Reasoning about the Consequences of
Authorization Policies in a Linear Epistemic Logic

Henry DeYoung Frank Pfenning

Computer Science Department
Carnegie Mellon University

FCS Workshop 2009
August 10, 2009

Observation:
m Authorization policies are not stand-alone objects.

m Permit actions that change a system's state.
m Intended to allow only safe consequences.

Observation:
m Authorization policies are not stand-alone objects.

m Permit actions that change a system's state.
m Intended to allow only safe consequences.

Example:
Policy “A principal may read file F if F's owner says so.”

Consequence “A principal may learn F's contents if granted
read access.”

Observation:
m Authorization policies are not stand-alone objects.

m Permit actions that change a system's state.
m Intended to allow only safe consequences.

Example:
Policy “A principal may read file F if F's owner says so.”

Consequence “A principal may learn F's contents if granted
read access.”

Goal:
m Develop a general method for formally:

m specifying both policies and their semantic consequences; and
m reasoning about the interface between them.

Proposed Method

Specify policies and semantics in a security linear logic.

Proposed Method

Specify policies and semantics in a security linear logic.

Define a system-specific notion of state.

Proposed Method

Specify policies and semantics in a security linear logic.
Define a system-specific notion of state.

Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

Proposed Method

Specify policies and semantics in a security linear logic.
Define a system-specific notion of state.

Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

Analyze the rewrite rules to prove properties of the system.

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O* = insert | onfile(F, O)

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O* = nsert | onfile(F, O)

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O* = nsert | onfile(F, O)

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O*
)

insert | onfile(F, O)
read | write(S) | delete

Running Example: A Simple File System

Simple file system with no directory structure and operations:

o* insert | onfile(F, O)
O = read | write(S) | delete

Files F are versioned with tags T.

m Writes create new versions.

Running Example: A Simple File System

Simple file system with no directory structure and operations:

o* insert | onfile(F, O)
O = read | write(S) | delete

Files F are versioned with tags T.
m Writes create new versions.

m current— (F, T): the current version of F is T.

Proposed Method

Specify policies and semantics in a security linear logic.
Define a system-specific notion of state.

Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

Analyze the rewrite rules to prove properties of the system.

A Linear Logic of Authorization and Knowledge

To model mutable system state, use a linear logic [Girard87].

m Linear assumptions may be used only once

A Linear Logic of Authorization and Knowledge

To model mutable system state, use a linear logic [Girard87].

m Linear assumptions may be used only once

For policies, borrow (K) from [Garg+06].

m Family of strong monads indexed by principals

A Linear Logic of Authorization and Knowledge

To model mutable system state, use a linear logic [Girard87].

m Linear assumptions may be used only once

For policies, borrow (K) from [Garg+06].

m Family of strong monads indexed by principals

For knowledge and possession, also borrow [K] and [K].
m Families of S4 [indexed by principals

m Possession is linear (consumable) knowledge

A Linear Logic of Authorization and Knowledge

To model mutable system state, use a linear logic [Girard87].

m Linear assumptions may be used only once

For policies, borrow (K) from [Garg+06].

m Family of strong monads indexed by principals

For knowledge and possession, also borrow [K] and [K].
m Families of S4 [indexed by principals

m Possession is linear (consumable) knowledge

Modalities provide logical force to these concepts; atoms cannot.

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may (K, insert))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

m A principal may read, write, or delete a file
if the owner says so.
delegate : (fs)(owns™ (K, F) ® (KYmay~ (L, onfile(F, O)) —o
may~ (L, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

m A principal may read, write, or delete a file
if the owner says so.
delegate : (fs)(owns™ (K, F) ® (KYmay (L, onfile(F, O)) —o
may~ (L, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

m A principal may read, write, or delete a file
if the owner says so.
delegate : (fs)(owns™ (K, F) ® (KYmay (L, onfile(F, O)) —o
may~ (L, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

m A principal may read, write, or delete a file
if the owner says so.
delegate : (fs)(owns™ (K, F) ® (K)ymay (L, onfile(F, O)) —o
may~ (L, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

m A principal may read, write, or delete a file
if the owner says so.
delegate : (fs)(owns™ (K, F) ® (KYmay~ (L, onfile(F, O)) —o
may~ (L, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

m A principal may read, write, or delete a file
if the owner says so.
delegate : (fs)(owns™ (K, F) ® (KYmay (L, onfile(F, O)) —o
may~ (L, onfile(F, O)))

