
Adjoint Logic	and	Its	
Concurrent	Semantics

Frank	Pfenning
ABCD	Meeting,	Edinburgh,	December	18-19,	2017
Joint	work	with	Klaas Pruiksma and	William	Chargin

Outline

• Proofs	as	programs
• Linear	sequent	proofs	as	concurrent	programs

• Take	1:	standard	sequent	calculus	=	synchronous	communication
• Take	2:	unary	⊗R	and	–oR
• Take	3:	positive	axiomatic	form	=	asynchronous	communication

• Adjoint logic
• Structural	properties	and	modes	of	truth
• Declaration	of	Independence

• Concurrent	operational	semantics
• Contraction,	weakening,	multicut,	and	multi-identity
• Garbage	collection

12/19/17 ABCD	Meeting,	Edinburgh 2

Proofs	as	Programs

• Codesign of	language	and	its	reasoning	principles
• Three	levels	of	correspondence

• Propositions	as	types
• Proofs	as	programs
• Proof	reduction	as	computation

• Style	of	proof	system	is	critical	to	characterize	computation
• Axiomatic	style	⟺ combinators and	combinatory	reduction	[Curry’35]
• Natural	deduction	⟺ λ-calculus	and	substitution	[Howard’69]
• Sequent	calculus	⟺ explicit	substitutions	[Herbelin’94]

• All	intuitionistic	and	structural	(admitting	weakening	&	contraction)

12/19/17 ABCD	Meeting,	Edinburgh 3

Linear	Proofs	as	Session-Typed	Programs

• Three	levels	of	correspondence
• Linear	propositions	as	session	types
• Sequent	proofs	as	concurrent	programs
• Cut	reduction	as	communication

• Intuitionistic	variant:	provider/client	model	[Caires &	Pf’10]
• No	need	to	dualize types
• Dependent	types	[Toninho et	al.’11]
• Monadic	integration	with	functional	language	(SILL)	[Toninho’15]	[Griffith’15]
• Integration	in	imperative	language	(CC0)	[Willsey et	al.16]
• Polymorphism	and	logical	relations	[Perez	et	al.’13]
• Exploiting	categorical	view	(this	talk)

• Classical	variant:	symmetric	communication	
• [Wadler’12]	[Caires et	al.’16]	

12/19/17 ABCD	Meeting,	Edinburgh 4

Outline

• Proofs	as	programs
• Linear	sequent	proofs	as	concurrent	programs

• Take	1:	standard	sequent	calculus	=	synchronous	communication
• Take	2:	unary	⊗R	and	–oR
• Take	3:	positive	axiomatic	form	=	asynchronous	communication

• Adjoint logic
• Structural	properties	and	modes	of	truth
• Declaration	of	Independence

• Concurrent	operational	semantics
• Contraction,	weakening,	multicut,	and	multi-identity
• Garbage	collection

12/19/17 ABCD	Meeting,	Edinburgh 5

� ` c : A �0, c : A ` e : C

�,�0 ` e : C
cut

Cut	as	Parallel	Composition

c	:	A

provides	channel	c	:	A
process	P process	Q

used	by

Δ
Δ’

e :	C

which	provides	e	:	C

process	configuration	always
forms	a	tree

12/19/17 ABCD	Meeting,	Edinburgh 6

Cut	as	Process	Spawn

c	:	A

Δ’

e :	C

Δ

x :	A

Δ
Δ’

e :	C

� ` c : A �0, c : A ` e : C

�,�0 ` e : C
cut

12/19/17 ABCD	Meeting,	Edinburgh 7

Identity	as	Identification

d : A ` c : A
id

d	:	A c	:	A

d	=	c	:	A

transition	of	configuration	models
cut	of	any	proof	with	identity

12/19/17 ABCD	Meeting,	Edinburgh 8

Tensor,	Original

x :	A

Δ
Δ’

