
Proof-Carrying Code in a

Session-Typed Process Calculus

Frank Pfenning

with Lúıs Caires and Bernardo Toninho

Department of Computer Science
Carnegie Mellon University

1st International Conference on
Certified Programs and Proofs (CPP)

December 7, 2011

1 / 33

Why do we trust software?

We don’t!

To the extent that we do, we rely on:

Digital signatures (state-of-the-practice)
Formal proof (state-of-the-art)

Can we combine digital signatures and proofs?

Digital signatures are here to stay
Proofs are here to stay

2 / 33

Why do we trust software?

We don’t!

To the extent that we do, we rely on:

Digital signatures (state-of-the-practice)
Formal proof (state-of-the-art)

Can we combine digital signatures and proofs?

Digital signatures are here to stay
Proofs are here to stay

2 / 33

Why do we trust software?

We don’t!

To the extent that we do, we rely on:

Digital signatures (state-of-the-practice)
Formal proof (state-of-the-art)

Can we combine digital signatures and proofs?

Digital signatures are here to stay
Proofs are here to stay

2 / 33

Why do we trust software?

We don’t!

To the extent that we do, we rely on:

Digital signatures (state-of-the-practice)
Formal proof (state-of-the-art)

Can we combine digital signatures and proofs?

Digital signatures are here to stay
Proofs are here to stay

2 / 33

Why do we trust software?

We don’t!

To the extent that we do, we rely on:

Digital signatures (state-of-the-practice)
Formal proof (state-of-the-art)

Can we combine digital signatures and proofs?

Digital signatures are here to stay
Proofs are here to stay

2 / 33

Why do we trust software?

We don’t!

To the extent that we do, we rely on:

Digital signatures (state-of-the-practice)
Formal proof (state-of-the-art)

Can we combine digital signatures and proofs?

Digital signatures are here to stay
Proofs are here to stay

2 / 33

System Modeling and Security Properties

Communicating processes

Name-passing (mobile)
Value-passing (applied)
Proof-passing (proof-carrying)

Reason about process behavior

Deadlock-freedom
Session fidelity
Termination

Reason about values and proofs

Types
Correctness of proofs
Validity of signatures

3 / 33

System Modeling and Security Properties

Communicating processes

Name-passing (mobile)
Value-passing (applied)
Proof-passing (proof-carrying)

Reason about process behavior

Deadlock-freedom
Session fidelity
Termination

Reason about values and proofs

Types
Correctness of proofs
Validity of signatures

3 / 33

System Modeling and Security Properties

Communicating processes

Name-passing (mobile)
Value-passing (applied)
Proof-passing (proof-carrying)

Reason about process behavior

Deadlock-freedom
Session fidelity
Termination

Reason about values and proofs

Types
Correctness of proofs
Validity of signatures

3 / 33

System Modeling and Security Properties

Communicating processes

Name-passing (mobile)
Value-passing (applied)
Proof-passing (proof-carrying)

Reason about process behavior

Deadlock-freedom
Session fidelity
Termination

Reason about values and proofs

Types
Correctness of proofs
Validity of signatures

3 / 33

System Modeling and Security Properties

Communicating processes

Name-passing (mobile)
Value-passing (applied)
Proof-passing (proof-carrying)

Reason about process behavior

Deadlock-freedom
Session fidelity
Termination

Reason about values and proofs

Types
Correctness of proofs
Validity of signatures

3 / 33

System Modeling and Security Properties

Communicating processes

Name-passing (mobile)
Value-passing (applied)
Proof-passing (proof-carrying)

Reason about process behavior

Deadlock-freedom
Session fidelity
Termination

Reason about values and proofs

Types
Correctness of proofs
Validity of signatures

3 / 33

System Modeling and Security Properties

Communicating processes

Name-passing (mobile)
Value-passing (applied)
Proof-passing (proof-carrying)

Reason about process behavior

Deadlock-freedom
Session fidelity
Termination

Reason about values and proofs

Types
Correctness of proofs
Validity of signatures

3 / 33

Approach

Communicating processes

Value-passing extension of π-calculus

Reason about process behavior [CONCUR’10]

Session types
Curry-Howard isomorphism between

Intuitionistic linear propositions and session types
Sequent proofs and π-calculus processes
Proof reduction and process reduction