Specifying the Policies

m Any registered user may insert files.
mayinsert : (fs)(user— (K) — may~ (K, insert))

m A principal may read, write, or delete files he owns.
owner : (fs)(owns™ (K, F) — may~ (K, onfile(F, O)))

m A principal may read, write, or delete a file
if the owner says so.

delegate : (fs)(owns™ (K, F) @ (K)may~ (L, onfile(F, O)) —
may~ (L, onfile(F, O)))

Proving authorization by combining policies should not be
effectful.

m Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Semantic Consequences of Inserting a File

insert : (K)do™ (K, insert) ® (fs)may~ (K, insert) —o
{3f.3t. Ufs)owns™ (K,) ®
[fs]current=(f,t) ®
[fs]contents™(f,t,e) ®
[K]contents—(f, t,e)}

Specifying the Semantic Consequences of Inserting a File

insert : (K)do (K, insert) ® (fs)may~ (K, insert) —o
{3f.3t. Ufs)owns™ (K,) ®
[fs]current=(f,t) ®
[fs]contents™(f,t,e) ®
[K]contents—(f, t,e)}

Specifying the Semantic Consequences of Inserting a File

insert : (K)do™ (K, insert) ® (fs)ymay~ (K, insert) —o
{3f.3t. Ufs)owns™ (K,) ®
[fs]current=(f,t) ®
[fs]contents™(f,t,e) ®
[K]contents—(f, t,e)}

Specifying the Semantic Consequences of Inserting a File

insert : (K)do™ (K, insert) ® (fs)may~ (K, insert) —o
{3f.3t. Ufs)owns™ (K,) ®
[fs]current=(f,t) ®
[fs]contents™(f,t,e) ®
[K]contents—(f, t,e)}

Specifying the Semantic Consequences of Inserting a File

insert : (K)do™ (K, insert) ® (fs)may~ (K, insert) —o
{3f.3t. Ufs)owns™ (K,) ®
[fs]current=(f,t) ®
[fs]contents™(f,t,e) ®
[K]contents—(f, t,e)}

Specifying the Semantic Consequences of Inserting a File

insert : (K)do™ (K, insert) ® (fs)may~ (K, insert) —o
{3f.3t. Ufs)owns™ (K,) ®
[fs]current™(f, t) ®
[fs]contents™(f,t,e) ®
[K]contents—(f, t,e)}

Specifying the Semantic Consequences of Inserting a File

insert : (K)do™ (K, insert) ® (fsymay~ (K, insert) —o
{3f.3t. Ufs)owns™ (K,) ®
[fs]current=(f,t) ®
[fs]contents™(f,t,e) ®
[K]contents—(f,t,€)}

Specifying the Semantic Consequences of Inserting a File

insert : (K)do™ (K, insert) ® (fs)may~ (K, insert) —o
{3f.3t. Ufs)owns™ (K,) ®
[fs]current=(f,t) ®
[fs]contents™(f,t,e) ®
[K]contents—(f, t,e)}

We introduce an effect monad to isolate semantic effects from
non-effectful authorization decisions.
m Creating a file and learning contents are effects.

m Stratification of policies from consequences is evident
syntactically

m Policies have top-level {-) and do not contain {-}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) ® (fsymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) ® (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™ (F, T) ® [fs]contents= (F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) ® (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents™ (F, T,S) —o
{[K]contents=(F, T,S) ®
[fs]current=(F, T)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents=(F, T,S) ®
[fs]current=(F, T)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs|current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F,t,S) ®
[K]contents—(F,t,S)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay~ (K, onfile(F, delete)) ® [fs|current™(F, T) —o
{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