c	:	A	⊗ B

� ` x : A �0 ` c : B
�,�0 ` c : A⌦B

⌦R

c	:	B

Δ

Δ’ c	:	B

d :	A

12/19/17 ABCD	Meeting,	Edinburgh 9

Tensor,	Simplified

c	:	A	⊗ B

c	:	B

d :	A

� ` c : B
�, d : A ` c : A⌦B

⌦R⇤

cut	reduction	predisposes	to
synchronous	semantics

d :	A

12/19/17 ABCD	Meeting,	Edinburgh 10

Interderivable using	Identity	and	Cut

A ` A
id

� ` B
�, A ` A⌦B

⌦R

� ` A
�0 ` B

�0, A ` A⌦B
⌦R⇤

�,�0 ` A⌦B
cut

12/19/17 ABCD	Meeting,	Edinburgh 11

Tensor	as	a	Message

d : A, c0 : B ` c : A⌦B
⌦RA

c	:	A	⊗ B

c’	:	B

d :	A

c’	:	B

d :	A

asynchronous	message
sending	d	:	A	along	c	:	A	⊗ B
with	continuation	c’	:	B

use	axiomatic	form	for	positive
providers	or	negative	clients	(”senders”)

12/19/17 ABCD	Meeting,	Edinburgh 12

Interderivable with	2	cuts,	2	ids

A ` A
id

B ` B
id

A,B ` A⌦B
⌦R

� ` A

�0 ` B A,B ` A⌦B
⌦RA

�0, A ` A⌦B
cut

�,�0 ` A⌦B
cut

because	⊗RA	has	no	continuation
an	asynchronous	semantics	seems
forced!

12/19/17 ABCD	Meeting,	Edinburgh 13

Positive	Axiomatic	Formulation

• Forces	(?)	asynchronous	semantics
• Restore	synchronous	communication	via	mode-neutral	shifts	[Pf	&	
Griffith’15]
• Can	write	all	“sending”	rules	as	axioms

• Right	rules	for	positive	connectives
• Left	rules	for	negative	connectives

• Can	hide	this	from	surface	syntax,	if	desired

12/19/17 ABCD	Meeting,	Edinburgh 14

Outline

• Proofs	as	programs
• Linear	sequent	proofs	as	concurrent	programs

• Take	1:	standard	sequent	calculus	=	synchronous	communication
• Take	2:	unary	⊗R	and	–oR
• Take	3:	positive	axiomatic	form	=	asynchronous	communication

• Adjoint logic
• Structural	properties	and	modes	of	truth
• Declaration	of	Independence

• Concurrent	operational	semantics
• Contraction,	weakening,	multicut,	and	multi-identity
• Garbage	collection

12/19/17 ABCD	Meeting,	Edinburgh 15

Structural	Rules

• Weakening:	do	not	need	to	use	antecedents	(affine	logic)
• Contraction:	may	reuse	antecedents	(strict	logic)
• Weakening	+	contraction	=	structural	logic

• Compromises	the	usual	cut	reduction	and	cut	elimination!

� ` e : C
�, c : A ` e : C

W
�, c1 : A, c2 : A ` e : C

�, c : A ` e : C
C

12/19/17 ABCD	Meeting,	Edinburgh 16

Adjoint Logic	[Reed’09]

• Would	like	to	have	our	cake	and	eat	it,	too!
• Allow	weakening,	contraction	where	desirable	or	necessary

• Challenges
• How	do	we	make	system	coherent:	linear	remains	linear,	etc.
• Combination	should	be	conservative	over	its	parts
• Logically:	cut	elimination,	identity	elimination
• Operationally:	session	fidelity,	global	progress	(even	with	recursion)
• Uniform	syntax	and	semantics

12/19/17 ABCD	Meeting,	Edinburgh 17

Modes	of	Truth

• Modes	of	truth	k,	m,	n
• Every	proposition	Am has	an	intrinsic	mode	of	truth	m
• Every	mode	m	possesses	structural	properties	σ(m)	⊆{W,	C}

• It	is	possible	to	add	exchange	as	an	option,	starting	from	ordered	logic

• Modes	are	related	by	preorder	≤,	where	m	≤	k	implies	σ(m)	⊆σ(k)

12/19/17 ABCD	Meeting,	Edinburgh 18

Modes	of	Truth,	continued

• Syntax	of	propositions	(and	proofs)	is	uniform	across	all	modes

• Shift	↑		Ak references	proposition	Ak in	mode	m,	for	m	≥	k
• Shift	↓		An references	proposition	An in	mode	m,	for	n	≥	m

m
k
n
m

Am, Bm ::= Pm | Am (Bm | N{` : A`
m}`2L | "mk Ak

| Am ⌦Bm | 1 | �{` : A`
m}`2L | #nmAn

12/19/17 ABCD	Meeting,	Edinburgh 19

Example:	Intuitionistic	Linear	Logic

• Unrestricted	mode	U	with	σ(U)	=	{W,C}
• Linear	mode	L	with	σ(L)	=	{}
• L	<	U
• Mode	U	populated	only	by	shifts