Reason about values and proofs

Dependent session types [PPDP’11]

Terms and proofs from dependent type theory
Add proof irrelevance (to avoid sending proofs)
Add affirmation (to capture digital signatures)

4 / 33

Approach

Communicating processes

Value-passing extension of π-calculus

Reason about process behavior [CONCUR’10]

Session types
Curry-Howard isomorphism between

Intuitionistic linear propositions and session types
Sequent proofs and π-calculus processes
Proof reduction and process reduction

Reason about values and proofs

Dependent session types [PPDP’11]

Terms and proofs from dependent type theory
Add proof irrelevance (to avoid sending proofs)
Add affirmation (to capture digital signatures)

4 / 33

Approach

Communicating processes

Value-passing extension of π-calculus

Reason about process behavior [CONCUR’10]

Session types
Curry-Howard isomorphism between

Intuitionistic linear propositions and session types
Sequent proofs and π-calculus processes
Proof reduction and process reduction

Reason about values and proofs

Dependent session types [PPDP’11]

Terms and proofs from dependent type theory
Add proof irrelevance (to avoid sending proofs)
Add affirmation (to capture digital signatures)

4 / 33

Approach

Communicating processes

Value-passing extension of π-calculus

Reason about process behavior [CONCUR’10]

Session types
Curry-Howard isomorphism between

Intuitionistic linear propositions and session types
Sequent proofs and π-calculus processes
Proof reduction and process reduction

Reason about values and proofs

Dependent session types [PPDP’11]

Terms and proofs from dependent type theory
Add proof irrelevance (to avoid sending proofs)
Add affirmation (to capture digital signatures)

4 / 33

Approach

Communicating processes

Value-passing extension of π-calculus

Reason about process behavior [CONCUR’10]

Session types
Curry-Howard isomorphism between

Intuitionistic linear propositions and session types
Sequent proofs and π-calculus processes
Proof reduction and process reduction

Reason about values and proofs

Dependent session types [PPDP’11]

Terms and proofs from dependent type theory
Add proof irrelevance (to avoid sending proofs)
Add affirmation (to capture digital signatures)

4 / 33

Approach

Communicating processes

Value-passing extension of π-calculus

Reason about process behavior [CONCUR’10]

Session types
Curry-Howard isomorphism between

Intuitionistic linear propositions and session types
Sequent proofs and π-calculus processes
Proof reduction and process reduction

Reason about values and proofs

Dependent session types [PPDP’11]

Terms and proofs from dependent type theory
Add proof irrelevance (to avoid sending proofs)
Add affirmation (to capture digital signatures)

4 / 33

Approach

Communicating processes

Value-passing extension of π-calculus

Reason about process behavior [CONCUR’10]

Session types
Curry-Howard isomorphism between

Intuitionistic linear propositions and session types
Sequent proofs and π-calculus processes
Proof reduction and process reduction

Reason about values and proofs

Dependent session types [PPDP’11]

Terms and proofs from dependent type theory
Add proof irrelevance (to avoid sending proofs)
Add affirmation (to capture digital signatures)

4 / 33

Outline

1 Session types for π-calculus

2 Dependent session types

3 Proof irrelevance

4 Affirmation and digital signatures

5 Conclusion

5 / 33

Session types: judgment forms

Judgment P :: x : A
Process P offers service A along channel x

Linear sequent

x1:A1, . . . , xn:An︸ ︷︷ ︸
∆

⇒ P :: x : A

P uses xi :Ai and offers x :A.

Cut as composition

∆⇒

P :: x :

A ∆′,

x :

A⇒

Q :: z :

C

∆,∆′ ⇒

(νx)(P | Q) :: z :

C
cut

Identity as forwarding

x :

A⇒

[x ↔ z] :: z :

A
id

6 / 33

Session types: judgment forms

Judgment P :: x : A
Process P offers service A along channel x

Linear sequent

x1:A1, . . . , xn:An︸ ︷︷ ︸
∆

⇒ P :: x : A

P uses xi :Ai and offers x :A.

