Proof-Carrying Code in a

Session-Typed Process Calculus

Frank Pfenning

with Luis Caires and Bernardo Toninho

Department of Computer Science
Carnegie Mellon University

1st International Conference on
Certified Programs and Proofs (CPP)
December 7, 2011

Why do we trust software?

Why do we trust software?

m We don't!

Why do we trust software?

m We don't!
m To the extent that we do, we rely on:

Why do we trust software?

m We don't!
m To the extent that we do, we rely on:

m Digital signatures (state-of-the-practice)
m Formal proof (state-of-the-art)

Why do we trust software?

m We don't!
m To the extent that we do, we rely on:

m Digital signatures (state-of-the-practice)
m Formal proof (state-of-the-art)

m Can we combine digital signatures and proofs?

Why do we trust software?

m We don't!
m To the extent that we do, we rely on:
m Digital signatures (state-of-the-practice)
m Formal proof (state-of-the-art)
m Can we combine digital signatures and proofs?

m Digital signatures are here to stay
m Proofs are here to stay

System Modeling and Security Properties

System Modeling and Security Properties

m Communicating processes

System Modeling and Security Properties

m Communicating processes
m Name-passing (mobile)
m Value-passing (applied)
m Proof-passing (proof-carrying)

System Modeling and Security Properties

m Communicating processes

m Name-passing (mobile)
m Value-passing (applied)
m Proof-passing (proof-carrying)

m Reason about process behavior

System Modeling and Security Properties

m Communicating processes

m Name-passing (mobile)

m Value-passing (applied)

m Proof-passing (proof-carrying)
m Reason about process behavior

m Deadlock-freedom

m Session fidelity

m Termination

System Modeling and Security Properties

m Communicating processes

m Name-passing (mobile)

m Value-passing (applied)

m Proof-passing (proof-carrying)
m Reason about process behavior

m Deadlock-freedom

m Session fidelity

m Termination

m Reason about values and proofs

System Modeling and Security Properties

m Communicating processes
m Name-passing (mobile)
m Value-passing (applied)
m Proof-passing (proof-carrying)
m Reason about process behavior
m Deadlock-freedom
m Session fidelity
m Termination
m Reason about values and proofs
m Types
m Correctness of proofs
m Validity of signatures

Approach

Approach

m Communicating processes

Approach

m Communicating processes
m Value-passing extension of m-calculus

Approach

m Communicating processes
m Value-passing extension of m-calculus

m Reason about process behavior [CONCUR'10]

Approach

m Communicating processes
m Value-passing extension of 7-calculus
m Reason about process behavior [CONCUR'10]

m Session types

m Curry-Howard isomorphism between
® Intuitionistic linear propositions and session types
B Sequent proofs and m-calculus processes
m Proof reduction and process reduction

Approach

m Communicating processes
m Value-passing extension of 7-calculus
m Reason about process behavior [CONCUR'10]

m Session types

m Curry-Howard isomorphism between
® Intuitionistic linear propositions and session types
B Sequent proofs and m-calculus processes
m Proof reduction and process reduction

m Reason about values and proofs

Approach

m Communicating processes
m Value-passing extension of m-calculus

m Reason about process behavior [CONCUR'10]
m Session types
m Curry-Howard isomorphism between

® Intuitionistic linear propositions and session types
B Sequent proofs and m-calculus processes
m Proof reduction and process reduction

m Reason about values and proofs
m Dependent session types [PPDP’'11]
m Terms and proofs from dependent type theory
m Add proof irrelevance (to avoid sending proofs)
m Add affirmation (to capture digital signatures)

Session types for m-calculus
Dependent session types

Proof irrelevance

Affirmation and digital signatures
Conclusion

Session types: judgment forms

m Judgment P::x: A
m Process P offers service A along channel x
m Linear sequent
XA X An = P ix A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A= A A, A= C
AN = C

m Identity as forwarding

A= A

Session types: judgment forms

m Judgment P::x: A
m Process P offers service A along channel x
m Linear sequent
XA X An = P ix A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A= x:A A xA= z:C
AN = z:C

cut

m Identity as forwarding

A= A

Session types: judgment forms

m Judgment P::x: A
m Process P offers service A along channel x
m Linear sequent
XA X An = P ix A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A=P:x:A AN xA=Q:z:C
AN = (vx)(P|]Q)uz:C

cut

m Identity as forwarding

A= A

Session types: judgment forms

m Judgment P::x: A
m Process P offers service A along channel x
m Linear sequent
XA X An = P ix A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A=P:x:A AN xA=Q:z:C
AN = (vx)(P|]Q)uz:C

