
Intensionality, Extensionality,

and Proof Irrelevance

in Modal Type Theory

Frank Pfenning

LICS’01

Boston, Massachusetts

June 17, 2001

Acknowledgments: Alberto Momigliano, . . .

1



Outline

1. Introduction

2. Judgmental Analysis

3. Programs and Extensionality

4. Proofs and Irrelevance

5. Expressions and Intensionality

6. Conclusion

2



Objective and Approach

• Study fundamental notions in logic and computer science

– Formal expressions, intensionality

– Programs, types, computations, extensionality

– Proofs, propositions, truth, proof-irrelevance

• How are they related?

• How can they co-exist?

• Analysis via judgments in the style of Martin-Löf

3



Motivation

• Formal expressions, intensionality:

– reflection, meta-programming

– run-time code generation

• Programs, types, computations, extensionality:

– (functional) programming

– logical frameworks

• Proofs, propositions, truth, proof-irrelevance:

– (constructive) logic, reasoning about programs

– computational contents, dead code elimination

4



Preview of Results

• Judgmental analysis of expressions, programs, proofs

• Definitional equality is intensional, extensional, irrelevant

• Smooth integration in a single modal type theory

• Presently restricted to dependent functions only

• Type theory is decidable

• Canonical forms exist

• Sufficient for logical framework applications

• More work needed for functional programming

5



Judgments

• Judgment — object of knowledge

• Evident judgment — something we know

• Derivation — evidence for a judgment

• Basic judgments, for example

– P is a proposition

– P is true

– D is a proof of P

– A is a type

– M is a term of type A

– M and N are equal terms of type A

• Following Martin-Löf [’83,’94,’96]

6



Judgmental Analysis

• Minimal conceptual machinery

– Basic judgments

– Parametric and hypothetical judgments

• Extends to richer type theories

– Categorical judgments (modal logic)

– Linear hypothetical judgments (linear logic)

– Ordered hypothetical judgments

(Lambek calculus and ordered logic)

• Orthogonality and open-endedness

• Constructive

7



Hypothetical Judgments

• General form of hypothetical judgment:

J1, . . . , Jn ` J

Γ = J1, . . . , Jn are hypotheses

• General form of hypothesis rule: J1, . . . , Jn ` Ji

• Substitution property:

If Γ ` J
and Γ, J ` J ′
then Γ ` J ′

Substitute the derivation of J for uses of the hypothesis J.

• Also satisfies weakening and contraction.

8



Outline

• Introduction

• Judgmental Analysis

⇒ Terms and Extensionality

• Proofs and Irrelevance

• Expressions and Intensionality

• Conclusion

9



Terms and Types

• Basic judgments:

– A : type — A is a type

– A = B : type — types A and B are equal

– M : A — object M has type A

– M = N : A — object M equals N at type A

– M −→M ′ — object M reduces to M ′

• Hypotheses Γ = x1:A1, . . . , xn:An

• All judgments except reduction are hypothetical in Γ

• Presupposition: all xi distinct and

x1:A1, . . . , xi:Ai ` Ai+1 : type

10



Role of Definitional Equality

• Related to operational semantics:

– If M −→M ′ and M : A then M = M ′ : A

– If M = M ′ : A then M and M ′ are observably equivalent

– A = B : type if embedded terms are equal

• Necessary for type conversion:

Γ `M : A Γ ` A = B : type
Γ `M : B

• Functional programming: congruence based on β-reduction

• Logical framework: congruence based on βη-conversion

• Should be decidable for decidable type-checking

11



Functions

• Reflect hypothetical judgment as type Πx:A.B(x)

• Introduction rule

Γ ` A : type Γ, x:A `M(x) : B(x)

Γ ` λx:A.M(x) : Πx:A.B(x)

• Elimination rule

Γ `M : Πx:A.B(x) Γ ` N : A

Γ `MN : B(N)

• Reduction (λx:A.M(x))N −→M(N)

12



Extensional Definitional Equality

• Γ `M = N : A

• Reflexive, transitive, congruent

• Computational equality (β)

Γ ` A1 : type Γ, x:A1 `M2(x) : A2(x) Γ `M1 : A1

Γ ` (λx:A1.M2(x))M1 = M2(M1) : A2(M1)

• Extensionality (equivalent to η)

Γ ` A : type Γ, x:A `M x = N x : B(x)

Γ `M = N : Πx:A.B(x)

• Equality is decidable

13



Outline

• Introduction

• Judgmental Analysis

• Terms and Extensionality

⇒ Proofs and Irrelevance

• Expressions and Intensionality

• Conclusion

14



A Puzzle: Subset Types

• Illustrates computational irrelevance of proofs

• Introduction rule

Γ `M : A Γ ` D : B(M)

Γ `M : {x:A | B(x)}

• Second elimination rule

Γ `M : {x:A | B(x)} Γ, u:B(M) ` N : C

Γ ` N : C

provided u not free in N

• u can still be used for proofs in second premise

• Type-checking undecidable

15



Example: Using a Proof Judgment

• D ÷ P — D is proof of proposition P

• Introduction rule

Γ `M : A Γ ` D ÷ B(M)

Γ ` 〈M,D〉 : {x:A | B(x)}

• Second elimination rule

Γ `M : {x:A | B(x)} Γ, u÷B(π1M) ` N : C

Γ ` let u = π2M in N : C

• No side condition

• Proofs are dead code (erase before computation)

• Type-checking decidable

16



Proofs and Propositions

• Γ ` A ÷ type — type A is a proposition

• Γ `M ÷ A — object M is a proof of proposition A

• New judgment on same language of objects and types!

