
Reasoning about the Consequences of
Authorization Policies in a Linear Epistemic Logic

Henry DeYoung Frank Pfenning

Computer Science Department
Carnegie Mellon University

FCS Workshop 2009
August 10, 2009

Motivation

Observation:

Authorization policies are not stand-alone objects.

Permit actions that change a system’s state.
Intended to allow only safe consequences.

Example:

Policy “A principal may read file F if F ’s owner says so.”

Consequence “A principal may learn F ’s contents if granted
read access.”

Goal:

Develop a general method for formally:

specifying both policies and their semantic consequences; and
reasoning about the interface between them.

Motivation

Observation:

Authorization policies are not stand-alone objects.

Permit actions that change a system’s state.
Intended to allow only safe consequences.

Example:

Policy “A principal may read file F if F ’s owner says so.”

Consequence “A principal may learn F ’s contents if granted
read access.”

Goal:

Develop a general method for formally:

specifying both policies and their semantic consequences; and
reasoning about the interface between them.

Motivation

Observation:

Authorization policies are not stand-alone objects.

Permit actions that change a system’s state.
Intended to allow only safe consequences.

Example:

Policy “A principal may read file F if F ’s owner says so.”

Consequence “A principal may learn F ’s contents if granted
read access.”

Goal:

Develop a general method for formally:

specifying both policies and their semantic consequences; and
reasoning about the interface between them.

Proposed Method

1 Specify policies and semantics in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove properties of the system.

Proposed Method

1 Specify policies and semantics in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove properties of the system.

Proposed Method

1 Specify policies and semantics in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove properties of the system.

Proposed Method

1 Specify policies and semantics in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove properties of the system.

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O∗ ::= insert | onfile(F ,O)

O ::= read | write(S) | delete

Files F are versioned with tags T .

Writes create new versions.

current−(F ,T): the current version of F is T .

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O∗ ::= insert | onfile(F ,O)

O ::= read | write(S) | delete

Files F are versioned with tags T .

Writes create new versions.

current−(F ,T): the current version of F is T .

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O∗ ::= insert | onfile(F ,O)

O ::= read | write(S) | delete

Files F are versioned with tags T .

Writes create new versions.

current−(F ,T): the current version of F is T .

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O∗ ::= insert | onfile(F ,O)
O ::= read | write(S) | delete

Files F are versioned with tags T .

Writes create new versions.

current−(F ,T): the current version of F is T .

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O∗ ::= insert | onfile(F ,O)
O ::= read | write(S) | delete

Files F are versioned with tags T .

Writes create new versions.

current−(F ,T): the current version of F is T .

Running Example: A Simple File System

Simple file system with no directory structure and operations:

O∗ ::= insert | onfile(F ,O)
O ::= read | write(S) | delete

Files F are versioned with tags T .

Writes create new versions.

current−(F ,T): the current version of F is T .

Proposed Method

1 Specify policies and semantics in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove properties of the system.

A Linear Logic of Authorization and Knowledge

To model mutable system state, use a linear logic [Girard87].

Linear assumptions may be used only once

For policies, borrow 〈K 〉 from [Garg+06].

Family of strong monads indexed by principals

For knowledge and possession, also borrow [[K]] and [K].

Families of S4 � indexed by principals

Possession is linear (consumable) knowledge

Modalities provide logical force to these concepts; atoms cannot.

A Linear Logic of Authorization and Knowledge

To model mutable system state, use a linear logic [Girard87].

Linear assumptions may be used only once

For policies, borrow 〈K 〉 from [Garg+06].

Family of strong monads indexed by principals

For knowledge and possession, also borrow [[K]] and [K].

Families of S4 � indexed by principals

Possession is linear (consumable) knowledge

Modalities provide logical force to these concepts; atoms cannot.

A Linear Logic of Authorization and Knowledge

To model mutable system state, use a linear logic [Girard87].

Linear assumptions may be used only once

For policies, borrow 〈K 〉 from [Garg+06].

Family of strong monads indexed by principals

For knowledge and possession, also borrow [[K]] and [K].

