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Outline

• Logical Frameworks
• Ordered Logical Framework (OLF)
• Linear Destination-Passing
• Example: Sequential Evaluation
• Ordered Concurrent Logical Framework (OCLF)
• Examples: Parallel Evaluation, [Futures]
• A Unifying Framework for Syntax and Semantics?
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Logical Frameworks

• Meta-languages for deductive systems
• Specification (abstract syntax and rules)

• Implementation (reasoning within)

• Meta-theory (reasoning about)

• Applications
• Logics

• Programming languages
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Design Criteria

• Support common concepts in logics and
programming languages
• Concise and direct specification

• High-level implementation of algorithms

• Effective meta-theoretic reasoning

• Example concepts
• variable binding

• capture-avoiding substitution

• hypothetical judgments

• parametric judgments
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The Story So Far

• Discuss only LF-family:
• LF [Harper, Honsell & Plotkin’93]

• Linear LF [Cervesato & Pf’96]

• Ordered LF [Polakow & Pf’93]

• Concurrent LF [Watkins, Cervesato, Pf, Walker’02]

• This talk: Ordered Concurrent LF

• All of the above are intuitionistic
• Emphasize specification in this talk
• Future work: search algorithms, meta-reasoning
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Representation Principles

• Logical framework characteristics
• Type-theoretic language (“syntax”)

• Typing and equality (“semantics”)

• Representation principles (“pragmatics”)

• Examine for each framework
• Other criteria for search and meta-reasoning
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The Logical Framwork LF

• LF [Harper, Honsell & Plotkin’93]

• Language
Atomic Types P ::= a | P M

Types A ::= P | A1 → A2 | Πu :A1. A2

Objects M ::= c | u | λu.M | M1 M2

Contexts Γ ::= · | Γ, u :A

• Main judgments
Γ `Σ M : A M has type A

Γ `Σ M = N : A M is equal to N at type A

Ottawa, June 2003 – p.7



LF — Some Critical Rules

• Dependent functions

Γ, u :A ` M : B(u)

Γ ` λu.M : Πu :A.B(u)

Γ ` M : Πu :A.B(u) Γ ` N : A

Γ ` M N : B(N)

• Equality is βη-conversion
• Equality and type-checking are decidable
• Canonical (β-normal, η-long) forms exist
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LF Representation Principles

• Higher-order abstract syntax
• Object logic variables as framework variables

• Judgments as types
• Deductions as objects

• Proof checking reduces to framework type checking

• Hypothetical judgments as function types
• Object-logic assumptions as framework assumptions

• Object-logic parameters as framework parameters

Ottawa, June 2003 – p.9



Brief Example: Natural Semantics

• Object language: call-by-value λ-calculus

Expressions e ::= fn x.e | e1 e2

Values v ::= fn x.e

• Higher-order abstract syntax representation

exp : type.
fun : (exp → exp) → exp.
app : exp → (exp → exp).

• Example: pfn f.fn x.f xq = fun (λf. fun (λx. app f x))
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Evaluation Semantics

• Evaluation judgment e ↪→ v

fn x.e ↪→ fnx.e

e1 ↪→ fn x.e′

1
e2 ↪→ v2 [v2/x]e′

1
↪→ v

e1 e2 ↪→ v

• Judgments as types representation (omitting quant’s)

eval : exp → exp → type.

evfun : eval (fun (λx.E x)) (fun (λx.E x)).
evapp : eval E1 (fun (λx.E′

1
x))

→ eval E2 V2

→ eval (E′

1
V2) V

→ eval (app E1 E2) V.
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Adequacy of Representations

• There is a compositional bijection between
expressions and canonical objects M : exp

• There is a compositional bijection between
deductions of e ↪→ v and canonical objects
D : eval peq pvq

• Canonical objects are β-normal, η-long forms
• Critical role of definitional equality
• Deemphasize in this talk
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Scope of LF

• Many examples
• Logic: natural deduction and sequent calculi for classical,

intuitionistic, modal, temporal logics; normalization and
cut-elimination procedures; translations between them;
program extraction and optimization

• Programming languages: functional and logic
programming languages with a variety of features, type
soundness and progress theorems, Church-Rosser
theorem

• Some limitations for state and concurrency
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The Linear Logical Framework

• LLF [Cervesato & Pf’96]

• Language
Types A ::= P | A1 → A2 | Πu :A1. A2

| A1 −◦ A2 | A1 & A2 | >

Objects M ::= . . .