Cut as composition

∆⇒

P ::

x : A ∆′, x :A⇒

Q ::

z : C

∆,∆′ ⇒

(νx)(P | Q) ::

z : C
cut

Identity as forwarding

x :

A⇒

[x ↔ z] :: z :

A
id

6 / 33

Session types: judgment forms

Judgment P :: x : A
Process P offers service A along channel x

Linear sequent

x1:A1, . . . , xn:An︸ ︷︷ ︸
∆

⇒ P :: x : A

P uses xi :Ai and offers x :A.

Cut as composition

∆⇒ P :: x : A ∆′, x :A⇒ Q :: z : C

∆,∆′ ⇒ (νx)(P | Q) :: z : C
cut

Identity as forwarding

x :

A⇒

[x ↔ z] :: z :

A
id

6 / 33

Session types: judgment forms

Judgment P :: x : A
Process P offers service A along channel x

Linear sequent

x1:A1, . . . , xn:An︸ ︷︷ ︸
∆

⇒ P :: x : A

P uses xi :Ai and offers x :A.

Cut as composition

∆⇒ P :: x : A ∆′, x :A⇒ Q :: z : C

∆,∆′ ⇒ (νx)(P | Q) :: z : C
cut

Identity as forwarding

x :A⇒

[x ↔ z] ::

z : A
id

6 / 33

Session types: judgment forms

Judgment P :: x : A
Process P offers service A along channel x

Linear sequent

x1:A1, . . . , xn:An︸ ︷︷ ︸
∆

⇒ P :: x : A

P uses xi :Ai and offers x :A.

Cut as composition

∆⇒ P :: x : A ∆′, x :A⇒ Q :: z : C

∆,∆′ ⇒ (νx)(P | Q) :: z : C
cut

Identity as forwarding

x :A⇒ [x ↔ z] :: z : A
id

6 / 33

Session types: input (A(B)

P :: x : A(B

P inputs an A along x and then behaves as B

Right rule: offer of service

∆,

y :

A⇒

P :: x :

B

∆⇒

x(y).P :: x :

A(B
(R

Can reuse x , due to linearity

Left rule: matching use of service

∆⇒

P :: y :

A ∆′,

x :

B ⇒

Q :: z :

C

∆,∆′,

x :

A(B ⇒

(νy)x〈y〉.(P | Q) :: z :

C
(L

Can reuse x , due to linearity
Channel y must be new

7 / 33

Session types: input (A(B)

P :: x : A(B

P inputs an A along x and then behaves as B

Right rule: offer of service

∆, y :A⇒

P ::

x : B

∆⇒

x(y).P ::

x : A(B
(R

Can reuse x , due to linearity

Left rule: matching use of service

∆⇒

P :: y :

A ∆′,

x :

B ⇒

Q :: z :

C

∆,∆′,

x :

A(B ⇒

(νy)x〈y〉.(P | Q) :: z :

C
(L

Can reuse x , due to linearity
Channel y must be new

7 / 33

Session types: input (A(B)

P :: x : A(B

P inputs an A along x and then behaves as B

Right rule: offer of service

∆, y :A⇒ P :: x : B

∆⇒ x(y).P :: x : A(B
(R

Can reuse x , due to linearity

Left rule: matching use of service

∆⇒

P :: y :

A ∆′,

x :

B ⇒

Q :: z :

C

∆,∆′,

x :

A(B ⇒

(νy)x〈y〉.(P | Q) :: z :

C
(L

Can reuse x , due to linearity
Channel y must be new

7 / 33

Session types: input (A(B)

P :: x : A(B

P inputs an A along x and then behaves as B

Right rule: offer of service

∆, y :A⇒ P :: x : B

∆⇒ x(y).P :: x : A(B
(R

Can reuse x , due to linearity

Left rule: matching use of service

∆⇒

P ::

y : A ∆′, x :B ⇒

Q ::

z : C

∆,∆′, x :A(B ⇒

(νy)x〈y〉.(P | Q) ::

z : C
(L

Can reuse x , due to linearity
Channel y must be new

7 / 33

Session types: input (A(B)

