
Concurrent	
 Programming	
 in	

Linear	
 Type	
 Theory	

Frank	
 Pfenning	

Carnegie	
 Mellon	
 University	

Joint	
 work	
 with	
 Luís	
 Caires,	
 Bernardo	
 Toninho,	

Jorge	
 Peréz,	
 Dennis	
 Griffith,	
 Elsa	
 Gunter,	
 et	
 al.	

1/9/2014	
 1	
 ABCD	
 Project	
 MeeQng	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 2	

Outline	

•  A	
 new	
 foundaQon	
 for	
 session	
 types	

•  SILL	
 by	
 example	

– Prime	
 sieve	

– Bit	
 strings	

•  Language	
 highlights	

– Types	
 and	
 programs	

–  ImplementaQon	

– Ongoing	
 research	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 3	

Session	
 Types	

•  Prescribe	
 communicaQon	
 behavior	
 between	

message-­‐passing	
 concurrent	
 processes	

•  May	
 be	
 synchronous	
 or	
 asynchronous	

•  Linear	
 channels	
 with	
 two	
 endpoints	

•  Shared	
 channels	
 with	
 mulQple	
 endpoints	

•  Messages	
 exchanged	
 can	
 be	

– data	
 values	
 (including	
 process	
 expressions)	

– channels	
 (as	
 in	
 the	
 π-­‐calculus)	

–  labels	
 (to	
 indicate	
 choice)	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 4	

Curry-­‐Howard	
 Isomorphisms	

•  Logical	
 origins	
 of	
 computaQonal	
 phenomena	

•  IntuiQonisQc	
 logic	
 ⇔	
 funcQonal	
 programming	

•  S4	
 modal	
 logic	
 ⇔	
 quote/eval	
 staging	

•  S5	
 modal	
 logic	
 ⇔	
 distributed	
 programming	

•  Temporal	
 logic	
 ⇔	
 parQal	
 evaluaQon	

•  Linear	
 logic	
 ⇔	
 session-­‐typed	
 concurrency	

•  More	
 than	
 an	
 analogy!	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 5	

Linear	
 Logic:	
 A	
 New	
 FoundaQon	

•  Linear	
 proposiQons	
 ⇔	
 session	
 types	

•  Sequent	
 proofs	
 ⇔	
 process	
 expressions	

•  Cut	
 ⇔	
 process	
 composiQon	

•  IdenQty	
 ⇔	
 message	
 forwarding	

•  Proof	
 reducQon	
 ⇔	
 communicaQon	

•  Linear	
 type	
 theory	
 generalizes	
 linear	
 logic	

– Logic:	
 proposiQons	
 do	
 not	
 menQon	
 proofs	

– Type	
 theory:	
 proofs	
 are	
 internalized	
 as	
 terms	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 6	

Benefits	
 of	
 Curry-­‐Howard	
 Design	

•  Integrated	
 development	
 of	
 programming	

constructs	
 and	
 reasoning	
 principles	

– Correct	
 programs	
 via	
 simple	
 reasoning	
 principles	

– Even	
 if	
 they	
 are	
 not	
 formalized	
 in	
 the	
 language!	

•  Elegant	
 and	
 expressive	
 language	
 primiQves	

•  Orthogonality	
 and	
 compaQbility	
 of	
 constructs	

•  Programming	
 language	
 theory	
 as	
 proof	
 theory	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 7	

Some	
 Choices	
 for	
 SILL	

•  SILL	
 =	
 Sessions	
 in	
 IntuiQonisQc	
 Linear	
 Logic	

•  ConservaQvely	
 extend	
 funcQonal	
 language	

– Process	
 expressions	
 form	
 a	
 (contextual)	
 monad	

– CommunicaQon	
 may	
 be	
 observable	

•  Manifest	
 noQon	
 of	
 process	

– Offer	
 vs.	
 use	
 of	
 a	
 service	

– Process	
 ⇔	
 channel	
 along	
 which	
 service	
 is	
 offered	

•  Later:	
 CILL,	
 sessions	
 in	
 a	
 C-­‐like	
 language	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 8	

