

Adjoint Logic and Its Concurrent Semantics

Frank Pfenning

ABCD Meeting, Edinburgh, December 18-19, 2017

Joint work with Klaas Pruiksma and William Chargin

Outline

- **Proofs as programs**
- Linear sequent proofs as concurrent programs
 - Take 1: standard sequent calculus = synchronous communication
 - Take 2: unary $\otimes R$ and $\multimap R$
 - Take 3: positive axiomatic form = asynchronous communication
- Adjoint logic
 - Structural properties and modes of truth
 - Declaration of Independence
- Concurrent operational semantics
 - Contraction, weakening, multicut, and multi-identity
 - Garbage collection

Proofs as Programs

- Codesign of language and its reasoning principles
- Three levels of correspondence
 - Propositions as types
 - Proofs as programs
 - Proof reduction as computation
- Style of proof system is critical to characterize computation
 - Axiomatic style \Leftrightarrow combinators and combinatory reduction [Curry'35]
 - Natural deduction \Leftrightarrow λ -calculus and substitution [Howard'69]
 - Sequent calculus \Leftrightarrow explicit substitutions [Herbelin'94]
- All intuitionistic and structural (admitting weakening & contraction)

Linear Proofs as Session-Typed Programs

- Three levels of correspondence
 - Linear propositions as session types
 - Sequent proofs as concurrent programs
 - Cut reduction as communication
- Intuitionistic variant: provider/client model [Caires & Pf'10]
 - No need to dualize types
 - Dependent types [Toninho et al.'11]
 - Monadic integration with functional language (SILL) [Toninho'15] [Griffith'15]
 - Integration in imperative language (CC0) [Willsey et al.16]
 - Polymorphism and logical relations [Perez et al.'13]
 - Exploiting categorical view (this talk)
- Classical variant: symmetric communication
 - [Wadler'12] [Caires et al.'16]

Outline

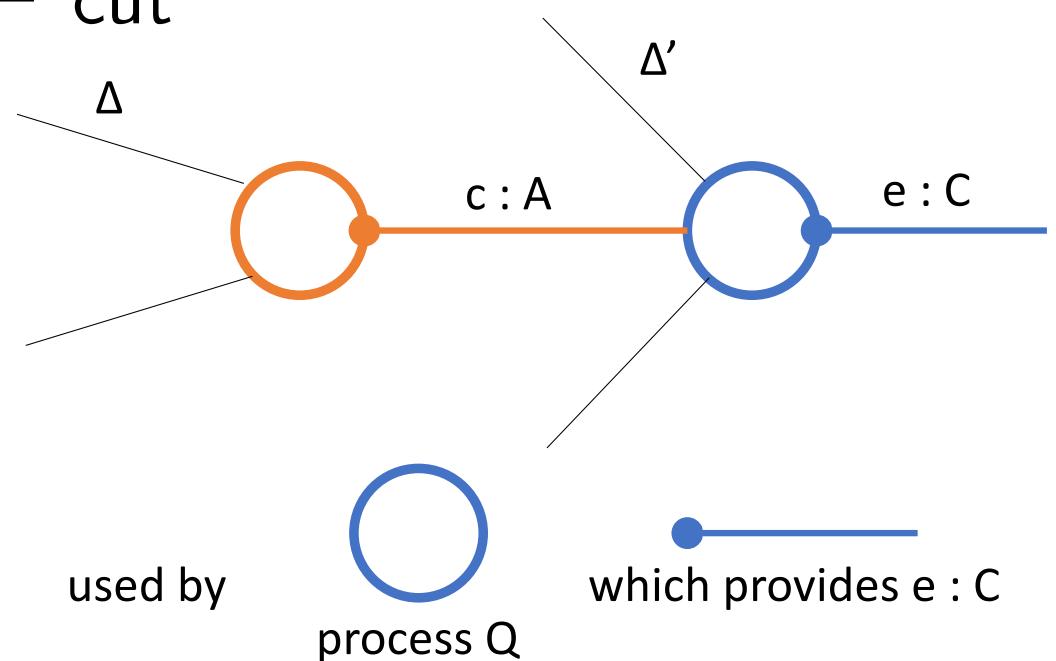
- Proofs as programs
- **Linear sequent proofs as concurrent programs**
 - Take 1: standard sequent calculus = synchronous communication
 - Take 2: unary $\otimes R$ and $\multimap R$
 - Take 3: positive axiomatic form = asynchronous communication
- Adjoint logic
 - Structural properties and modes of truth
 - Declaration of Independence
- Concurrent operational semantics
 - Contraction, weakening, multicut, and multi-identity
 - Garbage collection