P :: x : A(B

P inputs an A along x and then behaves as B

Right rule: offer of service

∆, y :A⇒ P :: x : B

∆⇒ x(y).P :: x : A(B
(R

Can reuse x , due to linearity

Left rule: matching use of service

∆⇒ P :: y : A ∆′, x :B ⇒ Q :: z : C

∆,∆′, x :A(B ⇒ (νy)x〈y〉.(P | Q) :: z : C
(L

Can reuse x , due to linearity
Channel y must be new

7 / 33

Session types: reduction

Proof reduction
∆,A⇒ B

∆⇒ A(B
(R

∆1 ⇒ A ∆2,B ⇒ C

∆1,∆2,A(B ⇒ C
(L

∆,∆1,∆2 ⇒ C
cut

−→
∆1 ⇒ A ∆,A⇒ B

∆,∆1 ⇒ B
cut

∆2,B ⇒ C

∆,∆1,∆2 ⇒ C
cut

Corresponding process reduction

∆,∆1,∆2 ⇒ (νx)(x(y).P1 | (νw)(x〈w〉.(P2 | Q))) :: z : C

−→
∆,∆1,∆2 ⇒ (νx)((νw)(P2 | P1{w/y}) | Q) :: z : C

8 / 33

Session types: other connectives

Linear propositions as session types

P :: x : A(B Input a y :A along x and behave as B
P :: x : A⊗ B Output a new y :A along x and behave as B
P :: x : 1 Terminate session on x
P :: x : A & B Offer choice between A and B along x
P :: x : A⊕ B Offer either A or B along x
P :: x : !A Offer A persistently along x

Sequent proofs as process expressions

Proof reduction as process reduction

9 / 33

Two small examples

PDF indexing service, version 1

index1 : !(file(file⊗ 1)

Persistently offer to input a file, then output a file and
terminate session. Intent: input PDF, output indexed
PDF for keyword search.

Persistent file storage

store1 : !(file(!(file⊗ 1))

Persistently offer to input a file, then output a persistent
handle for retrieving this file. Intent: output file is the
same as input file.

10 / 33

Outline

1 Session types for π-calculus

2 Dependent session types

3 Proof irrelevance

4 Affirmation and digital signatures

5 Conclusion

11 / 33

Term passing

Types τ from a (dependent) type theory

Hypothetical judgment x1:τ1, . . . , xk :τk︸ ︷︷ ︸
Ψ

` M : τ

Some example type constructors

Πx :τ.σ, τ → σ Functions from τ to σ
Σx :τ.σ, τ × σ Pairs of a τ and a σ
nat Natural numbers

Integrate into sequent calculus

Ψ︸︷︷︸
term variables

; Γ︸︷︷︸
persistent channels

; ∆︸︷︷︸
linear channels

⇒ P :: x : A︸︷︷︸
linear

12 / 33

Term passing: input (∀y :τ.A)

P :: x : ∀y :τA
P inputs an M : τ along x and then behaves as A{M/x}

Right rule: offer of service

Ψ, y :τ ; Γ ; ∆⇒

P :: x :

A

Ψ ; Γ ; ∆⇒

x(y).P :: x :

∀y :τ.A
∀R

Left rule: matching use of service

Ψ ` M : τ Ψ ; Γ ; ∆′,

x :

A{M/y} ⇒

Q :: z :

C

Ψ ; Γ ; ∆′,

x :

∀y :τ.A⇒

x〈M〉.Q :: z :

C
∀L

Proof reduction yields

(νx)(x(y).P | x〈M〉.Q)

−→

(νx)(P{M/y} | Q)

13 / 33

Term passing: input (∀y :τ.A)

P :: x : ∀y :τA
P inputs an M : τ along x and then behaves as A{M/x}

Right rule: offer of service

Ψ, y :τ ; Γ ; ∆⇒

P ::

x : A

Ψ ; Γ ; ∆⇒

x(y).P ::

x : ∀y :τ.A
∀R

Left rule: matching use of service

Ψ ` M : τ Ψ ; Γ ; ∆′,

x :

A{M/y} ⇒

Q :: z :

C

Ψ ; Γ ; ∆′,

x :

∀y :τ.A⇒

x〈M〉.Q :: z :

C
∀L

Proof reduction yields

(νx)(x(y).P | x〈M〉.Q)

−→

(νx)(P{M/y} | Q)

13 / 33

Term passing: input (∀y :τ.A)

P :: x : ∀y :τA
P inputs an M : τ along x and then behaves as A{M/x}

Right rule: offer of service

Ψ, y :τ ; Γ ; ∆⇒ P :: x : A

Ψ ; Γ ; ∆⇒ x(y).P :: x : ∀y :τ.A
∀R

Left rule: matching use of service

Ψ ` M : τ Ψ ; Γ ; ∆′,

x :

