Session-Typed Concurrent
Programming

Frank Pfenning
Carnegie Mellon University

Joint work with Luis Caires, Bernardo Toninho,
Jorge Peréz, Dennis Griffith, Elsa Gunter, et al.

Sep 12, 2014 Computer Science Colloguium / Indiana University

Outline

* A new foundation for session types
* SILL by example

— Prime sieve
— List segments

* Language highlights
— Types and programs

— Implementation
— Ongoing research

Sep 12, 2014 Computer Science Colloguium / Indiana University

Programming Language Design

* Designing effective programming abstractions
for a class of computational models

* Measures of success
— Easy to write correct programs
— Hard to write incorrect programs
— Simple, clean, uniform, elegant
— Easy to reason about, operationally & logically
— Translates well to lower-level abstractions
— Interacts smoothly with other constructs

Message-Passing Concurrency

* Distributed computation is ubiquitous

* Today’s libraries too low-level
— Tacked on to imperative/oo/functional languages
— Do not yet provide the right abstractions
— Hard to write correct programs
— Difficult to reason about

* New approach: start from logic!

Curry-Howard Isomorphisms

* Logical origins of computational phenomena
* |ntuitionistic logic & functional programming
* S4 modal logic & quote/eval staging

* S5 modal logic < distributed programming

 Temporal logic < partial evaluation
* Linear logic < session-typed concurrency
 More than an analogy!

Session Types

Prescribe communication behavior between
message-passing concurrent processes

May be synchronous or asynchronous
Linear channels with two endpoints
Shared channels with multiple endpoints

Messages exchanged can be

— data values (including process expressions)
— channels (as in the mt-calculus)

— |labels (to indicate choice)

Linear Logic: A New Foundation

Linear propositions < session types
Sequent proofs < process expressions
Cut < process composition

dentity & message forwarding

Proof reduction € communication

Linear type theory generalizes linear logic
— Logic: propositions do not mention proofs
— Type theory: proofs are internalized as terms

Benefits of Curry-Howard Design

Integrated development of programming
constructs and reasoning principles

— Correct programs via simple reasoning principles
— Even if they are not formalized in the language!

Elegant and expressive language primitives
Orthogonality and compatibility of constructs
Programming language theory as proof theory

Some Choices for SILL

* SILL = Sessions in Intuitionistic Linear Logic
* Conservatively extend functional language

— Process expressions form a (contextual) monad

— Communication may be observable

* Manifest notion of process
— Offer vs. use of a service
— Process < channel along which service is offered

Properties of SILL

Type preservation
— Entails session fidelity on processes

Progress
— Absence of deadlock
— Absence of race conditions on linear channels

Termination and productivity

— Some restrictions on recursive types required

Obeys a general theory of logical relations!

SILL by Example

* Syntax close to implementation in O’'Caml|
* No inference rules, just intuition

* Examples
— Endless streams of integers
— Streams of integers
— Stream filter
— Prime sieve
— Linked lists
— List segments

Stream of Numbers

Data types

tu=bool |int|t>1|...|{A}

{ A }is type of process offering service A
Session types

A=

Data and session types may be recursive

In type theory, should be inductive or
coinductive (ongoing work)

Endless Streams of Integers

ints = int A ints;

from : int — {ints};
c < from n =

send ¢ n ;

c < from (n+l)

c:t A A sendvalue v:talong c and behave as A
Non-dependent version of dx:t. A

Tail call represents process continuation

e Asingle process will send stream of integers
Channel variables and session types in red

Sep 12, 2014 Computer Science Colloguium / Indiana University 13

Streams of Integers

ints = &{ :int A ints, :1};

from : int — {ints};
c < from n =
case (recv c)
| = send c n ;
c < from (n+1l)
| = close c

c:&{l : A} receive label | along c and continue as A,
Labeled n-ary version of linear logic A & B

External (client’s) choice

c:1 terminate process; as linear logic 1

Closing a channel c terminates offering process

Sep 12, 2014 Computer Science Colloguium / Indiana University

14

Filtering a Stream

ints = &{ :int A ints, :1};
filter : (int — bool) — {ints <« ints};

c < filter q < d =
case (recv c)
| = ¢ < filterNext g < d
| = send d ;
wait d ;
close c

filterNext : (int — bool) — {int A ints <« ints};

« {A& A, ..., A }process offering A, using A’s

* Type of channels changes based on process state!

