Intensionality, Extensionality,
and Proof Irrelevance
iIn Modal Type Theory

Frank Pfenning

LICS'01
Boston, Massachusetts
June 17, 2001

Acknowledgments: Alberto Momigliano, ...

Outline

a A W N

o

. Introduction

. Judgmental Analysis

Programs and Extensionality

. Proofs and Irrelevance
. Expressions and Intensionality

. Conclusion

Objective and Approach

e Study fundamental notions in logic and computer science

— Formal expressions, intensionality

— Programs, types, computations, extensionality

— Proofs, propositions, truth, proof-irrelevance
e How are they related?

e How can they co-exist?

e Analysis via judgments in the style of Martin-Lof

Motivation

e Formal expressions, intensionality:

— reflection, meta-programming

— run-time code generation
e Programs, types, computations, extensionality:

— (functional) programming

— logical frameworks
e Proofs, propositions, truth, proof-irrelevance:

— (constructive) logic, reasoning about programs

— computational contents, dead code elimination

Preview of Results

e Judgmental analysis of expressions, programs, proofs

e Definitional equality is intensional, extensional, irrelevant
e Smooth integration in a single modal type theory

e Presently restricted to dependent functions only

e Type theory is decidable

e Canonical forms exist

e Sufficient for logical framework applications

e More work needed for functional programming

Judgments

e Judgment — object of knowledge
e Evident judgment — something we know
e Derivation — evidence for a judgment
e Basic judgments, for example
— P is a proposition
— P is true
— D is a proof of P
— A is a type

— M is a term of type A
— M and N are equal terms of type A

e Following Martin-L06f ['83,'94,'96]

Judgmental Analysis

e Minimal conceptual machinery

— Basic judgments

— Parametric and hypothetical judgments
e EXxtends to richer type theories

— Categorical judgments (modal logic)
— Linear hypothetical judgments (linear logic)

— Ordered hypothetical judgments
(Lambek calculus and ordered logic)

e Orthogonality and open-endedness

e Constructive

Hypothetical Judgments

e General form of hypothetical judgment:

J]_, c ey Jn |_ J
[= Ji1,...,Jn are hypotheses

e General form of hypothesis rule: Jq,...,Jnt J;

e Substitution property:

IfTr+=J
and ", J+J
then '+ J’

Substitute the derivation of J for uses of the hypothesis J.

e AIlso satisfies weakening and contraction.

Outline

e Introduction
e Judgmental Analysis
= Terms and Extensionality
e Proofs and Irrelevance
e EXpressions and Intensionality

e Conclusion

Terms and Types

e Basic judgments:

— A type — A is a type

— A= B : type — types A and B are equal

— M : A — object M has type A

— M =N :A— object M equals N at type A
— M — M’ — object M reduces to M’

e Hypotheses I = x1:A1,...,zn:An

e All judgments except reduction are hypothetical in T

e Presupposition: all x; distinct and
r1:A1, ..., 2t Ay E A L type

Role of Definitional Equality

e Related to operational semantics:

—IfM—M and M: Athen M =M': A
— If M = M': A then M and M’ are observably equivalent
— A = B : type if embedded terms are equal

e Necessary for type conversion:

Fr=M:A A= B: type
r+~M: B

e Functional programming:. congruence based on G-reduction
e Logical framework: congruence based on fn-conversion

e Should be decidable for decidable type-checking

11

Functions

Reflect hypothetical judgment as type MNx:A. B(x)

Introduction rule
= A: type M, z:AF M(x) : B(x)
T AXx:A.M(x) : Nx:A. B(x)

Elimination rule

=M :TNx:A. B(x) FEN:A
F-MN : B(N)

Reduction (Axz:A.M(x)) N — M(N)

12

Extensional Definitional Equality

M =N:A
Reflexive, transitive, congruent

Computational equality (8)

A1 :type [,xz:A1F MQ(ZU) : AQ(ZU) = Mq: Aq

[+ ()\ZUIAl.MQ(ZU)) Ml = MQ(Ml) : AQ(Ml)

Extensionality (equivalent to n)

Fr-A:type Mz A-Mx= Nux: B(x)
rFM=N:NzA B(z)

Equality is decidable

13

Outline

e Introduction
e Judgmental Analysis
e [erms and Extensionality
= Proofs and Irrelevance
e EXpressions and Intensionality

e Conclusion

14

A Puzzle: Subset Types

Illustrates computational irrelevance of proofs

Introduction rule

Fr-M: A M+ D: B(M)
=M :{z:A| B(z)}

Second elimination rule
=M :{x:A| B(z)} L, u:B(M)FN:C

=N :C

provided v not free in N
u can still be used for proofs in second premise

Type-checking undecidable

15

Example: Using a Proof Judgment

D+~ P — D is proof of proposition P

Introduction rule
Fr=M: A =D+~ B(M)
r=(M,D):{x:A| B(z)}

Second elimination rule
=M :{x:A| B(z)} M u-B(ri M) N :C
[Fletu=moMinN :C

NoO side condition
Proofs are dead code (erase before computation)

