—d, H
ewal : eval (valueV)D —eisD V.

- Here A —e B stands for A\ B or B/A when the

choice does not matter.

I Example: Sequential Evaluation

« Applications

€1|—>d1,d162>—>d,H
e1e9— d, H

[d1]

evapp : eval (app E; Eo) D
—e (dd;.eval E; d; e comp (app; di E3) D)

e Use d and e (ordered conjunction) freely

|

o Add to framework later

I Example: Sequential Evaluation

« App; frame
€o d27d1 UladldQ — d H

dl ”Ul,d1€2>—>d H[:

is Dy V; e comp (app; D; Eo) D
—0 (Eldg eval E2 d2 ®IS D1 V1 ® comp (app2 D1 d2) D)

|

I Example: Sequential Evaluation

* App, frame

vy /xle] — d, H
dQZUQ, dlz(fl’l LE.@’l), dl dQ — d, H

is Dy Vo @is Dy (fun (Ax. E} x)) e comp (appy, D1 D3) D
—e eval (E] V3) D.

|

| Conseqguences for Frameworks

 Rules have formssuchas Ae B —edd.C e D
« Not available in LLF (II, —, —, &, T) or OLF
o, 3 do not permit unigue canonical forms

« Two prior approaches
Convert to classical linear logic (LO, Forum)

AB o—Vd. CD

Convert to continuation-passing style (LLF, OLF)

(Ild.C —o D —0 g) —0 (A —0 B —o g) I

| L_imitations of Prior Frameworks

 Classical linear logic (Forum) [Miller'94] [Chirimar’95]

No dependencies or internal notation for proofs

No distinguished goal
Which deductions are equal?
Operational semantics?
« Continuation-passing style (LLF, OLF)
Depencies and internal notation for proofs

Distinguished, but generic goal ¢

Too few deductions are equal
Inappropriate don’t-know nondeterminism I

I Monadic Encapsulation

 Idea: Encapsulate state in a monad!

e Move from
Ae B —edd.Ce D
to
B\(A\{dd.C e D})

where {—} is a monadic type constructor

« Definition similar to monadic meta-language and
lax logic [Moggi’89] [Pf & Davies'01]

« Use different from functional programming

B

| Ordered Concurrent LF

* Type theory
Asynchronous connectives \, /, —, &, T, —, Il as in OLF
Canonical forms as in OLF
Synchronous connectives o, 1, !, i, 9 only in monad

Equations for true concurrency [omitted from this talk]

* Representation principle:
Concurrent computations as monadic expressions

e Conservative over LF, LLF, and OLF!

| Ordered Concurrent LF

« Language

Types Au=P| A — Ay | TTu: A Ay
Al o0 Ay | A1 & Ay | T
A1\Az | Ag/ Ay

15}
Synch Types S =55 |1|!A]iA|Ju:A.S|A

« Main jJudgments
I"A;QFs M : A object M has type A

I"A;QFs £+ S monadic expression £ has synch type S I

| OCLF — Some Critical Rules

e Omit proof terms

A QF =8
AQF S}

A Q515 T A (Q,51,5,8)F =S
F; (A, A/), (Ql, Q, QQ) - =5

F, Al, Ql - +S1 F, AQ, QQ - +SQ
[(A1, Ag); (Q21,80) =515,

["A;QF A
"A:QF A I

| OCLF Properties

 Official rules permit only canonical forms
 Important for adequacy theorems

« Qutside monad (:) just as in OLF
 Inside monad (=) “true” concurrency

Independent elimination forms can be commuted

Cannot observe order of independent concurrent
computation steps

« Type checking and equality are decidable

B

I Example: Parallel Application

« Execute function and argument in parallel

* Replace application rules by:

H' e — dy,eg — dy,dydy — d, H a
Hl, 6162Hd,H :

do]

H' |vy/x|e} — d, H
Hl, dlz(fnx.e’l), dgzvg, dl dg — d, H

|

I Example: Parallel Application

« Application rule in LDP

H' ey —di,eqg— do,dydy — d, H
Hl, 6162Hd,H

|d1,d2]

* Representation in OCLF (omitting rule name)

eval (app E1 E5) D
—e {dd;. dd,. eval E; d; e eval E; dy @ comp (app, d; do) D}

|

I Example: Parallel Application

e Frame rule in LDP
H' |vy/x|e} — d, H

H/, dlz(fn 33.6,1), dQZ”UQ, dl dg — d, H

* Representation in CLF (omitting rule name)

is Dy (fun (Ax. Ef x)) eis Dy V4 @ comp (app, D1 Dy) D
—e {eval (E] V,) D}

« Curry e and —e to reduce to pure OCLF, e.qg.