* Type error, say, if we forget to stop d

Sep 12, 2014 Computer Science Colloguium / Indiana University

15

Finding the Next Element

ints = &{ :int A ints, 21}
filter : (int — bool) — {ints <« ints};
filterNext : (int — bool) — {int A ints <« ints};

c < filterNext q < d =
send d ;
n < recv d ;
case (g n)
| true = send c n ;
c < filter g < d
| false = ¢ < filterNext g < d

 filter/filterNext process identified with channel c

Sep 12, 2014 Computer Science Colloguium / Indiana University

Prime Sieve

d, & filter (%3) < d; d, & from 2
c & sieve & d, d, & filter (%2) < d,
C d, d, dg
5 3 2
7 5 3
7 4
5
6
7

e c & sieve €& d sends first value p on d along c
 Then spawns new process to filter out %p

Sep 12, 2014 Computer Science Colloguium / Indiana University

17

Prime Sieve

c & sieve € d; d, < filter (%3) < d, d, ¢ from 2
d; & filter (%5) < d, d, & filter (%2) < d,
C d, d, d, dg
7 5 3 2
7 5 3
7 4
5
6
7

e c & sieve €& d sends first value p on d along c
 Then spawns new process to filter out %p

Sep 12, 2014 Computer Science Colloguium / Indiana University

18

Prime Sieve

ints = &{ :int A ints, 21}
sieve : {ints < ints};

c < sieve < d =

case (recv cC)

| = send d :
p < recv d ;
send Cc p ;
e «<— filter (mod p) < d ;
C < sieve < e

| = send d :+ wait d ; close c

e e < filter (mod p) €& d spawns new process
e Uses d, offers e (which is used by sieve)

Sep 12, 2014 Computer Science Colloguium / Indiana University

Primes

ints = &{ :int A ints, :1};
primes : {ints};

C < primes =
d < from 2 ;
c < sieve < d

* Primes correct with sync or async communication
* n+2 processes for n primes

Sep 12, 2014 Computer Science Colloguium / Indiana University

List Segments

 Segment is linked list, abstracted over its talil
 Have functional and imperative versions
* Concurrent version

— No particular implementation prescribed
— Elements are channels to access data

Linked Lists

list = ®{ : 1, :A ® list};
nil : {list}; cons : {list < A, list}
c < nil = c < cons < x, d =
send c ; send c ;
close c send c X ;
c < d

c:®{l : A} send label | along c and continue as A,
Labeled n-ary version of linear logic A© B
Internal (provider’s) choice

c : A®B output a channel of type A, continue as B

Sep 12, 2014 Computer Science Colloguium / Indiana University

List Segments

seg = list —olist;
empty : {seg}; tolist : {list < seg}
c < empty = c < tolist <« d =
t < recv c ; n < nil ;
c < t send d n ;
c < d

e c:A —o B inputachannel of type A, continue as B
 Can add to segment at both ends, concatenate segs
* Can convert to list

Sep 12, 2014 Computer Science Colloguium / Indiana University

23

Concatenating List Segments

seg = list —olist;

concat : {seg < seg, seg}
c < concat < d, e =

t < recv c ;

send e t ;

send d e ;

c < d

* Implements more general composition

Sep 12, 2014 Computer Science Colloguium / Indiana University

24

Prepending, Appending Elements

seg = list —olist;

prepend : {seg < A, seg} append : {seg < seqg, A}

c < prepend < x, d = c < append < d, x =
t < recv c ; t < recv c ;
send d t ; e < cons < x, t ;
e < cons < x, d ; send d e ;

C < e c < d

Sep 12, 2014 Computer Science Colloguium / Indiana University

Stateful Shared Processes

e Shared channels (type !A) do not share state

— Cannot use list segments for usual imperative
implementation of queues

— Use functional technique in process setting

* Challenge: can we recover mutable sharing?
— Type preservation (session fidelity)
— Progress (freedom from deadlock)
— Ongoing

Other Examples

* Data structures
— Stacks, queues, binary search trees

— Syntax trees, evaluation, tree transformation

e Algorithms
— Lazy and eager prime sieve
— Merge sort, odd/even sort, insertion sort