cut

m Identity as forwarding

xX:A= z: A

Session types: judgment forms

m Judgment P::x: A
m Process P offers service A along channel x
m Linear sequent
XA X An = P ix A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A=P:x:A AN xA=Q:z:C
AN = (vx)(P|]Q)uz:C

cut

m Identity as forwarding

id
XA=[x<z|uz:A

Session types: input (A — B)

mP:x:A—oB
m P inputs an A along x and then behaves as B

m Right rule: offer of service

A A= B
A= A8 "
m Can reuse x, due to linearity
m Left rule: matching use of service
A= A A, B= C
AN, A—oB= ¢t

m Can reuse x, due to linearity
m Channel y must be new

Session types: input (A — B)

mP:x:A—oB
m P inputs an A along x and then behaves as B

m Right rule: offer of service

Ay:A= x:B
A= x:A—B

m Can reuse x, due to linearity

R

m Left rule: matching use of service

A= A A, B= C
AN, A—oB= C

m Can reuse x, due to linearity
m Channel y must be new

—oL

Session types: input (A — B)

mP:x:A—oB
m P inputs an A along x and then behaves as B
m Right rule: offer of service
AyA=P:x:B
—0
A=x(y)P:x:A—B

m Can reuse x, due to linearity

R

m Left rule: matching use of service

A= A A, B= C
AN, A—oB= C

m Can reuse x, due to linearity
m Channel y must be new

—oL

Session types: input (A — B)

mP:x:A—oB
m P inputs an A along x and then behaves as B
m Right rule: offer of service
AyA=P:x:B
—0
A=x(y)P:x:A—B

m Can reuse x, due to linearity

R

m Left rule: matching use of service
A= y:A A xB= z:C
AN x:A— B= z:C

m Can reuse x, due to linearity
m Channel y must be new

Session types: input (A — B)

mP:x:A—oB
m P inputs an A along x and then behaves as B
m Right rule: offer of service
AyA=P:x:B
—0
A=x(y)P:x:A—B

m Can reuse x, due to linearity

R

m Left rule: matching use of service
A=P:y:A AN xB=Q:z:C
AN x:A—o B= (vy)x(y)(P|Q):z:C

m Can reuse x, due to linearity
m Channel y must be new

—oL

Session types: reduction

m Proof reduction
A A= B A= A AQ,B:>C

AoA B N ALMABoC
A AL Ay = C
—
A=A AA=B
AN =B M oaBoC
A AL Ay = C
m Corresponding process reduction
A AL Ay = (vx)(x(y).Pr | (vw)(x(w).(P| Q) z: C
BN
A AL A = (vx)((vw) (P | Pr{w/y}) | Q) z: C

—ol

cut

cut

Session types: other connectives

m Linear propositions as session types

:A—o B Input a y:A along x and behave as B

:A® B Output a new y:A along x and behave as B
1 Terminate session on x

: A& B Offer choice between A and B along x
:A@ B Offer either A or B along x

1A Offer A persistently along x

T UV T TTTO

X X X X X X

m Sequent proofs as process expressions

m Proof reduction as process reduction

Two small examples

m PDF indexing service, version 1
index; : !(file —o file ® 1)

Persistently offer to input a file, then output a file and
terminate session. Intent: input PDF, output indexed
PDF for keyword search.

m Persistent file storage
store; : I(file —o I(file ® 1))

Persistently offer to input a file, then output a persistent
handle for retrieving this file. Intent: output file is the
same as input file.

10/33

Session types for m-calculus
Dependent session types

Proof irrelevance

Affirmation and digital signatures
Conclusion

11/33

m Types 7 from a (dependent) type theory
m Hypothetical judgment xy:7q, ..., xk: 7 EF M T
—_——

v
m Some example type constructors

MNx:7.0, 7 — o Functions from 7 to o
Yx:t.o, TXxo PairsofarTandac
nat Natural numbers

m Integrate into sequent calculus

v ; r ; A =Pux:A
~—~ ~—~ ~— —~—
term variables persistent channels linear channels linear

12/33

Term passing: input (Vy:7.A)

mPx:VyTA
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, I A= A
VR
V:[: A= Vy:7.A
m Left rule: matching use of service
VEM:7 V;T; A, AM/y} = C
VL
V.l A, Vyr.A= C

m Proof reduction yields

13/33

Term passing: input (Vy:7.A)

mPx:VyTA
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, I A= x: A

V:[: A= x:Vy:T.AVR
m Left rule: matching use of service
VEM:7 V;T; A, AM/y} = C
V.l A, Vyr.A= C vt

m Proof reduction yields

13/33

Term passing: input (Vy:7.A)

mPx:VyTA
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 V;T; A, AM/y} = C
V.l A, Vyr.A= C