Cut as Parallel Composition

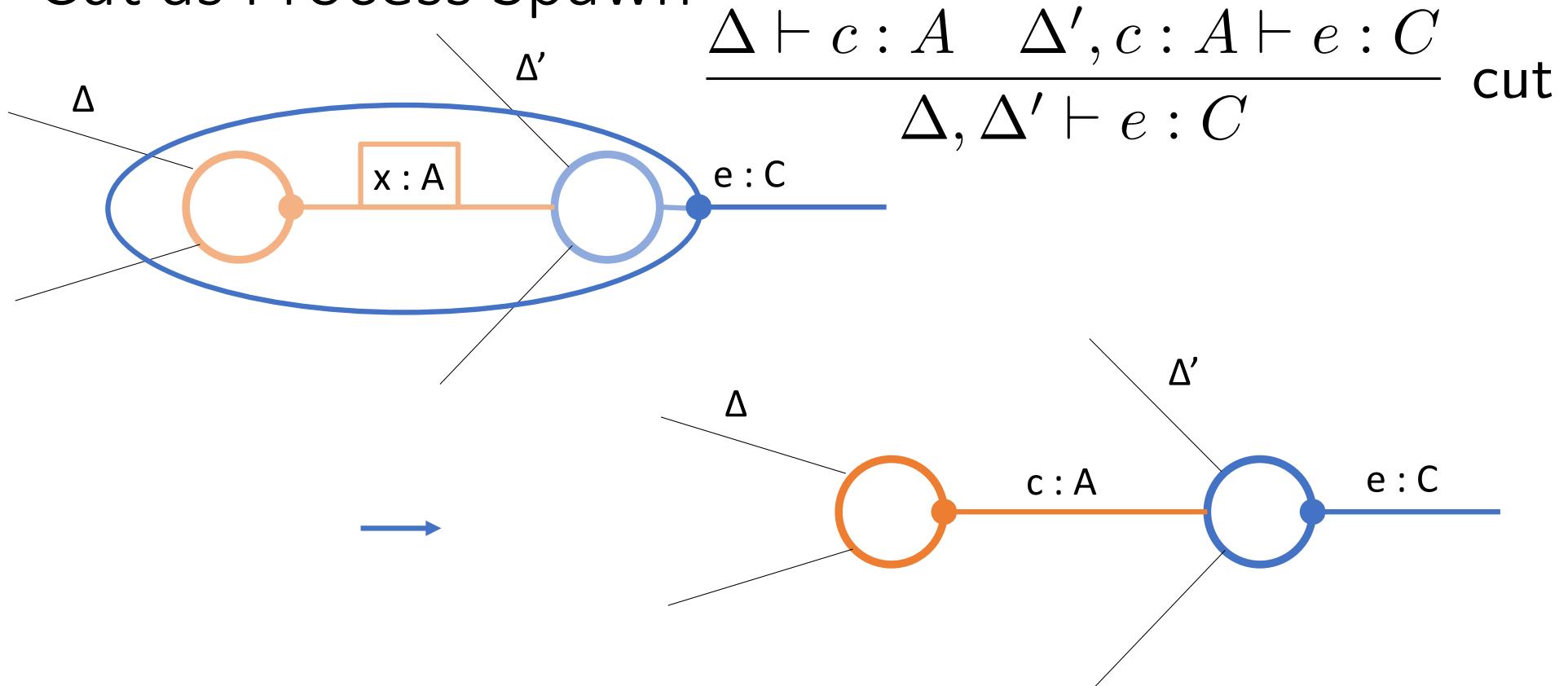
$$\frac{\Delta \vdash c : A \quad \Delta', c : A \vdash e : C}{\Delta, \Delta' \vdash e : C} \text{ cut}$$