* Protocols

— Needham/Schroeder, safe and unsafe

Outline

* A new foundation for session types
* SILL by example

— Prime sieve
— List segments

* Language highlights
— Types and programs

— Implementation
— Ongoing research

Sep 12, 2014 Computer Science Colloguium / Indiana University

28

Session Type Summary

* From the point of view of session provider

c:tAA send value v : T along c, continue as A
C:T>A receive value v : Talong ¢, continue as A
c:A®B send channel d : A along c, continue as B
c:A—o0B receive channel d : A along c, continue as B
c:1 close channel c and terminate

c:®{l: A} send label |. along c, continue as A,
c:&{l:A} receive label |. along c, continue as A,

c:lA send persistent lu : A along c and terminate

lu: A receive c : A along lu for fresh instance of A

Contextual Monad

M:{A& A, ..., A} process expressions
offering service A, using services A, ..., A

Composition cé M <& d,,...,d ;P

— c fresh, used (linearly) in P, consuming d,, ..., d

ldentity ¢ & d
— Notify client of c to talk to d instead and terminate

n

n

Strong notion of process identity

Static Type Checking

Bidirectional

— Precise location of type errors

— Based on definition of normal proofs in logic

— Fully compatible with linearity

Natural notion of behavioral subtyping, e.g.

— &{I:A, :B} £ &{|:A} (we can offer unused alt’s)

— o{l:A} < o{l:A, k:B} (we need not produce all alt’s)
Supports ML-style value polymorphism
Explicit behavioral polymorphism for sessions

Dynamic Semantics

Three back ends

— Synchronous threads

— Asynchronous threads

— Distributed processes

Fourth back end (hypothetical):

— Solos ?

Curry-Howard lesson:

— The syntax can remain stable (proofs!)

— The semantics can vary: controling reductions
— Must be consistent with proof theory

Not released (but multiple “friendly” users)

Dynamic Type Checking

* May not trust all participating processes

* Type system compatible with
— Value dependent types, e.g. nat = {x:int | x > 0}

— Full dependent types (ongoing):
* “Right” equivalence on process expressions
* Restrictions on recursive types

* Contracts are partial identity processes
— Blame assignment (ongoing)
— Causality (ongoing)

Some Refinements

nat = {x:int | x = 0};

nats = &{ tnat A nats, t1};

eq n = {xX:int | x = n};

succs n = &{ teq n A succs(n+l), :1};

gt n = {x:int | x > n};
incrs n = &{ :dk:gt n. incrs k, :1};

 eq and gt are value type families

e succs and incrs are session type families
* Last line illustrates 3 as dependent A
* Not yet implemented

Sep 12, 2014 Computer Science Colloguium / Indiana University

Other Logical Thoughts

e Affine logic (= linear logic + weakening)
— Static deallocations inserted

— Shorter programs, but errors more likely

* Hybrid linear logic (= linear logic + worlds)
— Worlds representing security domains
— Accessibility relation between domains
— Ongoing

e Affirmation modality for digital signatures

Foundations: Functions

Agda Haskell, ML
Intuitionistic Type Theory Dependently Typed Recursively Typed
ITT AT A7H
Intuitionistic Logic Simply Typed
IL A~
Untyped
A

Sep 12, 2014 Computer Science Colloguium / Indiana University 36

Foundations: Processes

?

|

Concurrent Type Theory
(ongoing)

Intuitionistic Linear Logic
ILL

Dependently Typed Sessions
(ongoing)

Session Typed
T[_OI®I1I !I&I®

!

Untyped 5
- r

>

Sep 12, 2014 Computer Science Colloguium / Indiana University

SILL

|

Recursively Typed
Sessions

37

ri-Calculus as Computational Model

e Not as robust or canonical as A-calculus

* A session-typed, linear logic perspective
— Replication (!) is too general (!P = P | P)
— Lacks forwarding primitive
— Lacks labeled choice

— Input always blocking

* Alternative: substructural operational semantics
— Forward chaining linear logic programming
— Towards a synthesis of paradigms? (ongoing)

Curry-Howard: How Far to Go?

 Computation vs. proof reduction
— Computation imposes a strategy
— Proof reduction could be anywhere
— n-expansion as equality, not computation

* Functional programming
— Always stop at A-abstraction (negative type)
— Call-by-name vs. call-by-value vs. call-by-need vs...

Curry-Howard: How Far to Go?