ProperQes	
 of	
 SILL	

•  Type	
 preservaQon	

– Entails	
 session	
 fidelity	
 on	
 processes	

•  Progress	

– Absence	
 of	
 deadlock	

– Absence	
 of	
 race	
 condiQons	

•  TerminaQon	
 and	
 producQvity	

– Some	
 restricQons	
 on	
 recursive	
 types	
 required	

•  Obeys	
 a	
 general	
 theory	
 of	
 logical	
 relaQons!	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 9	

SILL	
 by	
 Example	

•  Syntax	
 close	
 to	
 implementaQon	
 in	
 O’Caml	

•  No	
 inference	
 rules,	
 just	
 intuiQon	

•  Examples	

– Endless	
 streams	
 of	
 integers	

– Streams	
 of	
 integers	

– Stream	
 filter	

– Prime	
 sieve	

– Bit	
 strings	

–  Increment	
 and	
 addiQon	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 10	

Stream	
 of	
 Numbers	

•  Data	
 types	

τ	
 ::=	
 bool	
 |	
 int	
 |	
 τ1→	
 τ2	
 |	
 …	
 |	
 {	
 A	
 }	

•  {	
 A	
 }	
 is	
 type	
 of	
 process	
 offering	
 service	
 A 	
 	

•  Session	
 types	

A	
 ::=	
 …	

•  Data	
 and	
 session	
 types	
 may	
 be	
 recursive	

•  In	
 type	
 theory,	
 should	
 be	
 inducQve	
 or	

coinducQve	
 (ongoing	
 work)	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 11	

Endless	
 Streams	
 of	
 Integers	

•  c	
 :	
 τ	
 ∧	
 A	
 	
 	
 	
 	
 send	
 value	
 v:τ	
 along	
 c	
 and	
 behave	
 as	
 A	

•  Non-­‐dependent	
 version	
 of	
 ∃x:τ.	
 A	

•  Tail	
 call	
 represents	
 process	
 conQnuaQon	

•  A	
 single	
 process	
 will	
 send	
 stream	
 of	
 integers	

•  Channel	
 variables	
 and	
 session	
 types	
 in	
 red	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 12	

ints = int ∧ ints; "

from : int → {ints};"
c ← from n ="
 send c n ;"
 c ← from (n+1)"

Streams	
 of	
 Integers	

•  c	
 :	
 &{li	
 :	
 Ai}i	
 	
 	
 	
 receive	
 label	
 li	
 along	
 c	
 and	
 conQnue	
 as	
 Ai	

•  Labeled	
 n-­‐ary	
 version	
 of	
 linear	
 logic	
 A	
 &	
 B	

•  External	
 (client’s)	
 choice	

•  c	
 :	
 1	
 	
 	
 	
 terminate	
 process;	
 as	
 linear	
 logic	
 1	

•  Closing	
 a	
 channel	
 c	
 terminates	
 offering	
 process	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 13	

ints = &{next:int ∧ ints, stop:1}; "

from : int → {ints};"
c ← from n ="
 case (recv c)"
 | next ⇒ send c n ;"
 c ← from (n+1)"
 | stop ⇒ close c"

Filtering	
 a	
 Stream	

•  {A	
 ←	
 A1,	
 …,	
 An}	
 process	
 offering	
 A,	
 using	
 Ai’s	

•  Type	
 of	
 channels	
 changes	
 based	
 on	
 process	
 state!	

•  Type	
 error,	
 say,	
 if	
 we	
 forget	
 to	
 stop	
 d	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 14	

ints = &{next:int ∧ ints, stop:1}; "
filter : (int → bool) → {ints ← ints};"
filterNext : (int → bool) → {int ∧ ints ← ints};"

c ← filter q ← d ="
 case (recv c)"
 | next ⇒ c ← filterNext q ← d"
 | stop ⇒ send d stop ;"
 wait d ;"
 close c"

Finding	
 the	
 Next	
 Element	

•  filter/filterNext	
 process	
 idenQfied	
 with	
 channel	
 c	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 15	

ints = &{next:int ∧ ints, stop:1}; "
filter : (int → bool) → {ints ← ints};"
filterNext : (int → bool) → {int ∧ ints ← ints};"

c ← filterNext q ← d ="
 send d next ;"
 n ← recv d ;"
 case (q n)"
 | true ⇒ send c n ;"
 c ← filter q ← d"
 | false ⇒ c ← filterNext q ← d"