delete : (K)do (K, onfile(F, delete)) ®
(fsymay~ (K, onfile(F, delete)) ® [fs|current™(F, T) —o
{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay ™~ (K, onfile(F, delete)) & [fs]current™(F, T) —o
{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay~ (K, onfile(F, delete)) ® [fs|current™(F, T) —o
{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay~ (K, onfile(F, delete)) ® [fs|current™(F, T) —o
{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : (K)do™ (K, onfile(F, read)) @ (fs)ymay~ (K, onfile(F, read)) ®
[fs]current™(F, T) ® [fs]contents=(F, T,S) —o
{[K]contents—(F, T,S) ®
[fs]current=(F, T)}

write : (K)do™ (K, onfile(F, write(S))) ®
(fsymay~ (K, onfile(F, write(S))) ® [fs]current™ (F, T) —o
{3t. [fs]current™(F,t) ®
[fs]contents™(F, t,S) ®
[K]contents—(F,t,S)}

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay~ (K, onfile(F, delete)) ® [fs|current™(F, T) —o
{1}

Simulating the Environment with a Semantic Action

m A principal can issue an arbitrary request at any time.
environment : {(K)do™ (K, 0O*)}

Simulating the Environment with a Semantic Action

m A principal can issue an arbitrary request at any time.
environment : {(K)do (K, O0*)}

Simulating the Environment with a Semantic Action

m A principal can issue an arbitrary request at any time.
environment : {(K)do™ (K, O*)}

Simulating the Environment with a Semantic Action

m A principal can issue an arbitrary request at any time.
environment : {(K)do™ (K, 0O*)}

We would need a more detailed model to reason about particular
sequences of requests.

m But the weak model is sufficient and actually beneficial:
properties demonstrate security regardless of the sequence.

Proposed Method

Specify policies and semantics in a security linear logic.
Define a system-specific notion of state.

Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

Analyze the rewrite rules to prove properties of the system.

Definition of State Circumscribes Relevant Objects

Definition (File System State)

;A is a file system state if and only if:

Definition of State Circumscribes Relevant Objects

Definition (File System State)

;A is a file system state if and only if:
Each assumption in [is either:
m a policy or a semantic action
m fs knows contents™ (F, T, S) or K knows contents—(F, T, S)
m (fs)user—(K)
m (fs)owns™ (K, F)

Definition of State Circumscribes Relevant Objects

Definition (File System State)

;A is a file system state if and only if:

Each assumption in [is either:
m a policy or a semantic action
m fs knows contents™ (F, T, S) or K knows contents—(F, T, S)
m (fs)user—(K)
m (fs)owns™ (K, F)

Each assumption in A is either:
m fshas current™(F, T)
m (K)do™ (K, O%)
m (K)may (L, 0*)

Definition of State Circumscribes Relevant Objects

Definition (File System State)

;A is a file system state if and only if:

Each assumption in [is either:
m a policy or a semantic action
m fs knows contents™ (F, T, S) or K knows contents—(F, T, S)
m (fs)user—(K)
m (fs)owns™ (K, F)

Each assumption in A is either:
m fshas current™(F, T)
m (K)do™ (K, O%)
m (K)may (L, O*)

For each F, there is at most one T such that

fshas current=(F, T) € A.

Proposed Method

Specify policies and semantics in a security linear logic.
Define a system-specific notion of state.

Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

Analyze the rewrite rules to prove properties of the system.

Translating Specifications to Rewrite Steps

Definition (Rewrite Step)

I A — ['; A’ if and only if there exists a derivation

" A'F CT lax

[A2, Af - CF lax
[A, [{ASH F C lax

(e

[AL [A]F CF lax
AR CT lax

parametrically in C* lax, where only invertible left rules are used
above {}, and both I'; A and I"; A’ are states.

Translating Specifications to Rewrite Steps

Definition (Rewrite Step)

I A — ['; A’ if and only if there exists a derivation

" A'F CT lax

[A2, Af - CF lax
[Az, [{ASH F C* lax

(e

[A [A]F C* lax
AR CT lax

parametrically in C* lax, where only invertible left rules are used
above {}, and both I'; A and I"; A’ are states.