process configuration always forms a tree

provides channel $c : A$



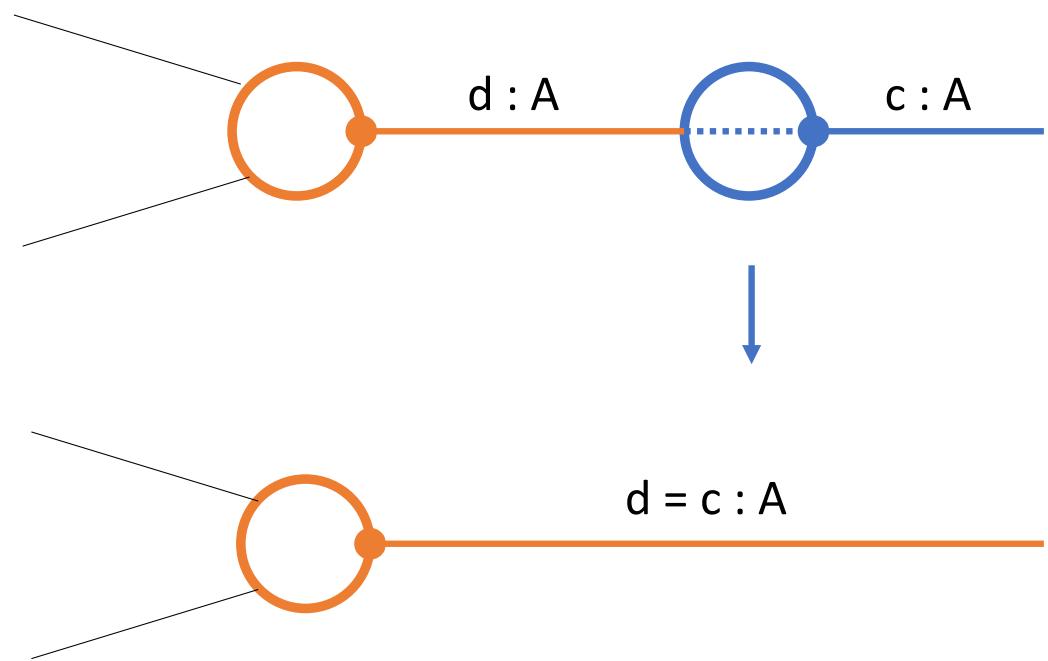
Cut as Process Spawn



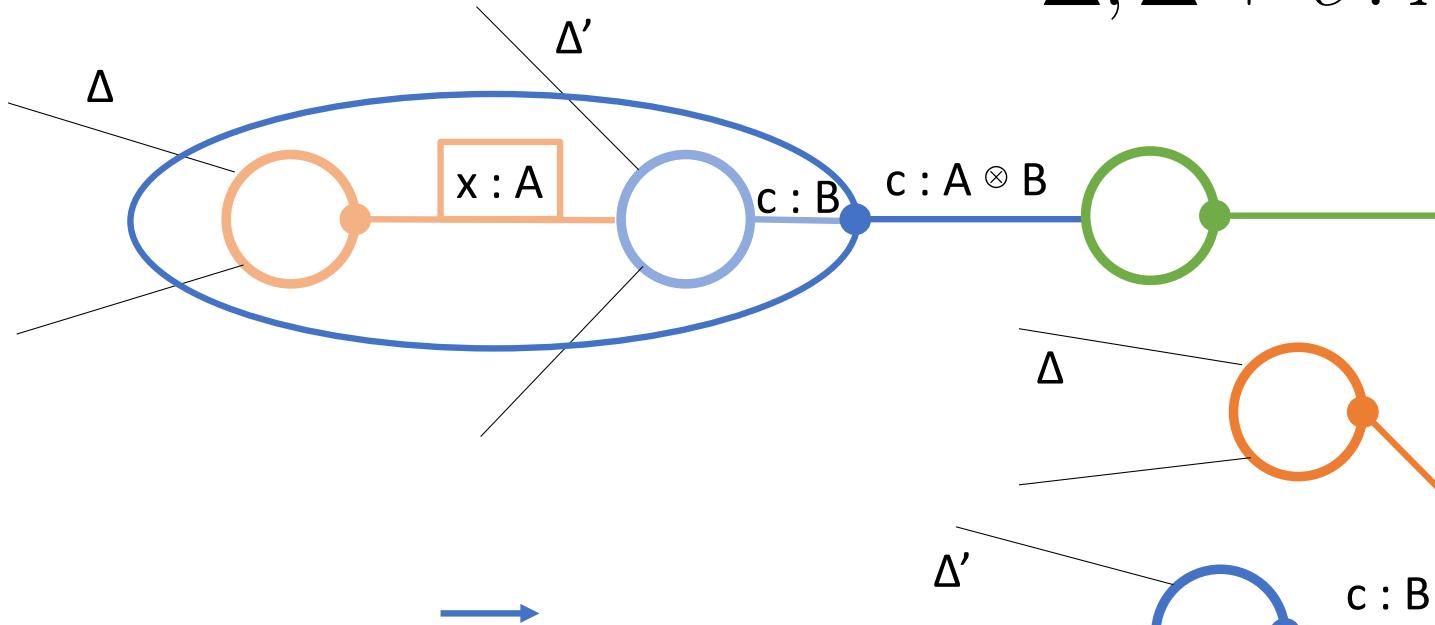
Identity as Identification

$$\frac{}{d : A \vdash c : A} \text{ id}$$

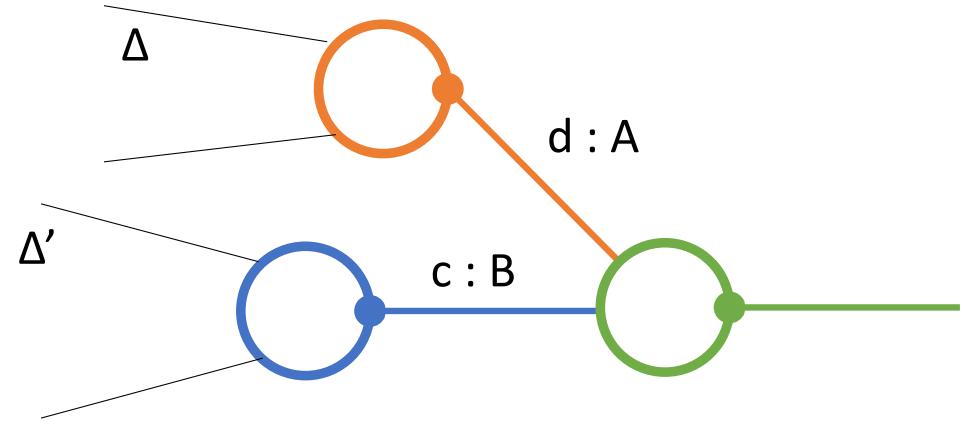
transition of configuration models
cut of any proof with identity