* Option 1: Synchronous m-calculus

— Only judgmental rules (cut, id) commute

— No propositional rules commute
* Option 2: Asynchronous mt-calculus

— Commute past outputs (pos. multiplicatives)

— Don’t commute past inputs (as in functional progs)
e Option 3: Solos

— Commute past inputs (neg. multiplicatives)

— Do not commute past neg. additives, exponentials

Summary

SILL, a functional language with a contextual
monad for session-typed message-passing
concurrency

— Type preservation (session fidelity)
— Progress (deadlock and race freedom)

— Implementation with subtyping, polymorphism,
recursive types

Based on a Curry-Howard interpretation of
intuitionistic linear logic

Full dependent type theory in progress
Dynamic check of types and contracts in progress

Some References

« 2010 e 2013
— CONCUR: the basic idea, — ESOP: behavioral
revised for MSCS, 2012 polymorphism
e 2011 — ESOP: monadic integration

— PPDP: dependent types (SILL)
— CPP: digital signatures (CA) * 2014 (in progress)

e 2012 — Security domains (A @ w),
spatial distribution
e J. Peréz, 14:30 today!

— Coinductive types

— CSL: asynchronous comm.
— ESOP: logical relations

— FOSSACS: functions as

— Blame assignment
processes

Thanks!

Luis Caires, Bernardo Toninho, Jorge Peréz (Universidade
Nova de Lisboa)

— FCT and CMU | Portugal collaboration

Dennis Griffith, Elsa Gunter (UIUC) [Implementation]
— NSA

Michael Arntzenius, Limin Jia (CMU) [Blame]

Stephanie Balzer (CMU) [New foundation for OO]

Henry DeYoung (CMU) [From global specs to local types]
Much more to say; see http://www.cs.cmu.edu/~fp
Apologies for the lack of references to related work

Bit Strings

d, & bit true < d, d, < empty
c < bit false < d, d, & bit true < d,
C d, d, dg
bits = ®{eps:1, :bool A bits}; |

* Lowest bit on the left (above represents 6)

* c:®{:A}, sendalabell alongcand cont. as A
* n-ary version of linear logic A© B

* Internal (provider’s) choice

Sep 12, 2014 Computer Science Colloguium / Indiana University 44

Bit String Constructors

bits = @®{ :1, :bool A bits};

empty : {bits};

C < empty =
send c ;
close c

bit : bool — {bits < bits};
c < bit b «< d =

send c ;

send ¢ b ;

c < d;

* Forwarding c < d represents logical identity
— Process offering along c terminates
— Client subsequently talks to process offering along d

Sep 12, 2014 Computer Science Colloguium / Indiana University

Alternative Constructor

bits = ®{ : 1,

num : int — {bits};
C < num n =

case n ==

| true = send c

| false = send c

: close c

°
14

send ¢ (odd n)
c < num (n/2)

:bool A bits};

.
4

* num as a single process holding an int n

* Channel type is process interface, not representation

Sep 12, 2014 Computer Science Colloguium / Indiana University

46

Increment

bits = @®{ :1, :bool A bits};
inc : {bits <« bits};

c < inc < d =
case (recv d)
| = wait d ;
e < eps ;
c < bit true < e
| = b < recv d ;
case b
| true = e < inc < d ;
c < bit false < e
| false = ¢ < bit true < d

* inc process generates one bit string from another
 Spawns a new inc process in case of a carry

Sep 12, 2014 Computer Science Colloguium / Indiana University

Addition

bits = ®{ : 1, :bool A bits};
add : {bits < bits, bits};
c < add < d, e =
case (recv d)
| = wait d ;
cC < e
| = bl < recv d ;
case (recv e)
| = wait e ;
send c ;
send c bl;
c < d
| = b2 < recv e ; ..

* add uses two channels, provides one

* Receives are sequential; additional parallelism could be
justified by commuting conversions in proof theory

Sep 12, 2014 Computer Science Colloguium / Indiana University

Odd/Even Sort

cell = ®{ :int A cell’, :cell};
cell’” = &{ :int — cell, :cell};
elem : side — int — int — {cell <« cell};
c < elem O n < d = .. (sorted)

c — elem L (itl) m < d =
case (recv d)
| = k < recv d ;
send d ; send d m ;
case m > k

| true = ¢ < elem R i k < d
| false = ¢ < elem R i m < d

| = c < elem R im«<d

c < elem R (itl) k <« d =

send c ; send c k ;

case (recv c)

| = m < recv c ;
case m > k
| true = ¢ < elem L i m < d
| false = ¢ < elem L i k < d

= ¢c < elem L i k < d

Sep 12, 2014 Computer Science Colloguium / Indiana University

49