Focusing [Andreoli92] ensures specs are translated atomically.

Translating Specifications to Rewrite Steps

Definition (Rewrite Step)

I A — ['; A’ if and only if there exists a derivation

" A'F CT lax

[; A, Af - C* lax
[Az, (AT} F CF lax

(e

[A, [AT] F CH lax
MAFCTlax

parametrically in C* lax, where only invertible left rules are used
above {}, and both I'; A and I"; A’ are states.

Use of lax judgment (effect monad) ensures that rewrite steps:

m Capture all effects; come from assumptions with monadic
heads.

Translating Specifications to Rewrite Steps

Definition (Rewrite Step)

I A — ['; A’ if and only if there exists a derivation

" A'F CT lax

[A2, Af - CF lax
[Az, [{AfH F C lax

(e

[AL [A]F CF lax
AR CT lax

parametrically in C* lax, where only invertible left rules are used
above {}, and both I'; A and I"; A’ are states.

Use of lax judgment (effect monad) ensures that rewrite steps:

m Capture all effects; come from assumptions with monadic
heads.

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)
Each rewrite step from a file system state is either:
I; (K)do™ (K, onfile(F, delete)), A1, fs has current™ (F, T), Ax — T; Ay
such that T'; A1 F (fs)may = (K, onfile(F, delete)).

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)
Each rewrite step from a file system state is either:
I; (K)do™ (K, onfile(F, delete)), A1, fs has current™ (F, T), Ax — T; A
such that T'; A1 F (fs)may = (K, onfile(F, delete)).

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)
Each rewrite step from a file system state is either:
I; (K)do™ (K, onfile(F, delete)), A1, fs has current™ (F, T), Ax — T; A
such that T'; A1 F (fs)may = (K, onfile(F, delete)).

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)
Each rewrite step from a file system state is either:
I; (K)do™ (K, onfile(F, delete)), A1, fs has current™ (F, T), Ax — T; Ay
such that T'; A1 E (fs)may ~ (K, onfile(F, delete)).

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)
Each rewrite step from a file system state is either:
I; (K)do™ (K, onfile(F, delete)), A1, fs has current™ (F, T), Ax — T; Ay
such that T'; A1 F (fs)may = (K, onfile(F, delete)).

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)
Each rewrite step from a file system state is either:
I; (K)do™ (K, onfile(F, delete)), A1, fs has current™ (F, T), A> — T; Ay
such that T'; A1 F (fs)may = (K, onfile(F, delete)).

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)
Each rewrite step from a file system state is either:
I; (K)do™ (K, onfile(F, delete)), A1, fs has current™ (F, T), Ax — T; As
such that T'; A1 F (fs)may = (K, onfile(F, delete)).

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:
I; (K)do™ (K, onfile(F, delete)), A1, fs has current™ (F, T), Ax — T; Ay
such that T'; A1 F (fs)may = (K, onfile(F, delete)).

Similar rewrite steps for insert, read, write and environment elided.

Rewrite Steps = Semantic Actions

If I'; Ais a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:
I; (K)do™ (K, onfile(F, delete)), A1, fs has current™ (F, T), Ax — T; Ay
such that T'; A1 F (fs)may = (K, onfile(F, delete)).

Similar rewrite steps for insert, read, write and environment elided.

Construct derived rules for left focusing on state assumptions with
monadic heads. U

Proving that Rewrite Steps = Semantic Actions

Recall
delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay— (K, onfile(F, delete)) ® [fs]current=(F, T) —o
{1}

Proving that Rewrite Steps = Semantic Actions

Recall

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay— (K, onfile(F, delete)) ® [fs]current=(F, T) —o
{1}

The derived rule corresponding to left focusing on delete is:

I Al F (K)do™ (K, onfile(F, delete)) Tle; Ables = current™(F, T)
[Ay F (fsymay~ (K, onfile(F, delete)) M Ay, 1E Ctlax
AL AL Ay, Ay - CF lax

Proving that Rewrite Steps = Semantic Actions

Recall

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay— (K, onfile(F, delete)) ® [fs]current=(F, T) —o
{1}