A{M/y} ⇒

Q :: z :

C

Ψ ; Γ ; ∆′,

x :

∀y :τ.A⇒

x〈M〉.Q :: z :

C
∀L

Proof reduction yields

(νx)(x(y).P | x〈M〉.Q)

−→

(νx)(P{M/y} | Q)

13 / 33

Term passing: input (∀y :τ.A)

P :: x : ∀y :τA
P inputs an M : τ along x and then behaves as A{M/x}

Right rule: offer of service

Ψ, y :τ ; Γ ; ∆⇒ P :: x : A

Ψ ; Γ ; ∆⇒ x(y).P :: x : ∀y :τ.A
∀R

Left rule: matching use of service

Ψ ` M : τ Ψ ; Γ ; ∆′, x :A{M/y} ⇒

Q ::

z : C

Ψ ; Γ ; ∆′, x :∀y :τ.A⇒

x〈M〉.Q ::

z : C
∀L

Proof reduction yields

(νx)(x(y).P | x〈M〉.Q)

−→

(νx)(P{M/y} | Q)

13 / 33

Term passing: input (∀y :τ.A)

P :: x : ∀y :τA
P inputs an M : τ along x and then behaves as A{M/x}

Right rule: offer of service

Ψ, y :τ ; Γ ; ∆⇒ P :: x : A

Ψ ; Γ ; ∆⇒ x(y).P :: x : ∀y :τ.A
∀R

Left rule: matching use of service

Ψ ` M : τ Ψ ; Γ ; ∆′, x :A{M/y} ⇒ Q :: z : C

Ψ ; Γ ; ∆′, x :∀y :τ.A⇒ x〈M〉.Q :: z : C
∀L

Proof reduction yields

(νx)(x(y).P | x〈M〉.Q)

−→

(νx)(P{M/y} | Q)

13 / 33

Term passing: input (∀y :τ.A)

P :: x : ∀y :τA
P inputs an M : τ along x and then behaves as A{M/x}

Right rule: offer of service

Ψ, y :τ ; Γ ; ∆⇒ P :: x : A

Ψ ; Γ ; ∆⇒ x(y).P :: x : ∀y :τ.A
∀R

Left rule: matching use of service

Ψ ` M : τ Ψ ; Γ ; ∆′, x :A{M/y} ⇒ Q :: z : C

Ψ ; Γ ; ∆′, x :∀y :τ.A⇒ x〈M〉.Q :: z : C
∀L

Proof reduction yields

(νx)(x(y).P | x〈M〉.Q) −→

(νx)(P{M/y} | Q)

13 / 33

Term passing: input (∀y :τ.A)

P :: x : ∀y :τA
P inputs an M : τ along x and then behaves as A{M/x}

Right rule: offer of service

Ψ, y :τ ; Γ ; ∆⇒ P :: x : A

Ψ ; Γ ; ∆⇒ x(y).P :: x : ∀y :τ.A
∀R

Left rule: matching use of service

Ψ ` M : τ Ψ ; Γ ; ∆′, x :A{M/y} ⇒ Q :: z : C

Ψ ; Γ ; ∆′, x :∀y :τ.A⇒ x〈M〉.Q :: z : C
∀L

Proof reduction yields

(νx)(x(y).P | x〈M〉.Q) −→ (νx)(P{M/y} | Q)

13 / 33

Term passing: other connectives

Quantified proposition as dependent session types

x : ∀y :τ.A Input an M : A along x and behave as A{M/y}
x : $τ (A Input an M : A along x and behave as A

x : ∃y :τ.A Output an M : A along x and behave as A{M/y}
x : $τ ⊗ A Output an M : A along x and behave as A

$τ (A as shorthand for ∀y :τ.A if y not free in A

$τ ⊗ A as shorthand for ∃y :τ.A if y not free in A

We will omit the ‘$’ for readability

14 / 33

Examples, carrying proofs

PDF indexing service

index1 : !(file(file⊗ 1)
index2 : !(∀f :file. pdf(f)(∃g :file. pdf(g)⊗ 1)

Persistently offer to input a file f , a proof that f is in
PDF format, then output a PDF file g , and a proof that
g is in PDF format and terminate the session.