Prime	
 Sieve	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 16	

d0	
 ←	
 from	
 2	

d1	
 ←	
 filter	
 (%2)	
 ←	
 d0	

d2	
 ←	
 filter	
 (%3)	
 ←	
 d1	

c	
 ←	
 sieve	
 ←	
 d2	

2	

3	

4	

5	

6	

7	

3	

5	

7	

5	

7	

d0	
 d1	
 d2	
 c	

•  c	
 ←	
 sieve	
 ←	
 d	
 sends	
 first	
 value	
 p	
 on	
 d	
 along	
 c	

•  Then	
 spawns	
 new	
 process	
 to	
 filter	
 out	
 %p	

Prime	
 Sieve	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 17	

•  c	
 ←	
 sieve	
 ←	
 d	
 sends	
 first	
 value	
 p	
 on	
 d	
 along	
 c	

•  Then	
 spawns	
 new	
 process	
 to	
 filter	
 out	
 %p	

d0	
 ←	
 from	
 2	

d1	
 ←	
 filter	
 (%2)	
 ←	
 d0	

d2	
 ←	
 filter	
 (%3)	
 ←	
 d1	

d3	
 ←	
 filter	
 (%5)	
 ←	
 d2	

2	

3	

4	

5	

6	

7	

3	

5	

7	

5	

7	

7	

d0	
 d1	
 d2	
 d3	

c	
 ←	
 sieve	
 ←	
 d3	

c	

Prime	
 Sieve	

•  	
 e	
 ←	
 filter	
 (mod	
 p)	
 ←	
 d	
 	
 spawns	
 new	
 process	

•  Uses	
 d,	
 offers	
 e	
 (which	
 is	
 used	
 by	
 sieve)	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 18	

ints = &{next:int ∧ ints, stop:1}; "
sieve : {ints ← ints};"

c ← sieve ← d ="
 case (recv c)"
 | next ⇒ send d next ;"
 p ← recv d ;"
 send c p ;"
 e ← filter (mod p) ← d ;"
 c ← sieve ← e"
 | stop ⇒ send d stop ; wait d ; close c"

Primes	

•  Primes	
 correct	
 with	
 sync	
 or	
 async	
 communicaQon	

•  n+2	
 processes	
 for	
 n	
 primes	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 19	

ints = &{next:int ∧ ints, stop:1}; "
primes : {ints};"

c ← primes ="
 d ← from 2 ;"
 c ← sieve ← d"

Bit	
 Strings	

•  Lowest	
 bit	
 on	
 the	
 let	
 (above	
 represents	
 6)	

•  c	
 :	
 ⊕{li:Ai}i	
 	
 	
 send	
 a	
 label	
 li	
 along	
 c	
 and	
 cont.	
 as	
 Ai	

•  n-­‐ary	
 version	
 of	
 linear	
 logic	
 A	
 ⊕	
 B	

•  Internal	
 (provider’s)	
 choice	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 20	

d0	
 ←	
 empty	

d1	
 ←	
 bit	
 true	
 ←	
 d0	

d2	
 ←	
 bit	
 true	
 ←	
 d1	

c	
 ←	
 bit	
 false	
 ←	
 d2	

d0	
 d1	
 d2	
 c	

bits = ⊕{eps:1, bit:bool ∧ bits}; "

Bit	
 String	
 Constructors	

•  Forwarding	
 c	
 ←	
 d	
 represents	
 logical	
 idenQty	

–  Process	
 offering	
 along	
 c	
 terminates	

–  Client	
 subsequently	
 talks	
 to	
 process	
 offering	
 along	
 d	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 21	

bits = ⊕{eps:1, bit:bool ∧ bits};"

empty : {bits};"
c ← empty ="
 send c eps ;"
 close c"

bit : bool → {bits ← bits};"
c ← bit b ← d ="
 send c bit ;"
 send c b ;"
 c ← d; "

AlternaQve	
 Constructor	

•  num	
 as	
 a	
 single	
 process	
 holding	
 an	
 int	
 n	

•  Channel	
 type	
 is	
 process	
 interface,	
 not	
 representaQon	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 22	

bits = ⊕{eps:1, bit:bool ∧ bits};"

num : int → {bits};"
c ← num n ="
case n == 0"
| true ⇒ send c eps ; close c"
| false ⇒ send c bit ;"
 send c (odd n) ;"
 c ← num (n/2)"