Families of S4 � indexed by principals

Possession is linear (consumable) knowledge

Modalities provide logical force to these concepts; atoms cannot.

A Linear Logic of Authorization and Knowledge

To model mutable system state, use a linear logic [Girard87].

Linear assumptions may be used only once

For policies, borrow 〈K 〉 from [Garg+06].

Family of strong monads indexed by principals

For knowledge and possession, also borrow [[K]] and [K].

Families of S4 � indexed by principals

Possession is linear (consumable) knowledge

Modalities provide logical force to these concepts; atoms cannot.

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Policies

Any registered user may insert files.

mayinsert : 〈fs〉(user−(K)(may−(K , insert))

A principal may read, write, or delete files he owns.

owner : 〈fs〉(owns−(K ,F)(may−(K , onfile(F ,O)))

A principal may read, write, or delete a file
if the owner says so.

delegate : 〈fs〉(owns−(K ,F)⊗ 〈K 〉may−(L, onfile(F ,O))(
may−(L, onfile(F ,O)))

Proving authorization by combining policies should not be
effectful.

Proof-Carrying Authorization (PCA) [AppelFelten99]:
proving authorization and granting access are distinct phases

Specifying the Semantic Consequences of Inserting a File

insert : 〈K 〉do−(K , insert)⊗ 〈fs〉may−(K , insert)(
{∃f .∃t. !〈fs〉owns−(K , f)⊗

[fs]current−(f , t)⊗
[[fs]]contents−(f , t, ε)⊗
[[K]]contents−(f , t, ε)}

We introduce an effect monad to isolate semantic effects from
non-effectful authorization decisions.

Creating a file and learning contents are effects.

Stratification of policies from consequences is evident
syntactically

Policies have top-level 〈·〉 and do not contain {·}

Specifying the Semantic Consequences of Inserting a File

insert : 〈K 〉do−(K , insert)⊗ 〈fs〉may−(K , insert)(
{∃f .∃t. !〈fs〉owns−(K , f)⊗

[fs]current−(f , t)⊗
[[fs]]contents−(f , t, ε)⊗
[[K]]contents−(f , t, ε)}

We introduce an effect monad to isolate semantic effects from
non-effectful authorization decisions.

Creating a file and learning contents are effects.

Stratification of policies from consequences is evident
syntactically

Policies have top-level 〈·〉 and do not contain {·}

Specifying the Semantic Consequences of Inserting a File

insert : 〈K 〉do−(K , insert)⊗ 〈fs〉may−(K , insert)(
{∃f .∃t. !〈fs〉owns−(K , f)⊗

[fs]current−(f , t)⊗
[[fs]]contents−(f , t, ε)⊗
[[K]]contents−(f , t, ε)}

We introduce an effect monad to isolate semantic effects from
non-effectful authorization decisions.

Creating a file and learning contents are effects.

Stratification of policies from consequences is evident
syntactically

Policies have top-level 〈·〉 and do not contain {·}

Specifying the Semantic Consequences of Inserting a File

insert : 〈K 〉do−(K , insert)⊗ 〈fs〉may−(K , insert)(
{∃f .∃t. !〈fs〉owns−(K , f)⊗

[fs]current−(f , t)⊗
[[fs]]contents−(f , t, ε)⊗
[[K]]contents−(f , t, ε)}

We introduce an effect monad to isolate semantic effects from
non-effectful authorization decisions.

Creating a file and learning contents are effects.

Stratification of policies from consequences is evident
syntactically

Policies have top-level 〈·〉 and do not contain {·}

Specifying the Semantic Consequences of Inserting a File

insert : 〈K 〉do−(K , insert)⊗ 〈fs〉may−(K , insert)(
{∃f .∃t. !〈fs〉owns−(K , f)⊗

[fs]current−(f , t)⊗
[[fs]]contents−(f , t, ε)⊗
[[K]]contents−(f , t, ε)}

We introduce an effect monad to isolate semantic effects from
non-effectful authorization decisions.

Creating a file and learning contents are effects.

