Concurrent Programming in
Linear Type Theory

Frank Pfenning
Carnegie Mellon University

Joint work with Luis Caires, Bernardo Toninho,
Jorge Peréz, Dennis Griffith, Elsa Gunter, et al.

1/9/2014 ABCD Project Meeting

allY BORNY Call DANCE

Outline

* A new foundation for session types
* SILL by example

— Prime sieve
— Bit strings

* Language highlights
— Types and programs

— Implementation
— Ongoing research

1/9/2014 ABCD Project Meeting

Session Types

Prescribe communication behavior between
message-passing concurrent processes

May be synchronous or asynchronous
Linear channels with two endpoints
Shared channels with multiple endpoints

Messages exchanged can be

— data values (including process expressions)
— channels (as in the mt-calculus)

— |labels (to indicate choice)

Curry-Howard Isomorphisms

* Logical origins of computational phenomena
* |ntuitionistic logic & functional programming
* S4 modal logic & quote/eval staging

* S5 modal logic < distributed programming

 Temporal logic < partial evaluation
* Linear logic < session-typed concurrency
 More than an analogy!

Linear Logic: A New Foundation

Linear propositions < session types
Sequent proofs < process expressions
Cut < process composition

dentity & message forwarding

Proof reduction € communication

inear type theory generalizes linear logic
— Logic: propositions do not mention proofs
— Type theory: proofs are internalized as terms

Benefits of Curry-Howard Design

Integrated development of programming
constructs and reasoning principles

— Correct programs via simple reasoning principles
— Even if they are not formalized in the language!

Elegant and expressive language primitives
Orthogonality and compatibility of constructs
Programming language theory as proof theory

Some Choices for SILL

SILL = Sessions in Intuitionistic Linear Logic
Conservatively extend functional language

— Process expressions form a (contextual) monad

— Communication may be observable

Manifest notion of process
— Offer vs. use of a service

— Process < channel along which service is offered

Later: CILL, sessions in a C-like language

Properties of SILL

Type preservation
— Entails session fidelity on processes

Progress
— Absence of deadlock
— Absence of race conditions

Termination and productivity

— Some restrictions on recursive types required

Obeys a general theory of logical relations!

SILL by Example

* Syntax close to implementation in O’'Caml|
* No inference rules, just intuition

* Examples
— Endless streams of integers
— Streams of integers
— Stream filter
— Prime sieve
— Bit strings
— Increment and addition

Stream of Numbers

Data types

tu=bool |int|t>1|...|{A}

{ A }is type of process offering service A
Session types

A=

Data and session types may be recursive

In type theory, should be inductive or
coinductive (ongoing work)

Endless Streams of Integers

ints = int A ints;

from : int — {ints};
c < from n =

send ¢ n ;

c < from (n+l)

c:t A A sendvalue v:talong c and behave as A
Non-dependent version of dx:t. A

Tail call represents process continuation

e Asingle process will send stream of integers
Channel variables and session types in red

1/9/2014 ABCD Project Meeting 12

Streams of Integers

ints = &{ :int A ints, :1};

from : int — {ints};
c < from n =
case (recv c)
| = send c n ;
c < from (n+1l)
| = close c

c:&{l : A} receive label | along c and continue as A,
Labeled n-ary version of linear logic A & B

External (client’s) choice

c:1 terminate process; as linear logic 1

Closing a channel c terminates offering process

1/9/2014 ABCD Project Meeting

13

Filtering a Stream

ints = &{ :int A ints, :1};
filter : (int — bool) — {ints <« ints};

c < filter q < d =
case (recv c)
| = ¢ < filterNext g < d
| = send d ;
wait d ;
close c

filterNext : (int — bool) — {int A ints <« ints};

« {A& A, ..., A }process offering A, using A’s

* Type of channels changes based on process state!

* Type error, say, if we forget to stop d

1/9/2014 ABCD Project Meeting

14

Finding the Next Element

ints = &{ :int A ints, 21}
filter : (int — bool) — {ints <« ints};
filterNext : (int — bool) — {int A ints <« ints};

c < filterNext q < d =
send d ;
n < recv d ;
case (g n)
| true = send c n ;
c < filter g < d
| false = ¢ < filterNext g < d

 filter/filterNext process identified with channel c

1/9/2014 ABCD Project Meeting

Prime Sieve

d, & filter (%3) < d; d, & from 2
c & sieve & d, d, & filter (%2) < d,
C d, d, dg
5 3 2
7 5 3
7 4
5
6
7

e c & sieve €& d sends first value p on d along c
 Then spawns new process to filter out %p