Tensor, Original

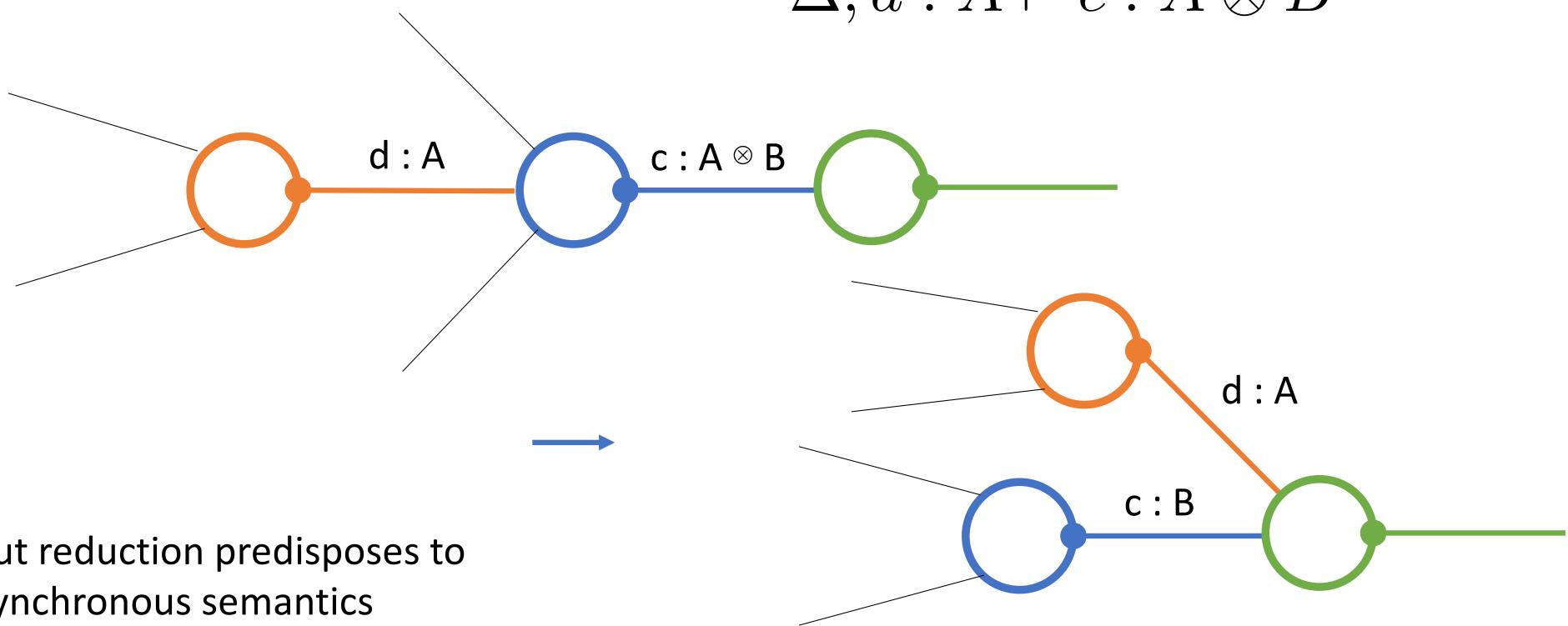


$$\frac{\Delta \vdash x : A \quad \Delta' \vdash c : B}{\Delta, \Delta' \vdash c : A \otimes B} \otimes R$$