Stratification of policies from consequences is evident
syntactically

Policies have top-level 〈·〉 and do not contain {·}

Specifying the Semantic Consequences of Inserting a File

insert : 〈K 〉do−(K , insert)⊗ 〈fs〉may−(K , insert)(
{∃f .∃t. !〈fs〉owns−(K , f)⊗

[fs]current−(f , t)⊗
[[fs]]contents−(f , t, ε)⊗
[[K]]contents−(f , t, ε)}

We introduce an effect monad to isolate semantic effects from
non-effectful authorization decisions.

Creating a file and learning contents are effects.

Stratification of policies from consequences is evident
syntactically

Policies have top-level 〈·〉 and do not contain {·}

Specifying the Semantic Consequences of Inserting a File

insert : 〈K 〉do−(K , insert)⊗ 〈fs〉may−(K , insert)(
{∃f .∃t. !〈fs〉owns−(K , f)⊗

[fs]current−(f , t)⊗
[[fs]]contents−(f , t, ε)⊗
[[K]]contents−(f , t, ε)}

We introduce an effect monad to isolate semantic effects from
non-effectful authorization decisions.

Creating a file and learning contents are effects.

Stratification of policies from consequences is evident
syntactically

Policies have top-level 〈·〉 and do not contain {·}

Specifying the Semantic Consequences of Inserting a File

insert : 〈K 〉do−(K , insert)⊗ 〈fs〉may−(K , insert)(
{∃f .∃t. !〈fs〉owns−(K , f)⊗

[fs]current−(f , t)⊗
[[fs]]contents−(f , t, ε)⊗
[[K]]contents−(f , t, ε)}

We introduce an effect monad to isolate semantic effects from
non-effectful authorization decisions.

Creating a file and learning contents are effects.

Stratification of policies from consequences is evident
syntactically

Policies have top-level 〈·〉 and do not contain {·}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t,S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t,S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t,S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t,S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t,S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t,S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t,S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t,S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Semantic Actions for Reading, Writing, and Deleting Files

read : 〈K 〉do−(K , onfile(F , read))⊗ 〈fs〉may−(K , onfile(F , read))⊗
[fs]current−(F ,T)⊗ [[fs]]contents−(F ,T , S)(

{[[K]]contents−(F ,T ,S)⊗
[fs]current−(F ,T)}

write : 〈K 〉do−(K , onfile(F ,write(S)))⊗
〈fs〉may−(K , onfile(F ,write(S)))⊗ [fs]current−(F ,T)(

{∃t. [fs]current−(F , t)⊗
[[fs]]contents−(F , t,S)⊗
[[K]]contents−(F , t, S)}

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

Simulating the Environment with a Semantic Action

A principal can issue an arbitrary request at any time.

environment : {〈K 〉do−(K ,O∗)}

We would need a more detailed model to reason about particular
sequences of requests.

But the weak model is sufficient and actually beneficial:
properties demonstrate security regardless of the sequence.

Simulating the Environment with a Semantic Action

A principal can issue an arbitrary request at any time.

environment : {〈K 〉do−(K ,O∗)}

We would need a more detailed model to reason about particular
sequences of requests.

But the weak model is sufficient and actually beneficial:
properties demonstrate security regardless of the sequence.

Simulating the Environment with a Semantic Action

A principal can issue an arbitrary request at any time.

environment : {〈K 〉do−(K ,O∗)}

We would need a more detailed model to reason about particular
sequences of requests.

But the weak model is sufficient and actually beneficial:
properties demonstrate security regardless of the sequence.

Simulating the Environment with a Semantic Action

A principal can issue an arbitrary request at any time.

environment : {〈K 〉do−(K ,O∗)}

We would need a more detailed model to reason about particular
sequences of requests.

But the weak model is sufficient and actually beneficial:
properties demonstrate security regardless of the sequence.