AU ::= "ULAL

AL ::= AL (BL | · · · | #ULAU

!AL , #UL "
U
LAL

12/19/17 ABCD	Meeting,	Edinburgh 20

Example:	LNL	[Benton’94]

• Unrestricted	mode	U	with	σ(U)	=	{W,C},	with	all	connectives
• Linear	mode	L	with	σ(L)	=	{}
• L	<	U

m ::= L | U with L < U

Am, Bm ::= Pm | Am (Bm | N{` : A`}`2L | "ULAL

| Am ⌦Bm | 1 | �{` : A`}`2L | #ULAU

AU ! BU , AU (BU

12/19/17 ABCD	Meeting,	Edinburgh 21

Other	Examples

• Intuitionistic	S4	~	staged	computation
• U	<	V,	σ(U)	=	σ(V)	=	{W,C}

• Lax	logic	~	monadic	encapsulation
• X	<	U,	σ(X)	=	σ(U)	=	{W,C}

• Subexponential logic
• Like	adjoint logic,	distinguished	mode	L
• All	other	modes	m	contain	only	↑			AL

• !mAL ≜ ↓			↑		AL

m
Lm

L
m
L

12/19/17 ABCD	Meeting,	Edinburgh 22

The	Declaration	of	Independence

• Key	to	obtaining	coherence,	conservativity,	cut	elimination,	uniformity
• Ψ ::=	ε |	Am |	Ψ1,	Ψ2 where	‘,’	is	associative,	commutative,	w/unit	ε
• Ψ ≥	m	if	k	≥	m	for	every	Ak in	Ψ

• Truth	of	Am must	be	independent	from	all	Ak for	k	≥	m

Ψ ⊢ Am is	well-formed	only	if		Ψ ≥	m

12/19/17 ABCD	Meeting,	Edinburgh 23

Rules	for	Adjoint Logic

• Logical	rules	unchanged,	stay	at	same,	but	arbitrary	mode	m
• Structural	rules	depend	on	mode	properties

W 2 �(m) � ` e : Cr

�, c : Am ` e : Cr
W

C 2 �(m) �, c1 : Am, c2 : Am ` e : C

�, c : Am ` e : Cr
C

12/19/17 ABCD	Meeting,	Edinburgh 24

Rules	for	Shift

• Derived	entirely	from	declaration	of	independence

12/19/17 ABCD	Meeting,	Edinburgh 25

 ` Ak

 ` "mk Ak
"R k � r , Ak ` Cr

 , "mk Ak ` Cr
"L

 � n ` An

 ` #nmAn
#R , An ` Cr

 , #nmAn ` Cr
#L

Judgmental	Rules

• Cut	and	identity	are	the	most	interesting	rules
• Standard	argument	for	cut	elimination	does	not	work	in	the	presence	
of	explicit	contraction
• Return	to	Gentzen (1935):	Multicut

12/19/17 ABCD	Meeting,	Edinburgh 26

Multicut

• Some	restrictions	forced	by	declaration	of	independence

• If	W	ϵ	σ(m),	then	n	=	0	is	allowed
• If	C	ϵ	σ(m),	then	n	>	1	is	allowed
• Provider	is	“aware	of”	all	client	channels	c

12/19/17 ABCD	Meeting,	Edinburgh 27

c = (c1, . . . , cn)
 � m � r ` c : Am 0, c1:Am, . . . , cn:Am ` e : Cr

 , 0 ` e : Cr
mcut⇤

Multi-identity

• Provider	might	be	communicating	with	multiple	clients

• If	W	ϵ	σ(m),	then	|c|	=	0	is	allowed
• If	C	ϵ	σ(m),	then	|c|	>	1	is	allowed

d : Am ` c : Am
id⇤

12/19/17 ABCD	Meeting,	Edinburgh 28

Outline

• Proofs	as	programs
• Linear	sequent	proofs	as	concurrent	programs

• Take	1:	standard	sequent	calculus	=	synchronous	communication
• Take	2:	unary	⊗R	and	–oR
• Take	3:	positive	axiomatic	form	=	asynchronous	communication