AeB—-e{CeD} =B\A\{CeD} I

I Example: Parallel Application

« Adequacy

« Computations from (e — dy, -) to (dy=v, -)
correspond to expressions £ such that

do :dest;-:h Yeval"e'dyFE =isdy "o
e Exactly one such £ (mod concurrent equality)
e Concurrent computations as monadic expressions

|

| Sequential and Parallel Computatior

« Retain order in specification

Sequential computation

Non-communicating parallel computation

« Relax order for communication

Example: encode Milner’s structural congruence via
structural properties of hypotheses

Example: mutable references

« Generalize judgment form to H; L; P where H is

ordered, L iIs linear, P IS unrestricted

| Other Modular Approaches

 Monadic Metalanguage [Moggi'89]
Insulate effects inside the language

» Contextual semantics [Wright & Felleisen’92]
Well-suited for continuations
Not as appropriate for concurrency?

e MSOS [Mosses'02]
Small-step structured operational semantics

Add effect annotations

Not as flexible or modular in effect notation I

I Future Work: More Examples

 Parsing (into higher-order abstract syntax!)

« Spatial computation [Cardelli & Gordon’98]
[Moody’03]

Index destinations by location

« Other concurrent calculi (action, join)

« Garbage collection
Index destinations by to-space or from-space

e Saturation-based procedures
[MacAllester,Ganzinger]

* Protocols [Cervesato] [Bozzano’02] I

I Future Work: Implementation

 Linear Destination Passing reverse engineered
from Concurrent Logical Framework!

« With minor changes, all examples here can be
readily implemented in OCLF ...

... when an implementation of OCLF exists
 |ISssues

Executing LDP using OCLF operational semantics

Interleaving don’t-know (search) and don’t-care
(concurrency) non-determinism

Representation of meta-theoretic proofs I

| Future Work: Slick Proofs

« Best formulation of meta-theoretic properties?
Type preservation
Progress
Termination
Infinite computations

¢ Some modularity of proofs?

| Summary: LDP

 Linear Destination Passing
as uniform and modular semantic framework for
functional, imperative, and concurrent languages

« Structural properties
Ordered for pure, sequential computation

Linear for communicating concurrent computation; store

Unrestricted for memoization, continuations

* Readily specified in OCLF

|

| Summary:. OCLF

 Based on Lambek calculus, intuitionistic linear
logic, and intuitionistic logic

» Conservatively extends LF, LLF, OLF

* Representation principle:
State as ordered or linear hypotheses

« Monadic encapsulation of state for concurrency
« True concurrency [omitted in this talk]

|

| Discussion

« Uniform treatment of syntax (parsing), static
semantics (typing), dynamic semantics
(execution), and meta-theory (type soundness) of
logic and programming languages in a single
framework?

« Operational semantics for OCLF and parsing
algorithms?

* Encoding of CCG in OCLF?
« Other applications in computational linguistics?

|

	Outline
	Logical Frameworks
	Design Criteria
	The Story So Far
	Representation Principles
	The Logical Framwork LF
	LF --- Some Critical Rules
	LF Representation Principles
	Brief Example: Natural Semantics
	Evaluation Semantics
	Adequacy of Representations
	Scope of LF
	The Linear Logical Framework
	Linear LF --- Some Critical Rules
	Linear LF Representation Principles
	Scope of Linear LF
	Concurrency and Order
	The Ordered Logical Framework
	Ordered LF --- Some Critical Rules
	Ordered LF --- Some Critical Rules
	OLF Representation Principles
	Framework Applications
	Semantic Modularity
	Linear Destination-Passing
	Linear Destination-Passing
	LDP Examples
	Design Criteria
	Sequential Evaluation
	Representing Basic Judgments
	State as Ordered Hypotheses
	Example: Sequential Evaluation
	Example: Sequential Evaluation
	Example: Sequential Evaluation
	Example: Sequential Evaluation
	Consequences for Frameworks
	Limitations of Prior Frameworks
	Monadic Encapsulation
	Ordered Concurrent LF
	Ordered Concurrent LF
	OCLF --- Some Critical Rules
	OCLF Properties
	Example: Parallel Application
	Example: Parallel Application
	Example: Parallel Application
	Example: Parallel Application
	Sequential and Parallel Computation
	Other Modular Approaches
	Future Work: More Examples
	Future Work: Implementation
	Future Work: Slick Proofs
	Summary: LDP
	Summary: OCLF
	Discussion