Proposed Method

1 Specify policies and semantics in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove properties of the system.

Definition of State Circumscribes Relevant Objects

Definition (File System State)

Γ; ∆ is a file system state if and only if:

1 Each assumption in Γ is either:

a policy or a semantic action
fs knows contents−(F ,T ,S) or K knows contents−(F ,T ,S)
〈fs〉user−(K)
〈fs〉owns−(K ,F)

2 Each assumption in ∆ is either:

fs has current−(F ,T)
〈K 〉do−(K ,O∗)
〈K 〉may−(L,O∗)

3 For each F , there is at most one T such that
fs has current−(F ,T) ∈ ∆.

Definition of State Circumscribes Relevant Objects

Definition (File System State)

Γ; ∆ is a file system state if and only if:

1 Each assumption in Γ is either:

a policy or a semantic action
fs knows contents−(F ,T ,S) or K knows contents−(F ,T ,S)
〈fs〉user−(K)
〈fs〉owns−(K ,F)

2 Each assumption in ∆ is either:

fs has current−(F ,T)
〈K 〉do−(K ,O∗)
〈K 〉may−(L,O∗)

3 For each F , there is at most one T such that
fs has current−(F ,T) ∈ ∆.

Definition of State Circumscribes Relevant Objects

Definition (File System State)

Γ; ∆ is a file system state if and only if:

1 Each assumption in Γ is either:

a policy or a semantic action
fs knows contents−(F ,T ,S) or K knows contents−(F ,T ,S)
〈fs〉user−(K)
〈fs〉owns−(K ,F)

2 Each assumption in ∆ is either:

fs has current−(F ,T)
〈K 〉do−(K ,O∗)
〈K 〉may−(L,O∗)

3 For each F , there is at most one T such that
fs has current−(F ,T) ∈ ∆.

Definition of State Circumscribes Relevant Objects

Definition (File System State)

Γ; ∆ is a file system state if and only if:

1 Each assumption in Γ is either:

a policy or a semantic action
fs knows contents−(F ,T ,S) or K knows contents−(F ,T ,S)
〈fs〉user−(K)
〈fs〉owns−(K ,F)

2 Each assumption in ∆ is either:

fs has current−(F ,T)
〈K 〉do−(K ,O∗)
〈K 〉may−(L,O∗)

3 For each F , there is at most one T such that
fs has current−(F ,T) ∈ ∆.

Proposed Method

1 Specify policies and semantics in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove properties of the system.

Translating Specifications to Rewrite Steps

Definition (Rewrite Step)

Γ; ∆→ Γ′; ∆′ if and only if there exists a derivation

Γ′; ∆′ ` C+ lax
...

Γ; ∆2,A
+
2 ` C+ lax

Γ; ∆2, [{A+
2 }] ` C+ lax

{}L
...

Γ; ∆1, [A
−
1] ` C+ lax

Γ; ∆ ` C+ lax
∗

parametrically in C+ lax, where only invertible left rules are used
above {}L and both Γ; ∆ and Γ′; ∆′ are states.

Translating Specifications to Rewrite Steps

Definition (Rewrite Step)

Γ; ∆→ Γ′; ∆′ if and only if there exists a derivation

Γ′; ∆′ ` C+ lax
...

Γ; ∆2,A
+
2 ` C+ lax

Γ; ∆2, [{A+
2 }] ` C+ lax

{}L
...

Γ; ∆1, [A
−
1] ` C+ lax

Γ; ∆ ` C+ lax
∗

parametrically in C+ lax, where only invertible left rules are used
above {}L and both Γ; ∆ and Γ′; ∆′ are states.

Focusing [Andreoli92] ensures specs are translated atomically.

Translating Specifications to Rewrite Steps

Definition (Rewrite Step)

Γ; ∆→ Γ′; ∆′ if and only if there exists a derivation

Γ′; ∆′ ` C+ lax
...

Γ; ∆2,A
+
2 ` C+ lax

Γ; ∆2, [{A+
2 }] ` C+ lax

{}L
...

Γ; ∆1, [A
−
1] ` C+ lax

Γ; ∆ ` C+ lax
∗

parametrically in C+ lax, where only invertible left rules are used
above {}L and both Γ; ∆ and Γ′; ∆′ are states.

Use of lax judgment (effect monad) ensures that rewrite steps:

Capture all effects; come from assumptions with monadic
heads.