• Adjoint logic
• Structural	properties	and	modes	of	truth
• Declaration	of	Independence

• Concurrent	operational	semantics
• Contraction,	weakening,	multicut,	and	multi-identity
• Garbage	collection

12/19/17 ABCD	Meeting,	Edinburgh 29

Process	Interpretation

• Transitions	do	not	care	about	modes	at	runtime
• However,	some	rules	care	about	the	number	of	clients	a	process	has
• In	this	uniform	semantics,	computation	at	all	structural	properties	is	
implemented	by	message	passing
• Transitions	of	process	configurations	mimic	cut	reductions	(not	cut	
elimination)
• Shifts	send	and	receive	’shift’	messages	which	synchronize	[Pf	&	
Griffith’15]

12/19/17 ABCD	Meeting,	Edinburgh 30

Multicut,	Process	Interpretation

c1 :	A

cn :	A

c	:	A ci :	A

c		=	c1,	…,	cn

provider	should	know	about
all	client	channels

one	provider	with	multiple	clients

12/19/17 ABCD	Meeting,	Edinburgh 31

without	modes,	to
emphasize	dynamic
mode	independence

� ` c : A �0, c1:A, . . . , cn:A ` e : C

�,�0 ` e : C
mcut

Key	Idea:	Contraction	=	Identity	+	Multicut

c : A ` c : A
id

�, c1 : A, c2 : A ` e : C

�, c : A ` e : C
mcut

c	:	A

c	:	A
c1 :	A

c2 :	A

c	:	A

12/19/17 ABCD	Meeting,	Edinburgh 32

Key	Idea:	Weakening	=	Identity	+	Multicut

c	:	A

c	:	A ϵ :	A

12/19/17 ABCD	Meeting,	Edinburgh 33

Key	Idea:	Identity	Propagation

• Helps	to	implement	both	drop	(W)	and	copy	(C)
• Distributed	garbage	collection	“for	free”

b :	A

dn :	A

b,	d	:	A d1 :	A

c	:	A

dn :	A

c,	d	:	A d1 :	A

c1 :	Ack :	A

c1 :	A

ck :	A

12/19/17 ABCD	Meeting,	Edinburgh 34

Key	Ideas:	Multicast	and	Copy-on-Receive

• Positive	types	(e.g.,	A	⊗ B)	do	multicast,	if	there	are	multiple	clients
• Negative	types	(e.g.,	A	–o	B)	copy-on-receive,	if	there	are	multiple	
clients
• Previous	work	on	!A	only	performed	copy-on-receive

12/19/17 ABCD	Meeting,	Edinburgh 35

Ongoing	and	Future	Work

• Exploit	independence	principle	for	non-uniform	semantics
• S	=	shared,	U	=	unrestricted,	L	=	linear	with	S	≤	U,	U	≤	S,	L	<	U,	L	<	S	and	σ(S)	=	
σ(U)	=	{C,W},	σ(L)	=	{}	[Balzer &	Pf,	2017]

• H	=	locally	heap-allocated,	L	=	linear,	L	<	H	with	σ(H)	=	?,	σ(L)	=	{}
• Proof	irrelevance,	intensional equality	[Pf’01]
• Ghost	messages	for	contracts	and	reasoning	about	distributed	computation

• Is	there	a	general	theorem	about	non-uniform	compatibility?
• Surface	syntax?		(Uniform	is	possible,	up	to	a	point)
• General	implementation

12/19/17 ABCD	Meeting,	Edinburgh 36

Summary

• Adjoint logic	combines	logics	coherently	and	conservatively
• Shifts	compose	to	a	monad	(one	order)	and	comonad (other	order)
• Declaration	of	Independence	enables	key	results

• Cut	elimination,	identity	elimination
• Conservative	extension	over	combined	fragments

• Uniform	message-passing	semantics	via	multicut and	identity
• Contraction	=	identity	+	multicut for	n	>	1
• Weakening	=	identity	+	multicut for	n	=	0
• Distributed	garbage	collection	=	identity	propagation

12/19/17 ABCD	Meeting,	Edinburgh 37

m
k

12/19/17 ABCD	Meeting,	Edinburgh 38