Type-checking decidable

16

Proofs and Propositions

o [HA = type — type A is a proposition
o [WM+ A— object M is a proof of proposition A
e New judgment on same language of objects and types!

e Defined by only one rule (terms are proofs)

rP-M: A
Fr-M = A

e Proofs are notterms (M - A3 M : A)
e P allows proof variables as term variables:
() =
(Fz:A)® = M9 x4
(Mz-A® = M9 z:A

Proof Irrelevance

M =N+ A — M and N are equal proofs
Do not care about the proofs, only their existence

Defined by only one rule (all valid proofs are equal)

M : A P-N: A
Fr-M=N=A

Proofs are not observable

Erase dead code before computation

18

Irrelevant Function Types

e Mx+A. B(x) — a function that ignores its argument
e May use x in correctness proof

e Introduction rule (boring)

A+ type Me~AF M(z) : B(x)
T Xz+-A . M(z) : Nx+A. B(x)

e Elimination rule (boring)

M- M : Nz+A. B(z) rM-N= A
Mo N : B(N)

e Reduction (Az+A.M(xz)) o N — M(N)

Logical Framework Application

e Proofs of decidable propositions can be erased
e Decidability can be established syntactically

e Replace proofs of undecidable propositions by oracle strings
[Necula & Rahul’01]

— Enough information to reconstruct a proof
— All proofs are equal, so any proof will do!
— Consistent integration of oracle strings in LF

— Important for compact certificates in proof-carrying code

20

Proof Irrelevance as a Modality

Internalize proof irrelevance as a modal operator

Introduction rule
=M <+ A
=t M ANA

Elimination rule
Fr=M: AA e~A+F N(z): C
Flettrizx = Min N(x) : C

Proof theory not yet fully investigated
Commuting conversions and dependent types?

Categorical analysis [Awodey & Bauer'01]

21

Modal Logic

e Axiomatic characterization of A (non-dependent fragment)

-FADAA
- ANA D AA
FA(ADB)DAADAB

e Vx:A. B(x) quantifies over ephemeral objects
Need exist only in “present” worlds

e Vx+A. B(x) quantifies over ‘“real” objects
Existed in some “past” or “present’” world

22

Outline

e Introduction

e Judgmental Analysis

e [erms and Extensionality

e Proofs and Irrelevance

= EXxpressions and Intensionality

e Conclusion

23

Intensional Expressions

o [HM:: A— object M is an expression of type A

e All expressions are terms (via evaluation)

FzoA Tz A

e Some terms are expressions

PFM: A
Fr=M:: A

e © prohibits term variables and proof variables in
expressions except inside proofs

() =
(Mz::A)® = M9 x::A
(Fz:A)°® = Mo z=A
(MFax+A® = MO A

Intensionality (modulo Proofs)

o[WM =N :: A— objects M and N are intensionally equal

e Defined as a-conversion

PFM: A
Fr-M=M: A

e However, embedded proofs are still identified

M(D) = Qz+A. M(z)) o D = (Daz=A. M(z)) o E = M(E)

e Caveat: type labels (see paper)

25

Internalizing Expressions

Intensional function type lNx::A. B

Rules completely analogous to terms and proofs
Internalizing expressions as a modal operator OA
Introduction rule

Fr=M :: A
T+boxM : OA

Elimination rule
T+ M:OA Lx:AF N(x) : C
[Fletboxx = M in N(x) : C

26

Modal Logic Revisited

e AXxiomatic characterization of O (non-dependent fragment)

FOADA
FOA D DOOA
-0(ADB)DO0ADUOB

- A
FOA

e Interaction with A

- ADOAA

e Vx::A. B(x) quantifies over persistent objects
Must exist in all “future” worlds

27

Application: Run-Time Code Generation

e To generate (optimized) code at run-time, we need (at
least conceptually) the source expression.

e Property guaranteed by OA

e Dependent type theory to reason about run-time code
generating programs.

e Requires both OA and AA

28

Some Theorems

e LF is based on type theory with Mx:A. B(x)

e LF extended with MNz+A. B(x), and MNx::A. B(x) satisfies:
— decidability of definitional equality
— decidability of type-checking

— eXxistence of canonical forms

— conservativity over LF

e Approximately typed algorithm for equality
[Harper & Pf.’00]

e See paper and technical report for details

29

Related Work

e Non-dependent modal type theory [Davies & Pf'96,'01]

Program extraction [Constable’'86]
M : #A (smash type)

Program extraction [Paulin-Mohring’'89]
P : prop, A : type

Program extraction [Berger et al.’01] (many others)

Extensional concepts in non-extensional type theory
[Hofmann'95]

30

Conclusions

e Intensionality (a-conversion)

e Extensionality (Bn-conversion)

e Proof irrelevance (all proofs equal)

e Co-exist easily in judgmental framework

e Applications of proof irrelevance:
proof compression (PCC), dead code elimination

e Applications of intensionality:
run-time code generation, reflection(?)

e Basic study of fundamental notions

e [he framework makes a differencel

31