The derived rule corresponding to left focusing on delete is:

I Al F (K)do™ (K, onfile(F, delete)) Tle; Ables = current™(F, T)
[Ay F (fsymay~ (K, onfile(F, delete)) M Ay, 1E Ctlax
M AL AL AL Ay = CTolax

Proving that Rewrite Steps = Semantic Actions

Recall

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay— (K, onfile(F, delete)) ® [fs]current=(F, T) —o
{1}

The derived rule corresponding to left focusing on delete is:

I Al F (K)do™ (K, onfile(F, delete)) Tle; Ables = current™(F, T)
[Ay F (fsymay~ (K, onfile(F, delete)) M Ay, 1E Ctlax
M AL AL AL Ay = CTolax

Proving that Rewrite Steps = Semantic Actions

Recall

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay— (K, onfile(F, delete)) ® [fs]current=(F, T) —o
{1}

The derived rule corresponding to left focusing on delete is:

I Al F (K)do™ (K, onfile(F, delete)) Tlss; Ablws = current=(F, T)
[Ay F (fsymay~ (K, onfile(F, delete)) M Ay, 1E Ctlax
AL AL Ay, Ay - CF lax

Proving that Rewrite Steps = Semantic Actions

Recall

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay— (K, onfile(F, delete)) ® [fs]current=(F, T) —o
{1}

The derived rule corresponding to left focusing on delete is:

I Al F (K)do™ (K, onfile(F, delete)) Tle; Ables = current™(F, T)
[Ay F (fsymay~ (K, onfile(F, delete)) M Ay, 1E Ctlax
AL AL AL A E CF lax

Proving that Rewrite Steps = Semantic Actions

Recall

delete : (K)do™ (K, onfile(F, delete)) ®
(fsymay— (K, onfile(F, delete)) ® [fs]current=(F, T) —o
{1}

The derived rule corresponding to left focusing on delete is:

I Al F (K)do™ (K, onfile(F, delete)) T|ss; Ables = current=(F, T)
[Ay F (fsymay~ (K, onfile(F, delete)) M Ay, 1E Ctlax
M AL AL AL Ay = CTolax

With two simple lemmas and invertibility of 1, we recover
I; (K)do™ (K, onfile(F, delete)), Ay, fs has current=(F, T), Ay — T; A,

such that I'; Ay = (fs)ymay~ (K, onfile(F, delete)). O

Proposed Method

Specify policies and semantics in a security linear logic.
Define a system-specific notion of state.

Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

Analyze the rewrite rules to prove properties of the system.

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

IfT; A is a file system state such that
M A — I, K knows contents™ (F, T, S); A’

then either K knows contents—(F, T,S) € [or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata. [

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

IfT; A is a file system state such that
M A — I, K knows contents™ (F, T, S); A’

then either K knows contents—(F, T,S) € [or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata. [

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

IfT; A is a file system state such that
;A — I, K knows contents— (F, T, S); A’

then either K knows contents—(F, T,S) € [or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata. [

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

IfT; A is a file system state such that
M A — I, K knows contents™ (F, T, S); A’

then either K knows contents—(F, T,S) € [or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata. [

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

IfT; A is a file system state such that
M A — I, K knows contents™ (F, T, S); A’

then either K knows contents—(F, T,S) € [or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata. [

Principals do not learn file contents unless permitted by the policy!

Analysis: Delete Shreds Files

Corollary

If

I; (K)do™ (K, onfile(F, delete)), A1, fs has current=(F, T), Ay
— A
—* T, L knows contents™ (F, T',S); A’

such that T'; Ay + (fsymay ™~ (K, onfile(F, delete)), then
L knows contents—(F, T',S) € T.

Analysis: Delete Shreds Files

Corollary

If

I; (K)do™ (K, onfile(F, delete)), Ay, fs has current— (F, T), A,
— A
—* T, L knows contents™ (F, T',S); A’

such that T'; Ay + (fsymay ™~ (K, onfile(F, delete)), then
L knows contents—(F, T',S) € T.