• Main judgment
Γ; ∆ `Σ M : A M has type A

• Γ are unrestricted assumptions (as before)
• ∆ are linear assumptions (but order irrelevant)
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Linear LF — Some Critical Rules

• Linear functions

Γ; ∆, x :A ` M : B

Γ; ∆ ` ∧

λx.M : A −◦ B

Γ; ∆1 ` M : A −◦ B Γ; ∆2 ` N : A

Γ; (∆1, ∆2) ` M ∧N : B

• Unrestricted application

Γ; ∆ ` M : Πu :A.B(u) Γ; · ` N : A

Γ; ∆ ` M N : B(N)

Ottawa, June 2003 – p.15



Linear LF Representation Principles

• Canonical forms and decidability extend
• Linear LF conservatively extends LF
• All LF representation principles still apply
• State as linear hypotheses
• Imperative computations as linear objects
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Scope of Linear LF

• New examples
• Logic: classical and intuitionistic linear logic,

cut-elimination, translation

• Programming languages: imperative languages,
functional languages with imperative features, lower-level
languages

• Some limitations for concurrency and order
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Concurrency and Order

• Divergent subsequent developments:
• Ordered Logical Framework [Polakow’01]

• Concurrent Logical Framework
[Watkins, Cervesato, Pf, Walker’02]

• This talk: a speculative synthesis of the ideas
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The Ordered Logical Framework

• Ordered LF (OLF) [Polakow’01]

• Language
Types A ::= P | A1 → A2 | Πu :A1. A2

| A1 −◦ A2 | A1 & A2 | >

| A1\A2 | A2/A1

• Main judgment
Γ; ∆; Ω `Σ M : A

• Γ is unrestricted, ∆ is linear
• Ω is ordered (as in the Lambek calculus)
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Ordered LF — Some Critical Rules

• Left implication

Γ; ∆; (w :A, Ω) ` M : B

Γ; ∆; Ω ` λ<w.M : A\B

Γ; ∆1; Ω1 ` N : A Γ; ∆2; Ω2 ` M : A\B

Γ; (∆1, ∆2); (Ω1, Ω2) ` N\M : B

• Functions expect argument on the left
• Note Ω1, Ω2 is ordered, ∆1, ∆2 just linear
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Ordered LF — Some Critical Rules

• Right implication

Γ; ∆; (Ω, w :A) ` M : B

Γ; ∆; Ω ` λ>w.M : B/A

Γ; ∆1; Ω1 ` M : B/A Γ; ∆2; Ω2 ` N : A

Γ; (∆1, ∆2); (Ω1, Ω2) ` M/N : B

• Functions expect argument on the right
• Note Ω1, Ω2 is ordered, ∆1, ∆2 just linear
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OLF Representation Principles

• Canonical forms and decidability extend
• OLF conservatively extends Linear LF
• All Linear LF principles still apply
• Ordered structures as ordered hypotheses
• Examples: queues, stacks, CPS transformations
• Example: parsing, in the style of Lambek
• Limitation: concurrency
• “Missing” connectives (e.g., ordered conjunction)
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Framework Applications

• Operational semantics of programming languages
• Earlier: Natural Semantics

• Semantics via natural deduction

• Not modular

• Next: Linear Destination-Passing
• Semantics via substructural deduction

• Modular
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Semantic Modularity

• Natural semantics is not modular:
• Need to change judgments and rules

• Example: mutable store — from e ↪→ v to

〈s, fn x.e〉 ↪→ 〈s, fn x.e〉

〈s1, e1〉 ↪→ 〈s2, fn x.e′1〉
〈s2, e2〉 ↪→ 〈s3, v2〉
〈s3, [v2/x]e′1〉 ↪→ 〈s4, v〉

〈s1, e1 e2〉 ↪→ 〈s4, v〉

• Also: concurrency, exceptions, continuations, etc.
• More abstract, modular presentation?
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Linear Destination-Passing

• New semantic presentation:
Linear Destination-Passing (LDP)

• Usually: dest-passing as a compiler optimization
• Here: destinations d as names for values
• Frames f for intermediate states
• Basic judgments J

• e 7→ d evaluate e with destination d

• f � d compute f with destination d

• d=v value of destination d is v
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Linear Destination-Passing

• Judgment form H

H ::= · | e 7→ d,H | f � d,H | d=v,H

• H ordered (later consider also linear, unrestricted)
• Overall deduction and value rule

d0=v, ·
...

e 7→ d0, ·

d=v,H
v 7→ d,H
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LDP Examples

• This talk:
• Sequential evaluation

• Parallel application

• Futures

• Other have been worked out:
continuations, mutable references, call-by-need, exceptions,
heaps, Petri nets, π-calculus, concurrent ML
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Design Criteria

• Modularity
• Do not revise earlier specifications

• Orthogonality
• No cross-references between features

• Substructural properties
• Which judgments are ordered, linear, affine, unrestricted
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Sequential Evaluation