Translating Specifications to Rewrite Steps

Definition (Rewrite Step)

Γ; ∆→ Γ′; ∆′ if and only if there exists a derivation

Γ′; ∆′ ` C+ lax
...

Γ; ∆2,A
+
2 ` C+ lax

Γ; ∆2, [{A+
2 }] ` C+ lax

{}L
...

Γ; ∆1, [A
−
1] ` C+ lax

Γ; ∆ ` C+ lax
∗

parametrically in C+ lax, where only invertible left rules are used
above {}L and both Γ; ∆ and Γ′; ∆′ are states.

Use of lax judgment (effect monad) ensures that rewrite steps:

Capture all effects; come from assumptions with monadic
heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Rewrite Steps ∼= Semantic Actions

If Γ; ∆ is a file system state, then, by construction,
only the semantic actions have monadic heads.

Theorem (Rewrite Step Schemata)

Each rewrite step from a file system state is either:

1 Γ; 〈K〉do−(K , onfile(F , delete)), ∆1, fs has current−(F , T), ∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

2 Similar rewrite steps for insert, read, write and environment elided.

Proof.

Construct derived rules for left focusing on state assumptions with
monadic heads.

Proving that Rewrite Steps ∼= Semantic Actions

Proof.

Recall

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

The derived rule corresponding to left focusing on delete is:

Γ; ∆′1 ` 〈K 〉do−(K , onfile(F , delete))
Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete))

Γ|fs; ∆′2|fs ` current−(F ,T)
Γ; ∆2, 1 ` C+ lax

Γ; ∆′1,∆1,∆
′
2,∆2 ` C+ lax

With two simple lemmas and invertibility of 1, we recover

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

Proving that Rewrite Steps ∼= Semantic Actions

Proof.

Recall

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

The derived rule corresponding to left focusing on delete is:

Γ; ∆′1 ` 〈K 〉do−(K , onfile(F , delete))
Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete))

Γ|fs; ∆′2|fs ` current−(F ,T)
Γ; ∆2, 1 ` C+ lax

Γ; ∆′1,∆1,∆
′
2,∆2 ` C+ lax

With two simple lemmas and invertibility of 1, we recover

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

Proving that Rewrite Steps ∼= Semantic Actions

Proof.

Recall

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

The derived rule corresponding to left focusing on delete is:

Γ; ∆′1 ` 〈K 〉do−(K , onfile(F , delete))
Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete))

Γ|fs; ∆′2|fs ` current−(F ,T)
Γ; ∆2, 1 ` C+ lax

Γ; ∆′1,∆1,∆
′
2,∆2 ` C+ lax

With two simple lemmas and invertibility of 1, we recover

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

Proving that Rewrite Steps ∼= Semantic Actions

Proof.

Recall

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

The derived rule corresponding to left focusing on delete is:

Γ; ∆′1 ` 〈K 〉do−(K , onfile(F , delete))
Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete))

Γ|fs; ∆′2|fs ` current−(F ,T)
Γ; ∆2, 1 ` C+ lax

Γ; ∆′1,∆1,∆
′
2,∆2 ` C+ lax

With two simple lemmas and invertibility of 1, we recover

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

Proving that Rewrite Steps ∼= Semantic Actions

Proof.

Recall

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

The derived rule corresponding to left focusing on delete is:

Γ; ∆′1 ` 〈K 〉do−(K , onfile(F , delete))
Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete))

Γ|fs; ∆′2|fs ` current−(F ,T)
Γ; ∆2, 1 ` C+ lax

Γ; ∆′1,∆1,∆
′
2,∆2 ` C+ lax

With two simple lemmas and invertibility of 1, we recover

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

Proving that Rewrite Steps ∼= Semantic Actions

Proof.

Recall

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

The derived rule corresponding to left focusing on delete is:

Γ; ∆′1 ` 〈K 〉do−(K , onfile(F , delete))
Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete))

Γ|fs; ∆′2|fs ` current−(F ,T)
Γ; ∆2, 1 ` C+ lax

Γ; ∆′1,∆1,∆
′
2,∆2 ` C+ lax

With two simple lemmas and invertibility of 1, we recover

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

Proving that Rewrite Steps ∼= Semantic Actions

Proof.