Tensor, Simplified

$$\frac{\Delta \vdash c : B}{\Delta, d : A \vdash c : A \otimes B} \otimes R^*$$



Interderivable using Identity and Cut

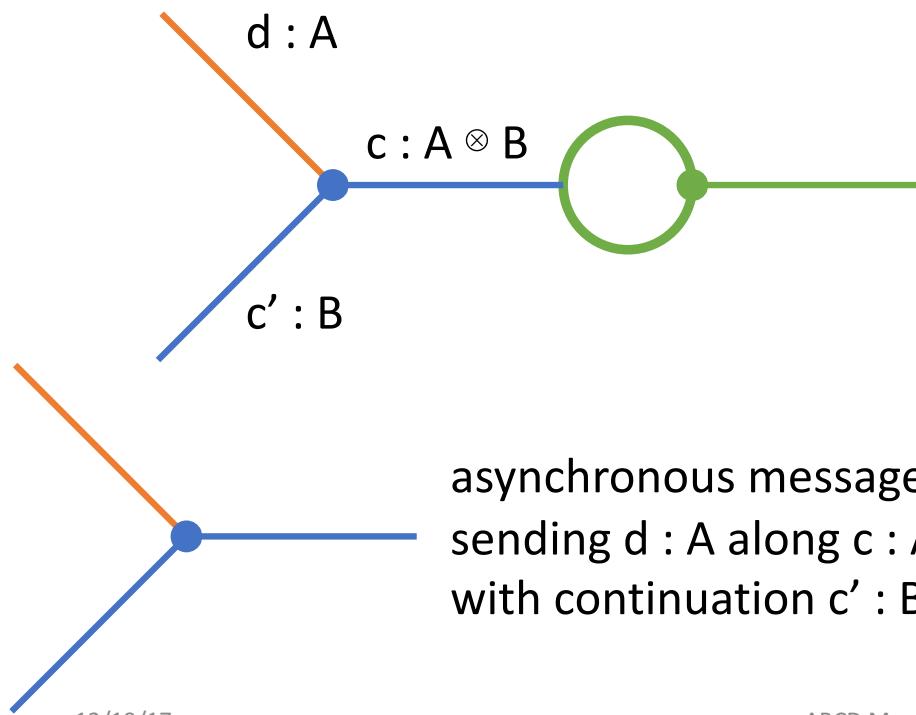
$$\frac{\overline{A \vdash A} \quad \text{id} \quad \Delta \vdash B}{\Delta, A \vdash A \otimes B} \otimes R$$

$$\frac{\Delta \vdash A \quad \frac{\Delta' \vdash B}{\Delta', A \vdash A \otimes B}}{\Delta, \Delta' \vdash A \otimes B} \otimes R^* \text{ cut}$$

Tensor as a Message

use axiomatic form for positive providers or negative clients ("senders")

$$\frac{}{d : A, c' : B \vdash c : A \otimes B} \otimes R A$$



12/19/17

ABCD Meeting, Edinburgh

12

Interderivable with 2 cuts, 2 ids

$$\frac{\overline{A \vdash A} \quad \text{id} \quad \overline{B \vdash B} \quad \text{id}}{A, B \vdash A \otimes B} \otimes R$$

because $\otimes RA$ has no continuation
an asynchronous semantics seems
forced!

$$\frac{\Delta \vdash A \quad \frac{\Delta' \vdash B \quad \overline{A, B \vdash A \otimes B}}{\Delta', A \vdash A \otimes B} \otimes RA}{\Delta, \Delta' \vdash A \otimes B} \text{ cut}$$

Positive Axiomatic Formulation

- Forces (?) asynchronous semantics
- Restore synchronous communication via mode-neutral shifts [Pf & Griffith'15]
- Can write all “sending” rules as axioms
 - Right rules for positive connectives
 - Left rules for negative connectives
- Can hide this from surface syntax, if desired

Outline

- Proofs as programs
- Linear sequent proofs as concurrent programs
 - Take 1: standard sequent calculus = synchronous communication
 - Take 2: unary $\otimes R$ and $\multimap R$
 - Take 3: positive axiomatic form = asynchronous communication
- **Adjoint logic**
 - Structural properties and modes of truth
 - Declaration of Independence
- Concurrent operational semantics
 - Contraction, weakening, multicut, and multi-identity
 - Garbage collection

Structural Rules

- Weakening: do not need to use antecedents (affine logic)
- Contraction: may reuse antecedents (strict logic)
- Weakening + contraction = structural logic

$$\frac{\Delta \vdash e : C}{\Delta, c : A \vdash e : C} \text{ W}$$

$$\frac{\Delta, c_1 : A, c_2 : A \vdash e : C}{\Delta, c : A \vdash e : C} \text{ C}$$

- Compromises the usual cut reduction and cut elimination!

Adjoint Logic [Reed'09]

- Would like to have our cake and eat it, too!
 - Allow weakening, contraction where desirable or necessary
- Challenges
 - How do we make system coherent: linear remains linear, etc.
 - Combination should be conservative over its parts
 - Logically: cut elimination, identity elimination
 - Operationally: session fidelity, global progress (even with recursion)
 - Uniform syntax and semantics

Modes of Truth

- Modes of truth k, m, n
- Every proposition A_m has an intrinsic mode of truth m
- Every mode m possesses structural properties $\sigma(m) \subseteq \{W, C\}$
 - It is possible to add exchange as an option, starting from ordered logic
- Modes are related by preorder \leq , where $m \leq k$ implies $\sigma(m) \subseteq \sigma(k)$

Modes of Truth, continued

- Syntax of propositions (and proofs) is uniform across all modes

$$A_m, B_m ::= P_m \mid A_m \multimap B_m \mid \& \{\ell : A_m^\ell\}_{\ell \in L} \mid \uparrow_k^m A_k \\ \mid A_m \otimes B_m \mid \mathbf{1} \mid \oplus \{\ell : A_m^\ell\}_{\ell \in L} \mid \downarrow_m^n A_n$$