• Abstractions handled by value rule
• Applications (new parameters noted [−])

e1 7→ d1, d1 e2 � d,H
e1 e2 7→ d,H

[d1]

e2 7→ d2, d1=v1, d1 d2 � d,H
d1=v1, d1 e2 � d,H

[d2]

[v2/x]e′1 7→ d,H

d2=v2, d1=(fn x.e′1), d1 d2 � d,H
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Representing Basic Judgments

• Judgments as types

pe 7→ dq = eval peq d : type

pf � dq = comp pfq d : type

pd=vq = is d pvq : type

• Resulting signature

eval : exp → dest → type.
comp : frame → dest → type.
is : dest → val → type.
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State as Ordered Hypotheses

• First approximation: if D deduction of H then

Γ; ·; pHq ` pDq : C

where
• Γ declares all destinations in H, unrestricted
• pHq is ordered
• C is a goal (e.g., repn. of ∃v. d0=v)

• Extend for more complex examples
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Example: Sequential Evaluation

• Value rule
d=v,H

v 7→ d,H

evval : eval (value V) D −• is D V.

• Here A −• B stands for A\B or B/A when the
choice does not matter.
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Example: Sequential Evaluation

• Applications

e1 7→ d1, d1 e2 � d,H
e1 e2 7→ d,H

[d1]

evapp : eval (app E1 E2) D
−• (∃d1. eval E1 d1 • comp (app1 d1 E2) D)

• Use ∃ and • (ordered conjunction) freely
• Add to framework later
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Example: Sequential Evaluation

• App1 frame

e2 7→ d2, d1=v1, d1 d2 � d,H
d1=v1, d1 e2 � d,H

[d2]

is D1 V1 • comp (app
1

D1 E2) D
−• (∃d2. eval E2 d2 • is D1 V1 • comp (app

2
D1 d2) D)
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Example: Sequential Evaluation

• App2 frame

[v2/x]e′1 7→ d,H

d2=v2, d1=(fn x.e′1), d1 d2 � d,H

is D2 V2 • is D1 (fun (λx.E′

1
x)) • comp (app

2
D1 D2) D

−• eval (E′

1
V2) D.
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Consequences for Frameworks

• Rules have forms such as A • B −• ∃d. C • D

• Not available in LLF (Π,→,−◦, &,>) or OLF
• •,∃ do not permit unique canonical forms
• Two prior approaches

• Convert to classical linear logic (LO, Forum)

AOB ◦− ∀d. COD

• Convert to continuation-passing style (LLF, OLF)

(Πd. C −◦ D −◦ g) −◦ (A −◦ B −◦ g)
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Limitations of Prior Frameworks

• Classical linear logic (Forum) [Miller’94] [Chirimar’95]

• No dependencies or internal notation for proofs

• No distinguished goal

• Which deductions are equal?

• Operational semantics?

• Continuation-passing style (LLF, OLF)
• Depencies and internal notation for proofs

• Distinguished, but generic goal g

• Too few deductions are equal

• Inappropriate don’t-know nondeterminism
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Monadic Encapsulation

• Idea: Encapsulate state in a monad !
• Move from

A • B −• ∃d. C • D
to

B\(A\{∃d. C • D})

where {−} is a monadic type constructor
• Definition similar to monadic meta-language and

lax logic [Moggi’89] [Pf & Davies’01]

• Use different from functional programming
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Ordered Concurrent LF

• Type theory
• Asynchronous connectives \, /,−◦,&,>,→,Π as in OLF

• Canonical forms as in OLF

• Synchronous connectives •, 1, !, ¡,∃ only in monad

• Equations for true concurrency [omitted from this talk]

• Representation principle:
Concurrent computations as monadic expressions

• Conservative over LF, LLF, and OLF!
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Ordered Concurrent LF

• Language
Types A ::= P | A1 → A2 | Πu :A1. A2

| A1 −◦ A2 | A1 & A2 | >

| A1\A2 | A2/A1

| {S}

Synch Types S ::= S1 • S2 | 1 | !A | ¡A | ∃u :A.S | A

• Main judgments
Γ; ∆; Ω `Σ M : A object M has type A

Γ; ∆; Ω `Σ E ÷ S monadic expression E has synch type S
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OCLF — Some Critical Rules

• Omit proof terms

Γ; ∆; Ω ` ÷S

Γ; ∆; Ω ` :{S}

Γ; ∆; Ω ` :S1 • S2 Γ; ∆′; (Ω1, S1, S2, Ω2) ` ÷S

Γ; (∆, ∆′); (Ω1, Ω, Ω2) ` ÷S

Γ; ∆1; Ω1 ` ÷S1 Γ; ∆2; Ω2 ` ÷S2

Γ; (∆1, ∆2); (Ω1, Ω2) ` ÷S1 • S2

Γ; ∆; Ω ` :A
Γ; ∆; Ω ` ÷A
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OCLF Properties