Recall

delete : 〈K 〉do−(K , onfile(F , delete))⊗
〈fs〉may−(K , onfile(F , delete))⊗ [fs]current−(F ,T)(

{1}

The derived rule corresponding to left focusing on delete is:

Γ; ∆′1 ` 〈K 〉do−(K , onfile(F , delete))
Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete))

Γ|fs; ∆′2|fs ` current−(F ,T)
Γ; ∆2, 1 ` C+ lax

Γ; ∆′1,∆1,∆
′
2,∆2 ` C+ lax

With two simple lemmas and invertibility of 1, we recover

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2 → Γ; ∆2

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)).

Proposed Method

1 Specify policies and semantics in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret semantic specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove properties of the system.

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

If Γ; ∆ is a file system state such that

Γ; ∆→ Γ′,K knows contents−(F ,T ,S); ∆′

then either K knows contents−(F ,T ,S) ∈ Γ or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata.

Principals do not learn file contents unless permitted by the policy!

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

If Γ; ∆ is a file system state such that

Γ; ∆→ Γ′,K knows contents−(F ,T ,S); ∆′

then either K knows contents−(F ,T ,S) ∈ Γ or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata.

Principals do not learn file contents unless permitted by the policy!

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

If Γ; ∆ is a file system state such that

Γ; ∆→ Γ′,K knows contents−(F ,T ,S); ∆′

then either K knows contents−(F ,T ,S) ∈ Γ or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata.

Principals do not learn file contents unless permitted by the policy!

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

If Γ; ∆ is a file system state such that

Γ; ∆→ Γ′,K knows contents−(F ,T ,S); ∆′

then either K knows contents−(F ,T ,S) ∈ Γ or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata.

Principals do not learn file contents unless permitted by the policy!

Analysis: Policy Controls Knowledge

Theorem (Knowledge Safety)

If Γ; ∆ is a file system state such that

Γ; ∆→ Γ′,K knows contents−(F ,T ,S); ∆′

then either K knows contents−(F ,T ,S) ∈ Γ or the step was an
insert, read, or write step for F triggered by K and permitted by
the policy.

Proof.

By case analysis of the possible rewrite step schemata.

Principals do not learn file contents unless permitted by the policy!

Analysis: Delete Shreds Files

Corollary

If

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2

→ Γ; ∆2

→∗ Γ′, L knows contents−(F ,T ′,S); ∆′

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)), then
L knows contents−(F ,T ′,S) ∈ Γ.

Principals cannot learn the contents of deleted files!

Implies the completeness of garbage collection.

Analysis: Delete Shreds Files

Corollary

If

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2

→ Γ; ∆2

→∗ Γ′, L knows contents−(F ,T ′,S); ∆′

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)), then
L knows contents−(F ,T ′,S) ∈ Γ.

Principals cannot learn the contents of deleted files!

Implies the completeness of garbage collection.

Analysis: Delete Shreds Files

Corollary

If

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2

→ Γ; ∆2

→∗ Γ′, L knows contents−(F ,T ′,S); ∆′

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)), then
L knows contents−(F ,T ′,S) ∈ Γ.

Principals cannot learn the contents of deleted files!

Implies the completeness of garbage collection.

Analysis: Delete Shreds Files

Corollary

If

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2

→ Γ; ∆2

→∗ Γ′, L knows contents−(F ,T ′,S); ∆′

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)), then
L knows contents−(F ,T ′,S) ∈ Γ.

Principals cannot learn the contents of deleted files!

Implies the completeness of garbage collection.

Analysis: Delete Shreds Files

Corollary

If

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2

→ Γ; ∆2

→∗ Γ′, L knows contents−(F ,T ′,S); ∆′

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)), then
L knows contents−(F ,T ′,S) ∈ Γ.

Principals cannot learn the contents of deleted files!

Implies the completeness of garbage collection.