Persistent file storage

store1 : !(file(!(file⊗ 1))
store2 : !(∀f :file. !∃g :file. g

.
= f ⊗ 1)

Persistently offer to input a file, then output a persistent
channel for retrieving this file and a proof that the two
are equal.

15 / 33

Outline

1 Session types for π-calculus

2 Dependent session types

3 Proof irrelevance

4 Affirmation and digital signatures

5 Conclusion

16 / 33

Proof irrelevance

In many examples, we want to know that proofs exist, but
we do not want to transmit them

We can easily check pdf(g) when using the indexing
service
The proof of g

.
= f (by reflexivity) would not be

informative

Use proof irrelevance in type theory

M : [τ] — M is a term of type τ that is computationally
irrelevant

17 / 33

Proof irrelevance: rules

Introduction and elimination

Ψ⊕ ` M : τ

Ψ ` [M] : [τ]
[]I

Ψ ` M : [τ] Ψ, x÷τ ` N : σ

Ψ ` let [x] = M in N : σ
[]E

Ψ⊕ promotes hypotheses x÷τ to x :τ

In examples, may use pattern matching instead of let

By agreement, terms [M] will be erased before
transmission

Typing guarantees this can be done consistently

18 / 33

Examples with proof irrelevance

Mark proofs as computationally irrelevant

PDF indexing service

index2 : !(∀f :file. pdf(f)(∃g :file. pdf(g)⊗ 1)

index3 : !(∀f :file. [pdf(f)](∃g :file. [pdf(g)]⊗ 1)

Persistent file storage

store2 : !(∀f :file. !∃g :file. g
.

= f ⊗ 1)

store3 : !(∀f :file. !∃g :file. [g
.

= f]⊗ 1)

After erasure, communication can be optimized further

19 / 33

Examples: affirming the existence of proofs

In the PDF indexing example, we may want to have some
evidence that g and f agree.

index4 : !(∀f :file. [pdf(f)]
(∃g :file. [pdf(g)]⊗ [agree(g , f)]⊗ 1)

agree(g , f) if g and f differ at most in the index

Since no proof is transmitted, client may require indexer
X ’s explicit affirmation (= digital signature)!

Similarly, in the persistent file storage example

20 / 33

Outline

1 Session types for π-calculus

2 Dependent session types

3 Proof irrelevance

4 Affirmation and digital signatures

5 Conclusion

21 / 33

Affirmation

Judgment M :K τ

Principal K affirms property τ due to evidence M.
Ψ ` M : τ

Ψ ` 〈M :τ〉K :K τ
(affirms)

Internalize judgment as proposition ♦Kτ

Ψ ` M :K τ

Ψ ` M : ♦Kτ
♦I

Ψ ` M : ♦Kτ Ψ, x :τ ` N :K σ

Ψ ` let 〈x :τ〉K = M in N :K σ
♦E

Note same principal K in premises and conclusion of ♦E

〈M :τ〉K can be realized by K ’s signature on M :τ

Assume some public key infrastructure

♦K is a K -indexed family of strong monads

22 / 33

Examples: affirmations

PDF indexing service, with indexer X

index5 : !(∀f :file. [pdf(f)]
(∃g :file. [pdf(g)]⊗ ♦X [agree(g , f)]⊗ 1)

Persistent file storage, with file system Y

store4 : !(∀f :file. !∃g :file.♦Y [g
.

= f]⊗ 1)

Idiom ♦K [τ] may transmit

〈[]:τ〉K , a certificate, digitally signed by K affirming τ
Some proof that [τ] follows from affirmations by K ,
according to the laws of ♦K

23 / 33

Example: a PDF compression service

A PDF compression service, with compressor C

compress : !(∀f :file. [pdf(f)]
(∃g :file. [pdf(g)]⊗ ♦C [approx(g , f)]⊗ 1)

A consolidator service: indexing and compression

ixc : !(∀f :file. [pdf(f)]
(∃g :file. [pdf(g)]⊗ ♦X♦C [approx(g , f)]⊗ 1)

Have to trust both X and C !

24 / 33

Example: consolidator implementation

Specification

ixc : !(∀f :file. [pdf(f)]
(∃g :file. [pdf(g)]⊗ ♦X♦C [approx(g , f)]⊗ 1)

Implementation

consolidator =
!ixc(a).a(f1).a([p1]).