• Official rules permit only canonical forms
• Important for adequacy theorems
• Outside monad ( : ) just as in OLF
• Inside monad (÷) “true” concurrency

• Independent elimination forms can be commuted

• Cannot observe order of independent concurrent
computation steps

• Type checking and equality are decidable
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Example: Parallel Application

• Execute function and argument in parallel
• Replace application rules by:

H ′, e1 7→ d1, e2 7→ d2, d1 d2 � d,H

H ′, e1 e2 7→ d,H
[d1,d2]

H ′, [v2/x]e′1 7→ d,H

H ′, d1=(fn x.e′1), d2=v2, d1 d2 � d,H
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Example: Parallel Application

• Application rule in LDP

H ′, e1 7→ d1, e2 7→ d2, d1 d2 � d,H
H ′, e1 e2 7→ d,H

[d1,d2]

• Representation in OCLF (omitting rule name)

eval (app E1 E2) D
−• {∃d1.∃d2. eval E1 d1 • eval E2 d2 • comp (app

2
d1 d2) D}
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Example: Parallel Application

• Frame rule in LDP

H ′, [v2/x]e′1 7→ d,H

H ′, d1=(fn x.e′1), d2=v2, d1 d2 � d,H

• Representation in CLF (omitting rule name)

is D1 (fun (λx.E′

1
x)) • is D2 V2 • comp (app

2
D1 D2) D

−• {eval (E′

1
V2) D}

• Curry • and −• to reduce to pure OCLF, e.g.
A • B −• {C • D} ≡ B\A\{C • D}
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Example: Parallel Application

• Adequacy
• Computations from (e 7→ d0, ·) to (d0=v, ·)

correspond to expressions E such that

d0 : dest; ·; h ∧: eval peq d0 ` E ÷ is d0 pvq

• Exactly one such E (mod concurrent equality)
• Concurrent computations as monadic expressions
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Sequential and Parallel Computation

• Retain order in specification
• Sequential computation

• Non-communicating parallel computation

• Relax order for communication
• Example: encode Milner’s structural congruence via

structural properties of hypotheses

• Example: mutable references

• Generalize judgment form to H; L; P where H is
ordered, L is linear, P is unrestricted
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Other Modular Approaches

• Monadic Metalanguage [Moggi’89]

• Insulate effects inside the language

• Contextual semantics [Wright & Felleisen’92]

• Well-suited for continuations

• Not as appropriate for concurrency?

• MSOS [Mosses’02]

• Small-step structured operational semantics

• Add effect annotations

• Not as flexible or modular in effect notation
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Future Work: More Examples

• Parsing (into higher-order abstract syntax!)
• Spatial computation [Cardelli & Gordon’98]

[Moody’03]
• Index destinations by location

• Other concurrent calculi (action, join)
• Garbage collection

• Index destinations by to-space or from-space

• Saturation-based procedures
[MacAllester,Ganzinger]

• Protocols [Cervesato] [Bozzano’02]
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Future Work: Implementation

• Linear Destination Passing reverse engineered
from Concurrent Logical Framework!

• With minor changes, all examples here can be
readily implemented in OCLF . . .

• . . . when an implementation of OCLF exists
• Issues

• Executing LDP using OCLF operational semantics

• Interleaving don’t-know (search) and don’t-care
(concurrency) non-determinism

• Representation of meta-theoretic proofs
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Future Work: Slick Proofs

• Best formulation of meta-theoretic properties?
• Type preservation

• Progress

• Termination

• Infinite computations

• Some modularity of proofs?
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Summary: LDP

• Linear Destination Passing
as uniform and modular semantic framework for
functional, imperative, and concurrent languages

• Structural properties
• Ordered for pure, sequential computation

• Linear for communicating concurrent computation; store

• Unrestricted for memoization, continuations

• Readily specified in OCLF
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Summary: OCLF

• Based on Lambek calculus, intuitionistic linear
logic, and intuitionistic logic

• Conservatively extends LF, LLF, OLF
• Representation principle:

State as ordered or linear hypotheses
• Monadic encapsulation of state for concurrency
• True concurrency [omitted in this talk]
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Discussion

• Uniform treatment of syntax (parsing), static
semantics (typing), dynamic semantics
(execution), and meta-theory (type soundness) of
logic and programming languages in a single
framework?

• Operational semantics for OCLF and parsing
algorithms?

• Encoding of CCG in OCLF?
• Other applications in computational linguistics?
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