Analysis: Delete Shreds Files

Corollary

If

I; (K)do™ (K, onfile(F, delete)), A1, fs has current=(F, T), Ay
— A
—* ', L knows contents— (F, T',S); A’

such that T'; Ay + (fsymay ™~ (K, onfile(F, delete)), then
L knows contents—(F, T',S) € T.

Analysis: Delete Shreds Files

Corollary

If

I; (K)do™ (K, onfile(F, delete)), A1, fs has current=(F, T), Ay
— A
—* T, L knows contents™ (F, T',S); A’

such that T'; Ay + (fsymay ™~ (K, onfile(F, delete)), then
L knows contents—(F, T',S) € T.

Analysis: Delete Shreds Files

Corollary

If

I; (K)do™ (K, onfile(F, delete)), A1, fs has current=(F, T), A,
— A
—* T, L knows contents™ (F, T',S); A’

such that T'; Ay + (fsymay ™~ (K, onfile(F, delete)), then
L knows contents—(F, T',S) € T.

Analysis: Delete Shreds Files

Corollary

If

I; (K)do™ (K, onfile(F, delete)), A1, fs has current=(F, T), Ay
— A
—* T, L knows contents™ (F, T',S); A’

such that I'; Ay = (fsymay ™ (K, onfile(F, delete)), then
L knows contents—(F, T',S) € T.

Principals cannot learn the contents of deleted files!

m Implies the completeness of garbage collection.

Analysis: Policy Controls Deletes

Theorem (Delete Safety)

IfT; A, fs has current= (F, T) is a file system state such that
I A, fshas current™ (F, T) — I'; A'

and there is no T’ such that fs has current=(F, T') € A/, then the
step was a delete.

Analysis: Policy Controls Deletes

Theorem (Delete Safety)

IfT; A, fs has current= (F, T) is a file system state such that
I; A, fshas current™ (F, T) — I; A'

and there is no T’ such that fs has current=(F, T') € A/, then the
step was a delete.

Analysis: Policy Controls Deletes

Theorem (Delete Safety)

IfT; A, fs has current= (F, T) is a file system state such that
I A, fshas current™ (F, T) — I'; A'

and there is no T’ such that fs has current=(F, T') € A/, then the
step was a delete.

Files disappear only if explicitly deleted (and permitted by policy)!

Stratification is Necessary!

Recall the rewrite steps each have a condition:
AL E (fsymay™ (K, O7)

In principle, fs has current™ (F, T) might be in Aj.

Stratification is Necessary!

Recall the rewrite steps each have a condition:
Ay E (fsymay™ (K, O7)
In principle, fs has current™(F, T) might be in Aj. So, we prove:

Lemma (Possession Strengthening)

IfT; A1 (fsymay— (K, O*), then A; does not contain any
fs has current=(F, T).

Stratification is Necessary!

Recall the rewrite steps each have a condition:
AL E (fsymay™ (K, O7)

In principle, fs has current™(F, T) might be in Aj. So, we prove:

Lemma (Possession Strengthening)

IfT; A1 (fsymay— (K, O*), then A; does not contain any
fs has current=(F, T).

This lemma requires stratification of policies and semantic effects!
m Effects are confined to the effect monad.
m With stratification, policies do not contain the effect monad.

m Thus, stratification ensures that authorization decisions
do not depend on semantic effects.

Conclusion

Summary:
Specify policies and consequences in a security linear logic.
Define a system-specific notion of state.

Interpret specifications as rewrite rules
via a rewriting interpretation of the logic.

Analyze the rewrite rules to prove system properties.
Stratification of policies from semantic effects is crucial!

Conclusion

Summary:
Specify policies and consequences in a security linear logic.
Define a system-specific notion of state.

Interpret specifications as rewrite rules
via a rewriting interpretation of the logic.

Analyze the rewrite rules to prove system properties.
Stratification of policies from semantic effects is crucial!

Future Work:
m Obligations as semantic effects

m Real-world case studies

m Dynamic logic for mechanically verifying properties

m Compilation of semantic actions to executable code

Thank You!

I'm happy to answer questions:
hdeyoung@cs.cmu.edu