Analysis: Delete Shreds Files

Corollary

If

Γ; 〈K 〉do−(K , onfile(F , delete)),∆1, fs has current−(F ,T),∆2

→ Γ; ∆2

→∗ Γ′, L knows contents−(F ,T ′,S); ∆′

such that Γ; ∆1 ` 〈fs〉may−(K , onfile(F , delete)), then
L knows contents−(F ,T ′,S) ∈ Γ.

Principals cannot learn the contents of deleted files!

Implies the completeness of garbage collection.

Analysis: Policy Controls Deletes

Theorem (Delete Safety)

If Γ; ∆, fs has current−(F ,T) is a file system state such that

Γ; ∆, fs has current−(F ,T)→ Γ′; ∆′

and there is no T ′ such that fs has current−(F ,T ′) ∈ ∆′, then the
step was a delete.

Files disappear only if explicitly deleted (and permitted by policy)!

Analysis: Policy Controls Deletes

Theorem (Delete Safety)

If Γ; ∆, fs has current−(F ,T) is a file system state such that

Γ; ∆, fs has current−(F ,T)→ Γ′; ∆′

and there is no T ′ such that fs has current−(F ,T ′) ∈ ∆′, then the
step was a delete.

Files disappear only if explicitly deleted (and permitted by policy)!

Analysis: Policy Controls Deletes

Theorem (Delete Safety)

If Γ; ∆, fs has current−(F ,T) is a file system state such that

Γ; ∆, fs has current−(F ,T)→ Γ′; ∆′

and there is no T ′ such that fs has current−(F ,T ′) ∈ ∆′, then the
step was a delete.

Files disappear only if explicitly deleted (and permitted by policy)!

Stratification is Necessary!

Recall the rewrite steps each have a condition:

Γ; ∆1 ` 〈fs〉may−(K ,O∗)

In principle, fs has current−(F ,T) might be in ∆1.

So, we prove:

Lemma (Possession Strengthening)

If Γ; ∆1 ` 〈fs〉may−(K ,O∗), then ∆1 does not contain any
fs has current−(F ,T).

This lemma requires stratification of policies and semantic effects!

Effects are confined to the effect monad.

With stratification, policies do not contain the effect monad.

Thus, stratification ensures that authorization decisions
do not depend on semantic effects.

Stratification is Necessary!

Recall the rewrite steps each have a condition:

Γ; ∆1 ` 〈fs〉may−(K ,O∗)

In principle, fs has current−(F ,T) might be in ∆1. So, we prove:

Lemma (Possession Strengthening)

If Γ; ∆1 ` 〈fs〉may−(K ,O∗), then ∆1 does not contain any
fs has current−(F ,T).

This lemma requires stratification of policies and semantic effects!

Effects are confined to the effect monad.

With stratification, policies do not contain the effect monad.

Thus, stratification ensures that authorization decisions
do not depend on semantic effects.

Stratification is Necessary!

Recall the rewrite steps each have a condition:

Γ; ∆1 ` 〈fs〉may−(K ,O∗)

In principle, fs has current−(F ,T) might be in ∆1. So, we prove:

Lemma (Possession Strengthening)

If Γ; ∆1 ` 〈fs〉may−(K ,O∗), then ∆1 does not contain any
fs has current−(F ,T).

This lemma requires stratification of policies and semantic effects!

Effects are confined to the effect monad.

With stratification, policies do not contain the effect monad.

Thus, stratification ensures that authorization decisions
do not depend on semantic effects.

Conclusion

Summary:

1 Specify policies and consequences in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove system properties.

Stratification of policies from semantic effects is crucial!

Future Work:

Obligations as semantic effects

Real-world case studies

Dynamic logic for mechanically verifying properties

Compilation of semantic actions to executable code

Conclusion

Summary:

1 Specify policies and consequences in a security linear logic.

2 Define a system-specific notion of state.

3 Interpret specifications as rewrite rules
via a rewriting interpretation of the logic.

4 Analyze the rewrite rules to prove system properties.

Stratification of policies from semantic effects is crucial!

Future Work:

Obligations as semantic effects

Real-world case studies

Dynamic logic for mechanically verifying properties

Compilation of semantic actions to executable code

Thank You!

I’m happy to answer questions:
hdeyoung@cs.cmu.edu