(νb)index〈b〉.b〈f1〉.b〈[p1]〉.b(f2).b([p2]).b(q2).
(νc)compress〈c〉.c〈f2〉.c〈[p2]〉.c(f3).c([p3]).c(q3).

a〈f3〉.a〈[p3]〉.a〈comb q2 q3〉.0
Certificate types

q2 : ♦X [agree(f2, f1)]
q3 : ♦C [approx(f3, f2)]

comb q2 q3 : ♦C♦X [approx(f3, f1)]

25 / 33

Certificate combination

Certificate types

q2 : ♦X [agree(f2, f1)]
q3 : ♦C [approx(f3, f2)]

comb q2 q3 : ♦C♦X [approx(f3, f1)]

Proof

ida : agree(f2, f1)→ approx(f2, f1)
tra : approx(f3, f2)→ approx(f2, f1)→ approx(f3, f1)

comb q2 q3 =
let 〈[q′3]:[approx(f3, f2)]〉C = q3 in
〈let 〈[q′2]:[agree(f2, f1)]〉X = q2 in
〈[tra q′3 (ida q′2)]: 〉X : 〉C

26 / 33

Trust axioms

Affirmations track aspects of provenance and info. flow

“Diamonds are forever”
In general, 6` ♦K τ → τ
Need declassification

Trust axioms

For specific types τ and principals K :

trustK ,τ : ♦K τ → τ

Implementable, in general, by stripping signature

Omitted proofs [τ] cannot be recovered, in general

6` [τ]→ τ not implementable, in general
6` ♦K [τ]→ τ not implementable, in general

27 / 33

Example: mobile code

For sensitive documents we want to run indexing locally

Specification

index6 : !(♦X (Πf :file. [pdf(f)]
→ Σg :file. [pdf(g)]× [agree(g , f)])⊗ 1)

Service persistently offers a function for indexing

Cannot leak information since only process layer can
communicate

28 / 33

Example: electronic commerce

Signed certificates may have external meaning

Signed certificates may flow in both directions

indexu7 : !(♦u[pay(u,X , 1)]
((∀f :file. [pdf(f)]
(∃g :file. [pdf(g)]⊗ ♦X [agree(g , f)]⊗ 1))

Need to make principals more explicit?

Some experience in proof-carrying authorization

29 / 33

Outline

1 Session types for π-calculus

2 Dependent session types

3 Proof irrelevance

4 Affirmation and digital signatures

5 Conclusion

30 / 33

Summary

A Curry-Howard isomorphism

Linear propositions as session types
A(B (input), A⊗B (output), A&B (external choice)
A⊕ B (internal choice), !A (replication)
Sequent proofs as π-calculus processes
with a binary guarded choice and channel forwarding
Cut reduction as π-calculus reduction

Term-passing extension with a type theory

∀x :τ.A (term input), ∃x :τ.A (term output)

Additional type theory constructs

[τ] for proof irrelevance (not transmitted)
♦K τ for affirmations (evidenced by digital signatures)

31 / 33

Assessment

Strong basis in logic and type theory

Modular construction and extensibility
Integrated computation and reasoning

Uniform logical integration

Proofs (implicit or explicit)
Affirmations (implicit or explicit signatures)

Enable gradual integration of formal proofs in current
practice based on digital signatures?

32 / 33

Current and Future Work

Practical language design and implementation

Explicit spatial distribution, principals, and authorization
(with Jamie Morgenstern)

Interaction with databases
(with João Seco and OutSystems)

Reasoning about processes
(with Jorge Pérez and Henry DeYoung)

Observational equivalence via proof theory
Towards concurrent type theory

33 / 33

Summary

A Curry-Howard isomorphism

Linear propositions as session types
A(B (input), A⊗B (output), A&B (external choice)
A⊕ B (internal choice), !A (replication)
Sequent proofs as π-calculus processes
with a binary guarded choice and channel forwarding
Cut reduction as π-calculus reduction

Term-passing extension with a type theory

∀x :τ.A (term input), ∃x :τ.A (term output)

Additional type theory constructs

[τ] for proof irrelevance (not transmitted)
♦K τ for affirmations (evidenced by digital signatures)

34 / 33