- Shift $\uparrow_k^m A_k$ references proposition A_k in mode m , for $m \geq k$
- Shift $\downarrow_m^n A_n$ references proposition A_n in mode m , for $n \geq m$

Example: Intuitionistic Linear Logic

- Unrestricted mode U with $\sigma(U) = \{W, C\}$
- Linear mode L with $\sigma(L) = \{\}$
- $L < U$
- Mode U populated only by shifts

$$A_U ::= \uparrow_L^U A_L$$

$$A_L ::= A_L \multimap B_L \mid \cdots \mid \downarrow_L^U A_U$$

$$!A_L \triangleq \downarrow_L^U \uparrow_L^U A_L$$

Example: LNL [Benton'94]

- Unrestricted mode U with $\sigma(U) = \{W, C\}$, with all connectives
- Linear mode L with $\sigma(L) = \{\}$
- $L < U$

$$m ::= L \mid U \quad \text{with} \quad L < U$$

$$\begin{aligned} A_m, B_m ::= & P_m \mid A_m \multimap B_m \mid \&\{\ell : A_\ell\}_{\ell \in L} \mid \uparrow_L^U A_L \\ & \mid A_m \otimes B_m \mid \mathbf{1} \mid \oplus\{\ell : A_\ell\}_{\ell \in L} \mid \downarrow_L^U A_U \end{aligned}$$

$$A_U \rightarrow B_U \triangleq A_U \multimap B_U$$

Other Examples

- Intuitionistic S4 ~ staged computation
 - $U < V, \sigma(U) = \sigma(V) = \{W, C\}$
- Lax logic ~ monadic encapsulation
 - $X < U, \sigma(X) = \sigma(U) = \{W, C\}$
- Subexponential logic
 - Like adjoint logic, distinguished mode L
 - All other modes m contain only $\uparrow_L^m A_L$
 - $!^m A_L \triangleq \downarrow_L^m \uparrow_L^m A_L$

The Declaration of Independence

- Key to obtaining coherence, conservativity, cut elimination, uniformity
- $\Psi ::= \varepsilon \mid A_m \mid \Psi_1, \Psi_2$ where ‘,’ is associative, commutative, w/unit ε
- $\Psi \geq m$ if $k \geq m$ for every A_k in Ψ

$\Psi \vdash A_m$ is well-formed only if $\Psi \geq m$

- Truth of A_m must be independent from all A_k for $k \not\geq m$

Rules for Adjoint Logic

- Logical rules unchanged, stay at same, but arbitrary mode m
- Structural rules depend on mode properties

$$\frac{W \in \sigma(m) \quad \Delta \vdash e : C_r}{\Delta, c : A_m \vdash e : C_r} \text{ W}$$

$$\frac{C \in \sigma(m) \quad \Delta, c_1 : A_m, c_2 : A_m \vdash e : C}{\Delta, c : A_m \vdash e : C_r} \text{ C}$$

Rules for Shift

- Derived entirely from declaration of independence

$$\frac{\Psi \vdash A_k}{\Psi \vdash \uparrow_k^m A_k} \uparrow R$$

$$\frac{k \geq r \quad \Psi, A_k \vdash C_r}{\Psi, \uparrow_k^m A_k \vdash C_r} \uparrow L$$

$$\frac{\Psi \geq n \quad \Psi \vdash A_n}{\Psi \vdash \downarrow_m^n A_n} \downarrow R$$

$$\frac{\Psi, A_n \vdash C_r}{\Psi, \downarrow_m^n A_n \vdash C_r} \downarrow L$$

Judgmental Rules

- Cut and identity are the most interesting rules
- Standard argument for cut elimination does not work in the presence of explicit contraction
- Return to Gentzen (1935): Multicut

Multicut

- Some restrictions forced by declaration of independence

$$\frac{\bar{c} = (c_1, \dots, c_n) \quad \Psi \geq m \geq r \quad \Psi \vdash \bar{c} : A_m \quad \Psi', c_1 : A_m, \dots, c_n : A_m \vdash e : C_r}{\Psi, \Psi' \vdash e : C_r} \text{ mcut}^*$$

- If $W \in \sigma(m)$, then $n = 0$ is allowed
- If $C \in \sigma(m)$, then $n > 1$ is allowed
- Provider is “aware of” all client channels \bar{c}

Multi-identity

- Provider might be communicating with multiple clients

$$\frac{}{d : A_m \vdash \bar{c} : A_m} \text{id}^*$$

- If $W \in \sigma(m)$, then $|\bar{c}| = 0$ is allowed
- If $C \in \sigma(m)$, then $|\bar{c}| > 1$ is allowed

Outline

- Proofs as programs
- Linear sequent proofs as concurrent programs
 - Take 1: standard sequent calculus = synchronous communication
 - Take 2: unary $\otimes R$ and $\multimap R$
 - Take 3: positive axiomatic form = asynchronous communication
- Adjoint logic
 - Structural properties and modes of truth
 - Declaration of Independence
- **Concurrent operational semantics**
 - Contraction, weakening, multicut, and multi-identity
 - Garbage collection