1/9/2014 ABCD Project Meeting

16

Prime Sieve

c & sieve € d; d, < filter (%3) < d, d, ¢ from 2
d; & filter (%5) < d, d, & filter (%2) < d,
C d, d, d, dg
7 5 3 2
7 5 3
7 4
5
6
7

e c & sieve €& d sends first value p on d along c
 Then spawns new process to filter out %p

1/9/2014 ABCD Project Meeting

17

Prime Sieve

ints = &{ :int A ints, 21}
sieve : {ints < ints};

c < sieve < d =

case (recv cC)

| = send d :
p < recv d ;
send Cc p ;
e «<— filter (mod p) < d ;
C < sieve < e

| = send d :+ wait d ; close c

e e < filter (mod p) €& d spawns new process
e Uses d, offers e (which is used by sieve)

1/9/2014 ABCD Project Meeting

Primes

ints = &{ :int A ints, :1};
primes : {ints};

C < primes =
d < from 2 ;
c < sieve < d

* Primes correct with sync or async communication
* n+2 processes for n primes

1/9/2014 ABCD Project Meeting

Bit Strings

d, & bit true < d, d, < empty
c < bit false < d, d, & bit true < d,
C d, d, d,
bits = ®{ : 1, :bool A bits};

* Lowest bit on the left (above represents 6)

* c:®{:A}, sendalabell alongcand cont. as A
* n-ary version of linear logic A© B

* Internal (provider’s) choice

1/9/2014 ABCD Project Meeting

20

Bit String Constructors

bits = @®{ :1, :bool A bits};

empty : {bits};

C < empty =
send c ;
close c

bit : bool — {bits < bits};
c < bit b «< d =

send c ;

send ¢ b ;

c < d;

* Forwarding c < d represents logical identity
— Process offering along c terminates
— Client subsequently talks to process offering along d

1/9/2014 ABCD Project Meeting

Alternative Constructor

bits = &{ 21, :bool A bits};

num : int — {bits};
C < num n =
case n ==
| true = send c ; close c
| false = send c ;
send ¢ (odd n) ;
c < num (n/2)

* num as a single process holding an int n
* Channel type is process interface, not representation

1/9/2014 ABCD Project Meeting 22

Increment

bits = @®{ :1, :bool A bits};
inc : {bits <« bits};

c < inc < d =
case (recv d)
| = wait d ;
e < eps ;
c < bit true < e
| = b < recv d ;
case b
| true = e < inc < d ;
c < bit false < e
| false = ¢ < bit true < d

* inc process generates one bit string from another
 Spawns a new inc process in case of a carry

1/9/2014 ABCD Project Meeting

Addition

bits = ®{ : 1, :bool A bits};
add : {bits < bits, bits};
c < add < d, e =
case (recv d)
| = wait d ;
cC < e
| = bl < recv d ;
case (recv e)
| = wait e ;
send c ;
send c bl;
c < d
| = b2 < recv e ; ..

* add uses two channels, provides one

* Receives are sequential; additional parallelism could be
justified by commuting conversions in proof theory

1/9/2014 ABCD Project Meeting

Other Examples

* Data structures
— Stacks, queues, hash tables, binary search trees

e Algorithms

— Lazy and eager prime sieve

— Merge sort, odd/even sort, insertion sort
* Protocols

— Needham/Schroeder, safe and unsafe

Outline

* A new foundation for session types
* SILL by example

— Prime sieve
— Bit strings

* Language highlights
— Types and programs

— Implementation
— Ongoing research

1/9/2014 ABCD Project Meeting

26

Session Type Summary

* From the point of view of session provider

c:tAA send value v : T along c, continue as A
C:T>A receive value v : Talong ¢, continue as A
c:A®B send channel d : A along c, continue as B
c:A—o0B receive channel d : A along c, continue as B
c:1 close channel c and terminate

c:®{l: A} send label |. along c, continue as A,
c:&{l:A} receive label |. along c, continue as A,

c:lA send persistent lu : A along c and terminate

lu: A receive c : A along lu for fresh instance of A

Contextual Monad

M:{A& A, ..., A} process expressions
offering service A, using services A, ..., A

Composition cé M <& d,,...,d ;P

— c fresh, used (linearly) in P, consuming d,, ..., d

ldentity ¢ & d
— Notify client of c to talk to d instead and terminate

n

n

Strong notion of process identity

Static Type Checking

Bidirectional

— Precise location of type errors

— Based on definition of normal proofs in logic

— Fully compatible with linearity

Natural notion of behavioral subtyping, e.g.
— &{I:A, :B} £ &{|:A} (we can offer unused alt’s)