Increment	

•  inc	
 process	
 generates	
 one	
 bit	
 string	
 from	
 another	

•  Spawns	
 a	
 new	
 inc	
 process	
 in	
 case	
 of	
 a	
 carry	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 23	

bits = ⊕{eps:1, bit:bool ∧ bits};"
inc : {bits ← bits};"

c ← inc ← d ="
 case (recv d)"
 | eps ⇒ wait d ;"
 e ← eps ;"
 c ← bit true ← e"
 | bit ⇒ b ← recv d ;"
 case b"
 | true ⇒ e ← inc ← d ;"
 c ← bit false ← e"
 | false ⇒ c ← bit true ← d"

AddiQon	

•  add	
 uses	
 two	
 channels,	
 provides	
 one	

•  Receives	
 are	
 sequenQal;	
 addiQonal	
 parallelism	
 could	
 be	

jusQfied	
 by	
 commuQng	
 conversions	
 in	
 proof	
 theory	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 24	

bits = ⊕{eps:1, bit:bool ∧ bits};"
add : {bits ← bits, bits};"
c ← add ← d, e ="
 case (recv d)"
 | eps ⇒ wait d ;"
 c ← e"
 | bit ⇒ b1 ← recv d ;"
 case (recv e)"
 | eps ⇒ wait e ;"
 send c bit;"
 send c b1;"
 c ← d"
 | bit ⇒ b2 ← recv e ; …"

Other	
 Examples	

•  Data	
 structures	

– Stacks,	
 queues,	
 hash	
 tables,	
 binary	
 search	
 trees	

•  Algorithms	

– Lazy	
 and	
 eager	
 prime	
 sieve	

– Merge	
 sort,	
 odd/even	
 sort,	
 inserQon	
 sort	

•  Protocols	

– Needham/Schroeder,	
 safe	
 and	
 unsafe	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 25	

Outline	

•  A	
 new	
 foundaQon	
 for	
 session	
 types	

•  SILL	
 by	
 example	

– Prime	
 sieve	

– Bit	
 strings	

•  Language	
 highlights	

– Types	
 and	
 programs	

–  ImplementaQon	

– Ongoing	
 research	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 26	

Session	
 Type	
 Summary	

•  From	
 the	
 point	
 of	
 view	
 of	
 session	
 provider	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 27	

c	
 :	
 τ	
 ∧	
 A	
 send	
 value	
 v	
 :	
 τ	
 along	
 c,	
 conQnue	
 as	
 A	

c	
 :	
 τ	
 →	
 A	
 receive	
 value	
 v	
 :	
 τ	
 along	
 c,	
 conQnue	
 as	
 A	

c	
 :	
 A	
 ⊗	
 B	
 send	
 channel	
 d	
 :	
 A	
 along	
 c,	
 conQnue	
 as	
 B	

c	
 :	
 A	
 —o	
 B	
 receive	
 channel	
 d	
 :	
 A	
 along	
 c,	
 conQnue	
 as	
 B	

c	
 :	
 1	
 close	
 channel	
 c	
 and	
 terminate	

c	
 :	
 ⊕{li	
 :	
 Ai}	
 send	
 label	
 li	
 along	
 c,	
 conQnue	
 as	
 Ai	

c	
 :	
 &{li	
 :	
 Ai}	
 receive	
 label	
 	
 li	
 along	
 c,	
 conQnue	
 as	
 Ai	

c	
 :	
 !A	
 send	
 persistent	
 !u	
 :	
 A	
 along	
 c	
 and	
 terminate	

!u	
 :	
 A	
 receive	
 c	
 :	
 A	
 along	
 !u	
 for	
 fresh	
 instance	
 of	
 A	

Contextual	
 Monad	

•  M	
 :	
 {	
 A	
 ←	
 A1,	
 …,	
 An	
 }	
 	
 process	
 expressions	

offering	
 service	
 A,	
 using	
 services	
 A1,	
 …,	
 An	

•  ComposiQon	
 	
 	
 c	
 ←	
 M	
 ←	
 d1,	
 …,	
 dn	
 ;	
 P	

– c	
 fresh,	
 used	
 (linearly)	
 in	
 P,	
 consuming	
 d1,	
 …,	
 dn	

•  IdenQty	
 	
 c	
 ←	
 d	

– NoQfy	
 client	
 of	
 c	
 to	
 talk	
 to	
 d	
 instead	
 and	
 terminate	

•  Strong	
 noQon	
 of	
 process	
 idenQty	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 28	

StaQc	
 Type	
 Checking	

•  BidirecQonal	

– Precise	
 locaQon	
 of	
 type	
 errors	

– Based	
 on	
 definiQon	
 of	
 normal	
 proofs	
 in	
 logic	

– Fully	
 compaQble	
 with	
 linearity	

•  Natural	
 noQon	
 of	
 behavioral	
 subtyping,	
 e.g.	