Process Interpretation

- Transitions do not care about modes at runtime
- However, some rules care about the number of clients a process has
- In this uniform semantics, computation at all structural properties is implemented by message passing
- Transitions of process configurations mimic cut reductions (not cut elimination)
- Shifts send and receive 'shift' messages which synchronize [Pf & Griffith'15]

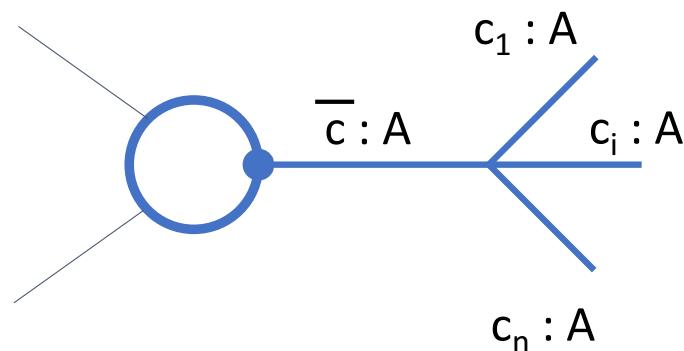
Multicut, Process Interpretation

one provider with multiple clients

$$\frac{\Delta \vdash \bar{c} : A \quad \Delta', c_1 : A, \dots, c_n : A \vdash e : C}{\Delta, \Delta' \vdash e : C} \text{ mcut}$$

$$\bar{c} = c_1, \dots, c_n$$

provider should know about
all client channels



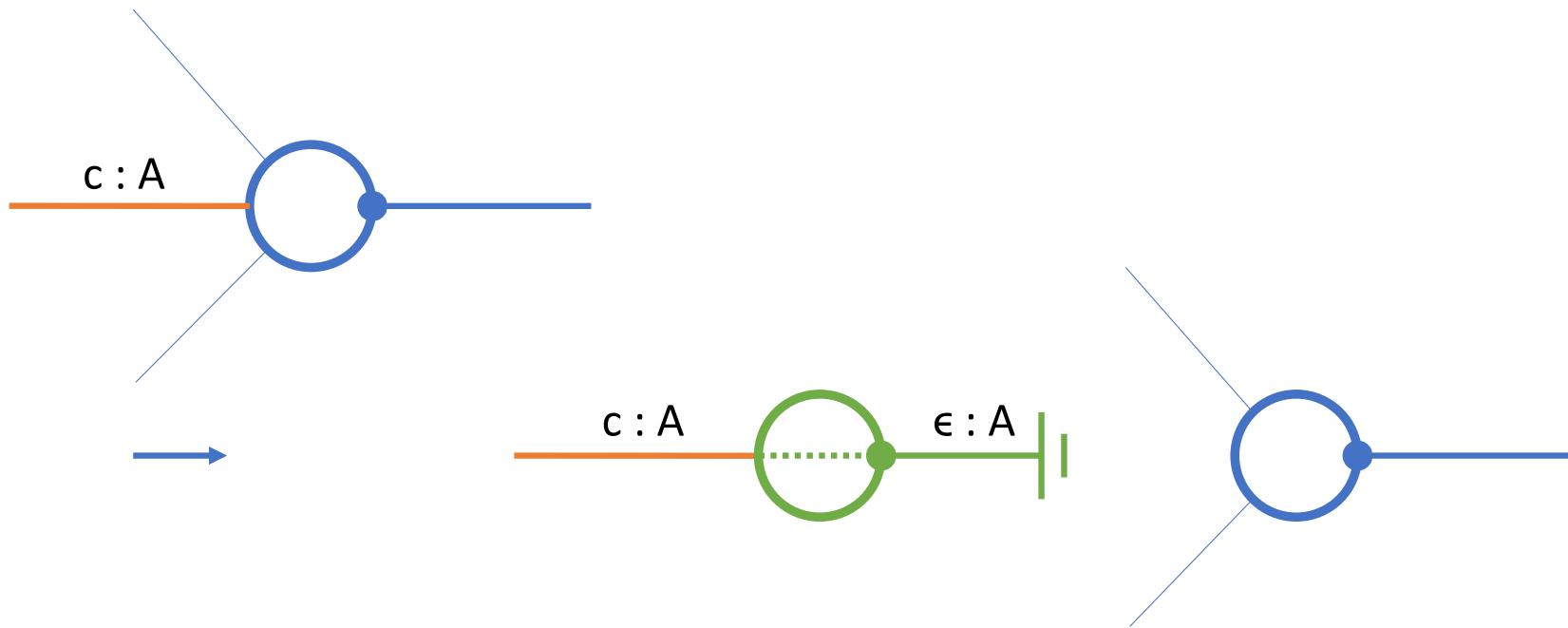
without modes, to
emphasize dynamic
mode independence