VL

m Proof reduction yields

13/33

Term passing: input (Vy:7.A)

mPx:VyTA
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 V;T; A xA{M/y} = z:C
V.l A xVy1.A= z:C

VL

m Proof reduction yields

13/33

Term passing: input (Vy:7.A)

mPx:VyTA
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 VT, A xAM/y}=Q:z:C
V.l Al xVyr A= x(M).Q:z:C

VL

m Proof reduction yields

13/33

Term passing: input (Vy:7.A)

mPx:VyTA
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 VT, A xAM/y}=Q:z:C
V.l Al xVyr A= x(M).Q:z:C

VL

m Proof reduction yields

(x)(x(y).P | x(M).Q) —

13/33

Term passing: input (Vy:7.A)

mPx:VyTA
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 VT, A xAM/y}=Q:z:C
V.l Al xVyr A= x(M).Q:z:C

VL

m Proof reduction yields

(@x)(x(y)-P [x(M).Q) — (vx)(P{M/y} | Q)

13/33

Term passing: other connectives

m Quantified proposition as dependent session types
x:Vy:7.A Input an M : A along x and behave as A{M/y}
x:$7 — A Input an M : A along x and behave as A

x:3Jy:7. A Output an M : A along x and behave as A{M/y}
x:$7® A Output an M : A along x and behave as A

m $7 —o A as shorthand for Vy:7.A if y not free in A
m $7 ® A as shorthand for dy:7.A if y not free in A
m We will omit the ‘$’ for readability

14 /33

Examples, carrying proofs

m PDF indexing service

index; : I(file —o file® 1)
index, @ I(Vf:file. pdf(f) —o Jg:file. pdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in
PDF format, then output a PDF file g, and a proof that
g is in PDF format and terminate the session.

m Persistent file storage

store; : I(file —o I(file ® 1))
store, @ I(Vf:file.!3g:file. g = f ®1)

Persistently offer to input a file, then output a persistent
channel for retrieving this file and a proof that the two
are equal.

15/33

Session types for m-calculus
Dependent session types

Proof irrelevance

Affirmation and digital signatures
Conclusion

16/33

Proof irrelevance

m In many examples, we want to know that proofs exist, but
we do not want to transmit them

m We can easily check pdf(g) when using the indexing
service

m The proof of g = f (by reflexivity) would not be
informative

m Use proof irrelevance in type theory

m M:[r] — M is a term of type 7 that is computationally
irrelevant

17/33

Proof irrelevance: rules

m Introduction and elimination

VeEM: T VEM:[r] V,x:=7FN:o

vemn —————[IE
[M] : [7] Vilet[x]=MinN:o

VU® promotes hypotheses x+7 to x:7

In examples, may use pattern matching instead of let

By agreement, terms [M] will be erased before
transmission

Typing guarantees this can be done consistently

18/33

Examples with proof irrelevance

m Mark proofs as computationally irrelevant

m PDF indexing service

index, : (Vf:file. pdf(f) —o Jg:file. pdf(g) ® 1)
indexs @ !(Vfifile. [pdf(f)] —o Tg-file. [pdf(g)] 1)

m Persistent file storage

store; : l(Vf:file.!3g:file.g =f®1)
stores : I(Vf:file.!3g:file.[g = f]®1)

m After erasure, communication can be optimized further

19/33

Examples: affirming the existence of proofs

m In the PDF indexing example, we may want to have some
evidence that g and f agree.

indexq : 1(Vf:file. [pdf(f)]
—o Jg-file. [pdf(g)] ® [agree(g,)] ® 1)

agree(g, f) if g and f differ at most in the index

m Since no proof is transmitted, client may require indexer
X's explicit affirmation (= digital signature)!

m Similarly, in the persistent file storage example

20/33

Session types for m-calculus
Dependent session types

Proof irrelevance

Affirmation and digital signatures
Conclusion

21/33

m Judgment M i 7
m Principal K affirms property 7 due to evidence M.

ViEM:T ,
(affirms)
U <M:T>K KT

m Internalize judgment as proposition QxT

VEM:ir | VEM: Ot VU, x7EN:xo
VEM: Okt Vilet (xT)k =Min N :x o

m Note same principal K in premises and conclusion of QE
m (M:7)k can be realized by K's signature on M:7
m Assume some public key infrastructure

m Ok is a K-indexed family of strong monads

22 /33

Examples: affirmations

m PDF indexing service, with indexer X

indexs : |(Vf:file. [pdf(f)]
—o Jg:file. [pdf(g)] ® O x[agree(g,)] ® 1)

m Persistent file storage, with file system Y
storey : |(Vf:file. 13g:file. Oy [g = f]® 1)

m Idiom Qk[r] may transmit
m ([]:7)k, a certificate, digitally signed by K affirming 7
m Some proof that [7] follows from affirmations by K,
according to the laws of Ok

23/33

Example: a PDF compression service

m A PDF compression service, with compressor C

compress : (V£ file. [pdf(f)]
—o Jg-file. [pdf(g)] ® Oc[approx(g, f)] ® 1)

m A consolidator service: indexing and compression

ixc : 1(VF:file. [pdf(f)]
—o Jg-file. [pdf(g)] ® OxOclapprox(g,)] ® 1)

m Have to trust both X and C!