– &{l:A,	
 k:B}	
 ≤	
 &{l:A}	
 (we	
 can	
 offer	
 unused	
 alt’s)	

– ⊕{l:A}	
 ≤	
 ⊕{l:A,	
 k:B}	
 (we	
 need	
 not	
 produce	
 all	
 alt’s)	

•  Supports	
 ML-­‐style	
 value	
 polymorphism	

•  No	
 behavioral	
 polymorphism	
 yet	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 29	

Dynamic	
 SemanQcs	

•  Three	
 back	
 ends	

– Synchronous	
 threads	

– Asynchronous	
 threads	

– Distributed	
 processes	

•  Some	
 cryptographic	
 primiQves	

•  Not	
 released	
 (but	
 mulQple	
 “friendly”	
 users)	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 30	

Dynamic	
 Type	
 Checking	

•  May	
 not	
 trust	
 all	
 parQcipaQng	
 processes	

•  Type	
 system	
 compaQble	
 with	

– Value	
 dependent	
 types,	
 e.g.	
 nat	
 =	
 {x:int	
 |	
 x	
 ≥	
 0}	

– Full	
 dependent	
 types,	
 but	
 sQll	
 under	
 invesQgaQon:	

•  “Right”	
 equivalence	
 on	
 process	
 expressions	

•  RestricQons	
 on	
 recursive	
 types	

•  Contracts	
 are	
 parQal	
 idenQty	
 processes	

– Blame	
 assignment	
 (ongoing)	

– Causality	
 (ongoing)	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 31	

Some	
 Refinements	

•  eq	
 and	
 gt	
 	
 are	
 value	
 type	
 families	

•  succs	
 and	
 incrs	
 are	
 session	
 type	
 families	

•  Last	
 line	
 illustrates	
 ∃	
 as	
 dependent	
 ∧	

•  Not	
 yet	
 implemented	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 32	

nat = {x:int | x ≥ 0};"
nats = &{next:nat ∧ nats, stop:1};"

eq n = {x:int | x = n};"
succs n = &{next:eq n ∧ succs(n+1), stop:1};"

gt n = {x:int | x > n};"
incrs n = &{next:∃k:gt n. incrs k, stop:1};"

Other	
 Logical	
 Thoughts	

•  Affine	
 logic	
 (=	
 linear	
 logic	
 +	
 weakening)	

– StaQc	
 deallocaQons	
 inserted	

– Shorter	
 programs,	
 but	
 errors	
 more	
 likely	

•  Hybrid	
 linear	
 logic	
 (=	
 linear	
 logic	
 +	
 worlds)	

– Worlds	
 represenQng	
 security	
 domains	

– Accessibility	
 relaQon	
 between	
 domains	

– Ongoing	

•  AffirmaQon	
 modality	
 for	
 digital	
 signatures	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 33	

Session	
 Types	
 in	
 a	
 C-­‐like	
 Language	

•  C0:	
 a	
 type-­‐safe	
 subset	
 of	
 C	

– Designed	
 for	
 teaching	
 imperaQve	
 programming,	

algorithms,	
 and	
 data	
 structures	
 to	
 freshmen	

– Extended	
 with	
 contracts	
 (pure	
 boolean	
 funcQons)	

– Contracts	
 are	
 crucial	
 for	
 design,	
 proof,	
 and	
 tesQng	

•  C1:	
 funcQon	
 pointers	
 and	
 polymorphism	

•  CILL:	
 session-­‐typed	
 concurrency?	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 34	

CILL	

•  Channels	
 $c	
 are	
 linearly	
 typed	
 (as	
 in	
 SILL)	