• Defined by only one rule (terms are proofs)

Γ⊕ `M : A
Γ `M ÷ A

• Proofs are not terms (M ÷ A 6⊃M : A)

• Γ⊕ allows proof variables as term variables:

(·)⊕ = ·

(Γ, x:A)⊕ = Γ⊕, x:A

(Γ, x÷A)⊕ = Γ⊕, x:A

17



Proof Irrelevance

• Γ `M = N ÷ A — M and N are equal proofs

• Do not care about the proofs, only their existence

• Defined by only one rule (all valid proofs are equal)

Γ⊕ `M : A Γ⊕ ` N : A
Γ `M = N ÷ A

• Proofs are not observable

• Erase dead code before computation

18



Irrelevant Function Types

• Πx÷A.B(x) — a function that ignores its argument

• May use x in correctness proof

• Introduction rule (boring)

Γ ` A ÷ type Γ, x÷A `M(x) : B(x)

Γ ` λx÷A.M(x) : Πx÷A.B(x)

• Elimination rule (boring)

Γ `M : Πx÷A.B(x) Γ ` N ÷ A
Γ `M ◦ N : B(N)

• Reduction (λx÷A.M(x)) ◦ N −→M(N)

19



Logical Framework Application

• Proofs of decidable propositions can be erased

• Decidability can be established syntactically

• Replace proofs of undecidable propositions by oracle strings

[Necula & Rahul’01]

– Enough information to reconstruct a proof

– All proofs are equal, so any proof will do!

– Consistent integration of oracle strings in LF

– Important for compact certificates in proof-carrying code

20



Proof Irrelevance as a Modality

• Internalize proof irrelevance as a modal operator

• Introduction rule
Γ `M ÷ A

Γ ` tri M : 4A

• Elimination rule

Γ `M : 4A Γ, x÷A ` N(x) : C

Γ ` let tri x = M in N(x) : C

• Proof theory not yet fully investigated

• Commuting conversions and dependent types?

• Categorical analysis [Awodey & Bauer’01]

21



Modal Logic

• Axiomatic characterization of 4 (non-dependent fragment)

` A ⊃ 4A

` 44A ⊃ 4A

` 4(A ⊃ B) ⊃ 4A ⊃ 4B

• ∀x:A.B(x) quantifies over ephemeral objects

Need exist only in “present” worlds

• ∀x÷A.B(x) quantifies over “real” objects

Existed in some “past” or “present” world

22



Outline

• Introduction

• Judgmental Analysis

• Terms and Extensionality

• Proofs and Irrelevance

⇒ Expressions and Intensionality

• Conclusion

23



Intensional Expressions

• Γ `M :: A — object M is an expression of type A

• All expressions are terms (via evaluation)

Γ, x::A,Γ′ ` x : A

• Some terms are expressions

Γ	 `M : A
Γ `M :: A

• Γ	 prohibits term variables and proof variables in
expressions except inside proofs

(·)	 = ·

(Γ, x::A)	 = Γ	, x::A

(Γ, x:A)	 = Γ	, x÷A

(Γ, x÷A)	 = Γ	, x÷A
24



Intensionality (modulo Proofs)

• Γ `M = N :: A — objects M and N are intensionally equal

• Defined as α-conversion

Γ	 `M : A
Γ `M = M :: A

• However, embedded proofs are still identified

M(D) = (λx÷A.M(x)) ◦ D = (λx÷A.M(x)) ◦ E = M(E)

• Caveat: type labels (see paper)

25



Internalizing Expressions

• Intensional function type Πx::A.B

• Rules completely analogous to terms and proofs

• Internalizing expressions as a modal operator 2A

• Introduction rule
Γ `M :: A

Γ ` boxM : 2A

• Elimination rule

Γ `M : 2A Γ, x::A ` N(x) : C

Γ ` let box x = M in N(x) : C

26



Modal Logic Revisited

• Axiomatic characterization of 2 (non-dependent fragment)

` 2A ⊃ A

` 2A ⊃ 22A

` 2(A ⊃ B) ⊃ 2A ⊃ 2B

` A
` 2A

• Interaction with 4

` A ⊃ 24A

• ∀x::A.B(x) quantifies over persistent objects

Must exist in all “future” worlds

27



Application: Run-Time Code Generation

• To generate (optimized) code at run-time, we need (at

least conceptually) the source expression.

• Property guaranteed by 2A

• Dependent type theory to reason about run-time code

generating programs.

• Requires both 2A and 4A

28



Some Theorems

• LF is based on type theory with Πx:A.B(x)

• LF extended with Πx÷A.B(x), and Πx::A.B(x) satisfies:

– decidability of definitional equality

– decidability of type-checking

– existence of canonical forms

– conservativity over LF

• Approximately typed algorithm for equality

[Harper & Pf.’00]

• See paper and technical report for details

29



Related Work

• Non-dependent modal type theory [Davies & Pf’96,’01]

• Program extraction [Constable’86]

M : #A (smash type)

• Program extraction [Paulin-Mohring’89]

P : prop, A : type

• Program extraction [Berger et al.’01] (many others)

• Extensional concepts in non-extensional type theory

[Hofmann’95]

30



Conclusions

• Intensionality (α-conversion)

• Extensionality (βη-conversion)

• Proof irrelevance (all proofs equal)

• Co-exist easily in judgmental framework

• Applications of proof irrelevance:

proof compression (PCC), dead code elimination

• Applications of intensionality:

run-time code generation, reflection(?)

• Basic study of fundamental notions

• The framework makes a difference!

31