24/33

Example: consolidator implementation

m Specification
ixc : |(Vf:file. [pdf(f)]
—o Jg:file. [pdf(g)] ® OxOclapprox(g, f)] ® 1)
m Implementation

consolidator =
lixc(a).a(f1)-a([p1])-
(vb)index(b).b{f1).b([p1])-b(£).b([p2])-b(g2)-
(vc)compress(c).c(f).c([pa]).c(f).c([ps])-c(gs)-
a(fs).a{[ps]).a{comb g2 g3).0

m Certificate types
G : Oxlagree(f, f)]

g3 : Oclapprox(fs, f)]
combgo g3 : OCOX[aPPrOX(fa,fl)]

25/33

Certificate combination

m Certificate types

g : Oxlagree(f, f)]
gz = Oclapprox(fs, f)]
combgxqz : OcOx[approx(fs, f1)]

m Proof
ida : agree(fy, f,) — approx(f, f;)
tra : approx(fs,) — approx(fa, fi) — approx(fs, ;)

comb g, g3 =
let ([q3]:[approx(f3,)]) c = g3 in
(let ([qo]:[agree(f>, fi)])x = g2 in
([tra g3 (ida g3)]:-)x:-) ¢

26 /33

Trust axioms

m Affirmations track aspects of provenance and info. flow

m “Diamonds are forever”
m In general, Y Om — 7
m Need declassification

m Trust axioms
m For specific types 7 and principals K:

trustk » : OkT — T

m Implementable, in general, by stripping signature

m Omitted proofs [7] cannot be recovered, in general

Fr] — not implementable, in general
/ Ok[r] = 7 not implementable, in general

27 /33

Example: mobile code

m For sensitive documents we want to run indexing locally

m Specification

indexg : (O x (Mf:file. [pdf(f)]
— Y g:file. [pdf(g)] x [agree(g,)]) ® 1)

m Service persistently offers a function for indexing

m Cannot leak information since only process layer can
communicate

28/33

Example: electronic commerce

m Signed certificates may have external meaning

m Signed certificates may flow in both directions

index; : 1(Q,[pay(u, X, 1)]
—o (Vf:file. [pdf(f)]
—o Jgfile. [pdf(g)] @ Ox[agree(g, f)] @ 1))

m Need to make principals more explicit?

m Some experience in proof-carrying authorization

29/33

Session types for m-calculus
Dependent session types

Proof irrelevance

Affirmation and digital signatures

Conclusion

30/33

m A Curry-Howard isomorphism
m Linear propositions as session types
A —o B (input), A® B (output), A& B (external choice)
A @ B (internal choice), !A (replication)
m Sequent proofs as m-calculus processes
with a binary guarded choice and channel forwarding
m Cut reduction as mw-calculus reduction
m Term-passing extension with a type theory
m Vx:7.A (term input), 3x:7.A (term output)

m Additional type theory constructs
m [7] for proof irrelevance (not transmitted)
m Qi for affirmations (evidenced by digital signatures)

31/33

Assessment

m Strong basis in logic and type theory

m Modular construction and extensibility
m Integrated computation and reasoning

m Uniform logical integration
m Proofs (implicit or explicit)
m Affirmations (implicit or explicit signatures)
m Enable gradual integration of formal proofs in current
practice based on digital signatures?

32/33

Current and Future Work

m Practical language design and implementation

m Explicit spatial distribution, principals, and authorization
(with Jamie Morgenstern)

m Interaction with databases
(with Jodo Seco and OutSystems)

m Reasoning about processes
(with Jorge Pérez and Henry DeYoung)

m Observational equivalence via proof theory
m Towards concurrent type theory

33/33

m A Curry-Howard isomorphism
m Linear propositions as session types
A —o B (input), A® B (output), A& B (external choice)
A @ B (internal choice), !A (replication)
m Sequent proofs as m-calculus processes
with a binary guarded choice and channel forwarding
m Cut reduction as mw-calculus reduction
m Term-passing extension with a type theory
m Vx:7.A (term input), 3x:7.A (term output)

m Additional type theory constructs
m [7] for proof irrelevance (not transmitted)
m Qi for affirmations (evidenced by digital signatures)

34/33