•  Persistent	
 channels	
 $$c,	
 variables	
 x	
 as	
 usual	

•  Channel	
 types	
 must	
 be	
 loop	
 invariants	

–  lub	
 at	
 all	
 join	
 points	
 in	
 control-­‐flow	
 graph	

•  Possible	
 with	
 or	
 without	
 shared	
 memory	

– No	
 safety	
 in	
 the	
 presence	
 of	
 shared	
 memory	

•  Exploring	
 robustness	
 of	
 SILL	
 concepts	
 in	

different	
 se�ng	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 35	

Integer	
 Streams	
 in	
 CILL	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 36	

choice intstream {"
 int /\ choice intstream next;"
 void stop;"
};"
typedef choice intstream ints;"

ints $c from(int n) {"
 while (true) {"
 switch ($c) {"
 case next:"
 send($c, n);"
 n = n+1;"
 case stop:"
 close($c);"
 }"
 }"
}"

SpeculaQng	
 on	
 Contracts	

•  Value	
 contracts	
 must	
 be	
 pure	
 boolean	
 funcQons	

•  Channel	
 contracts	
 must	
 be	
 parQal	
 idenQty	
 proc’s	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 37	

ints $c from(int n)"
//@requires n >= 0;"
//@ensures $c = all_pos($c);"
{"
 while (true) {"
 switch ($c) {"
 case next:"
 send($c, n);"
 n = n+1;"
 case stop:"
 close($c);"
 }"
 }"
}"

ParQal	
 IdenQty	
 Process	

•  Synthesized	
 in	
 a	
 type-­‐directed	
 way	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 38	

ints $c all_pos(ints $d) {"
 switch ($c) {"
 case next:"
 $d.next;"
 int n = recv($d);"
 if (n <= 0) abort;"
 send($c, n);"
 $c = all_pos($d);"
 case stop:"
 $d.stop; wait($d);"
 close($c);"
 }"
}"

Summary	

•  SILL,	
 a	
 funcQonal	
 language	
 with	
 a	
 contextual	

monad	
 for	
 session-­‐typed	
 message-­‐passing	

concurrency	

–  Type	
 preservaQon	
 (session	
 fidelity)	

–  Progress	
 (deadlock	
 and	
 race	
 freedom)	

–  ImplementaQon	
 with	
 subtyping,	
 polymorphism,	

recursive	
 types	

•  Based	
 on	
 a	
 Curry-­‐Howard	
 interpretaQon	
 of	

intuiQonisQc	
 linear	
 logic	

•  Full	
 dependent	
 type	
 theory	
 in	
 progress	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 39	

Thanks!	

•  Luís	
 Caires,	
 Bernardo	
 Toninho,	
 Jorge	
 Peréz	
 (Universidade	

Nova	
 de	
 Lisboa)	

–  FCT	
 and	
 CMU|Portugal	
 collaboraQon	

•  Dennis	
 Griffith,	
 Elsa	
 Gunter	
 (UIUC)	
 [ImplementaQon]	

–  NSA	

•  Michael	
 Arntzenius,	
 Limin	
 Jia	
 (CMU)	
 [Blame]	

•  Stephanie	
 Balzer	
 (CMU)	
 [New	
 foundaQon	
 for	
 OO]	

•  Henry	
 DeYoung	
 (CMU)	
 [From	
 global	
 specs	
 to	
 local	
 types]	

•  Much	
 more	
 to	
 say;	
 see	
 h�p://www.cs.cmu.edu/~fp	

•  Apologies	
 for	
 the	
 lack	
 of	
 references	
 to	
 related	
 work	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 40	

Some	
 References	

•  2010	

–  CONCUR:	
 the	
 basic	
 idea,	

revised	
 for	
 MSCS,	
 2012	

•  2011	

–  PPDP:	
 dependent	
 types	

–  CPP:	
 digital	
 signatures	
 (♢A)	

•  2012	

–  CSL:	
 asynchronous	
 comm.	
 	

–  ESOP:	
 logical	
 relaQons	

–  FOSSACS:	
 funcQons	
 as	

processes	

•  2013	

–  ESOP:	
 behavioral	

polymorphism	

–  ESOP:	
 monadic	
 integraQon	

(SILL)	

•  2014	
 (in	
 progress)	

–  Security	
 domains	
 (A	
 @	
 w),	

spaQal	
 distribuQon	

–  CoinducQve	
 types	

–  Blame	
 assignment	

1/9/2014	
 ABCD	
 Project	
 MeeQng	
 41	