— o{l:A} < o{l:A, k:B} (we need not produce all alt’s)
Supports ML-style value polymorphism

No behavioral polymorphism yet

Dynamic Semantics

* Three back ends
— Synchronous threads
— Asynchronous threads
— Distributed processes
* Some cryptographic primitives
* Not released (but multiple “friendly” users)

Dynamic Type Checking

* May not trust all participating processes

* Type system compatible with
— Value dependent types, e.g. nat = {x:int | x > 0}

— Full dependent types, but still under investigation:

* “Right” equivalence on process expressions
* Restrictions on recursive types

* Contracts are partial identity processes
— Blame assignment (ongoing)
— Causality (ongoing)

Some Refinements

nat = {x:int | x = 0};

nats = &{ tnat A nats, t1};

eq n = {xX:int | x = n};

succs n = &{ teq n A succs(n+l), :1};

gt n = {x:int | x > n};
incrs n = &{ :dk:gt n. incrs k, :1};

 eq and gt are value type families

e succs and incrs are session type families
* Last line illustrates 3 as dependent A
* Not yet implemented

1/9/2014 ABCD Project Meeting 32

Other Logical Thoughts

e Affine logic (= linear logic + weakening)
— Static deallocations inserted

— Shorter programs, but errors more likely

* Hybrid linear logic (= linear logic + worlds)
— Worlds representing security domains
— Accessibility relation between domains
— Ongoing

e Affirmation modality for digital signatures

Session Types in a C-like Language

e CO: a type-safe subset of C

— Designed for teaching imperative programming,
algorithms, and data structures to freshmen

— Extended with contracts (pure boolean functions)

— Contracts are crucial for design, proof, and testing
e C1: function pointers and polymorphism
* CILL: session-typed concurrency?

CILL

Channels Sc are linearly typed (as in SILL)
Persistent channels SSc, variables x as usual
Channel types must be loop invariants

— lub at all join points in control-flow graph

Possible with or without shared memory

— No safety in the presence of shared memory

Exploring robustness of SILL concepts in
different setting

Integer Streams in CILL

choice intstream {
int /\ choice intstream :
void :

}i

typedef choice intstream ints;

ints $c from(int n) {
while (true) {
switch ($Sc) {
case :
send($Sc, n);
n = n+l;
case
close($c);
}
}

}

1/9/2014 ABCD Project Meeting

36

Speculating on Contracts

ints $c from(int n)
//@requires n >= 0;
//@ensures $c = all pos(S$c);
{
while (true) {
switch (S$Sc) {
case
send($c, n);
n = n+l;
case
close($c);
}
}
}

* Value contracts must be pure boolean functions
e Channel contracts must be partial identity proc’s

1/9/2014 ABCD Project Meeting

37

Partial Identity Process

ints $c all pos(ints $d) {
switch (S$Sc) {
case :
$d. ;
int n = recv($d);
if (n <= 0) abort;
send($c, n);
$Sc = all pos(sd);
case :
Sd. ; wait(sd);
close(S$c);
}
}

e Synthesized in a type-directed way

1/9/2014 ABCD Project Meeting

38

Summary

e SILL, a functional language with a contextual
monad for session-typed message-passing
concurrency

— Type preservation (session fidelity)
— Progress (deadlock and race freedom)

— Implementation with subtyping, polymorphism,
recursive types

* Based on a Curry-Howard interpretation of
intuitionistic linear logic

* Full dependent type theory in progress

Thanks!

Luis Caires, Bernardo Toninho, Jorge Peréz (Universidade
Nova de Lisboa)

— FCT and CMU | Portugal collaboration

Dennis Griffith, Elsa Gunter (UIUC) [Implementation]
— NSA

Michael Arntzenius, Limin Jia (CMU) [Blame]

Stephanie Balzer (CMU) [New foundation for OO]

Henry DeYoung (CMU) [From global specs to local types]
Much more to say; see http://www.cs.cmu.edu/~fp
Apologies for the lack of references to related work

Some References

« 2010 e 2013
— CONCUR: the basic idea, — ESOP: behavioral
revised for MSCS, 2012 polymorphism
e 2011 — ESOP: monadic integration

— PPDP: dependent types (SILL)
— CPP: digital signatures (CA) * 2014 (in progress)

e 2012 — Security domains (A @ w),

spatial distribution
— CSL: asynchronous comm.

— ESOP: logical relations

— FOSSACS: functions as
processes

— Coinductive types
— Blame assignment