Key Idea: Contraction = Identity + Multicut

$$\frac{\overline{c : A \vdash \bar{c} : A} \quad \text{id} \quad \Delta, c_1 : A, c_2 : A \vdash e : C}{\Delta, c : A \vdash e : C} \text{ mcut}$$

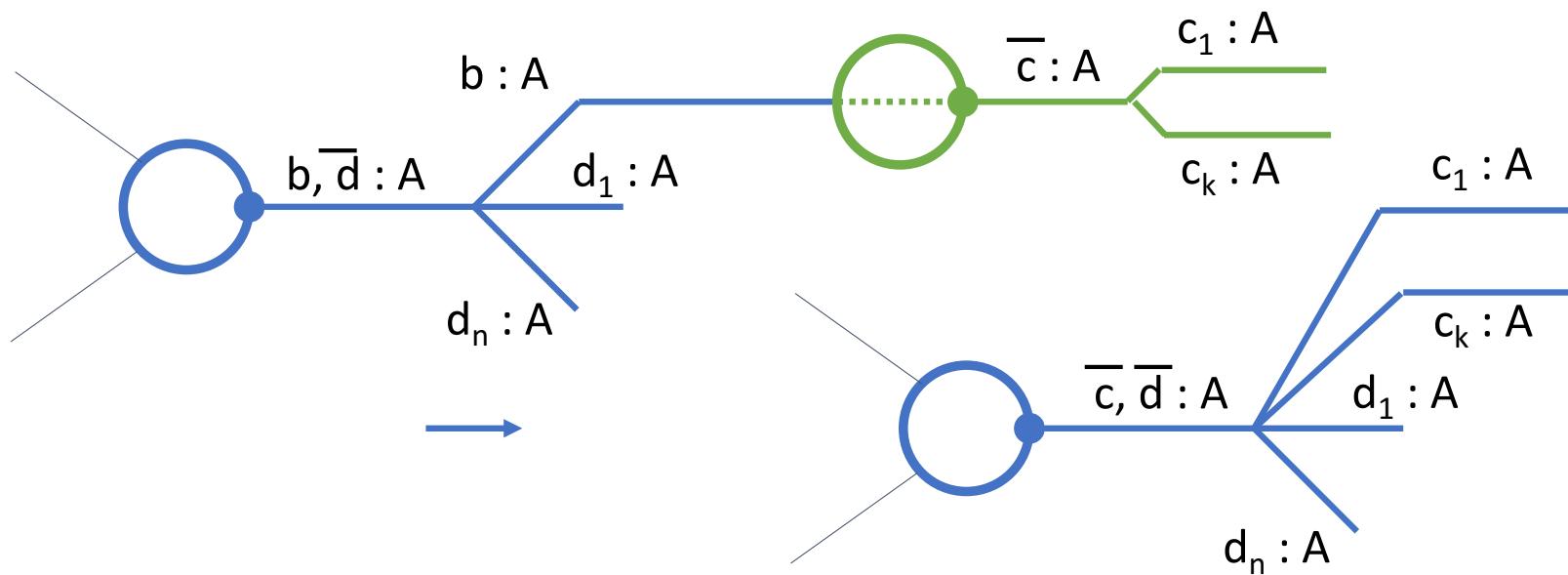


Key Idea: Weakening = Identity + Multicut



Key Idea: Identity Propagation

- Helps to implement both drop (W) and copy (C)
- Distributed garbage collection “for free”



Key Ideas: Multicast and Copy-on-Receive

- Positive types (e.g., $A \otimes B$) do multicast, if there are multiple clients
- Negative types (e.g., $A \multimap B$) copy-on-receive, if there are multiple clients
- Previous work on $!A$ only performed copy-on-receive

Ongoing and Future Work

- Exploit independence principle for non-uniform semantics
 - $S = \text{shared}$, $U = \text{unrestricted}$, $L = \text{linear}$ with $S \leq U$, $U \leq S$, $L < U$, $L < S$ and $\sigma(S) = \sigma(U) = \{C, W\}$, $\sigma(L) = \{\}$ [Balzer & Pf, 2017]
 - $H = \text{locally heap-allocated}$, $L = \text{linear}$, $L < H$ with $\sigma(H) = ?$, $\sigma(L) = \{\}$
 - Proof irrelevance, intensional equality [Pf'01]
 - Ghost messages for contracts and reasoning about distributed computation
- Is there a general theorem about non-uniform compatibility?
- Surface syntax? (Uniform is possible, up to a point)
- General implementation

Summary

- Adjoint logic combines logics coherently and conservatively
- Shifts compose to a monad (one order) and comonad (other order)
- Declaration of Independence enables key results
 - Cut elimination, identity elimination
 - Conservative extension over combined fragments
- Uniform message-passing semantics via multicut and identity
 - Contraction = identity + multicut for $n > 1$
 - Weakening = identity + multicut for $n = 0$
 - Distributed garbage collection = identity propagation

