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Why do we trust software?

m We don't!
m To the extent that we do, we rely on:
m Digital signatures (state-of-the-practice)
m Formal proof (state-of-the-art)
m Can we combine digital signatures and proofs?

m Digital signatures are here to stay
m Proofs are here to stay
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System Modeling and Security Properties

m Communicating processes
m Name-passing (mobile)
m Value-passing (applied)
m Proof-passing (proof-carrying)
m Reason about process behavior
m Deadlock-freedom
m Session fidelity
m Termination
m Reason about values and proofs
m Types
m Correctness of proofs
m Validity of signatures
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Approach

m Communicating processes
m Value-passing extension of m-calculus

m Reason about process behavior [CONCUR'10]
m Session types
m Curry-Howard isomorphism between

® Intuitionistic linear propositions and session types
B Sequent proofs and m-calculus processes
m Proof reduction and process reduction

m Reason about values and proofs
m Dependent session types [PPDP’'11]
m Terms and proofs from dependent type theory
m Add proof irrelevance (to avoid sending proofs)
m Add affirmation (to capture digital signatures)
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Conclusion
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Session types: judgment forms

m Judgment P::x: A
m Process P offers service A along channel x
m Linear sequent
XA X An = P ix A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A=P:x:A AN xA=Q:z:C
AN = (vx)(P|]Q)uz:C

cut

m Identity as forwarding

id
XA=[x<z|uz:A
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m Can reuse x, due to linearity

R

m Left rule: matching use of service
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Session types: reduction

m Proof reduction
A A= B A= A AQ,B:>C

AoA B N ALMABoC
A AL Ay = C
—
A=A AA=B
AN =B M oaBoC
A AL Ay = C
m Corresponding process reduction
A AL Ay = (vx)(x(y).Pr | (vw)(x(w).(P| Q) z: C
BN
A AL A = (vx)((vw) (P | Pr{w/y}) | Q) z: C

—ol

cut

cut



Session types: other connectives

m Linear propositions as session types

:A—o B Input a y:A along x and behave as B

:A® B Output a new y:A along x and behave as B
1 Terminate session on x

: A& B Offer choice between A and B along x
:A@ B Offer either A or B along x

1A Offer A persistently along x

T UV T TTTO

X X X X X X

m Sequent proofs as process expressions

m Proof reduction as process reduction



Two small examples

m PDF indexing service, version 1
index; : !(file —o file ® 1)

Persistently offer to input a file, then output a file and
terminate session. Intent: input PDF, output indexed
PDF for keyword search.

m Persistent file storage
store; : I(file —o I(file ® 1))

Persistently offer to input a file, then output a persistent
handle for retrieving this file. Intent: output file is the
same as input file.
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m Types 7 from a (dependent) type theory
m Hypothetical judgment xy:7q, ..., xk: 7 EF M T
—_——

v
m Some example type constructors

MNx:7.0, 7 — o Functions from 7 to o
Yx:t.o, TXxo PairsofarTandac
nat Natural numbers

m Integrate into sequent calculus

v ; r ; A =Pux:A
~—~ ~—~ ~— —~—
term variables persistent channels linear channels linear
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mPx:VyTA
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, I A= A
VR
V:[: A= Vy:7.A
m Left rule: matching use of service
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Term passing: input (Vy:7.A)

mPx:VyTA
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 VT, A xAM/y}=Q:z:C
V.l Al xVyr A= x(M).Q:z:C

VL

m Proof reduction yields

(@x)(x(y)-P [ x(M).Q) — (vx)(P{M/y} | Q)
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Term passing: other connectives

m Quantified proposition as dependent session types
x:Vy:7.A  Input an M : A along x and behave as A{M/y}
x:$7 — A Input an M : A along x and behave as A

x:3Jy:7. A Output an M : A along x and behave as A{M/y}
x:$7® A  Output an M : A along x and behave as A

m $7 —o A as shorthand for Vy:7.A if y not free in A
m $7 ® A as shorthand for dy:7.A if y not free in A
m We will omit the ‘$’ for readability

14 /33



Examples, carrying proofs

m PDF indexing service

index; : I(file —o file® 1)
index, @ I(Vf:file. pdf(f) —o Jg:file. pdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in
PDF format, then output a PDF file g, and a proof that
g is in PDF format and terminate the session.

m Persistent file storage

store; : I(file —o I(file ® 1))
store, @ I(Vf:file.!3g:file. g = f ®1)

Persistently offer to input a file, then output a persistent
channel for retrieving this file and a proof that the two
are equal.
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Proof irrelevance

m In many examples, we want to know that proofs exist, but
we do not want to transmit them

m We can easily check pdf(g) when using the indexing
service

m The proof of g = f (by reflexivity) would not be
informative

m Use proof irrelevance in type theory

m M:[r] — M is a term of type 7 that is computationally
irrelevant

17/33



Proof irrelevance: rules

m Introduction and elimination

VeEM: T VEM:[r] V,x:=7FN:o

vemn —————[IE
[M] : [7] Vilet[x]=MinN:o

VU® promotes hypotheses x+7 to x:7

In examples, may use pattern matching instead of let

By agreement, terms [M] will be erased before
transmission

Typing guarantees this can be done consistently

18/33



Examples with proof irrelevance

m Mark proofs as computationally irrelevant

m PDF indexing service

index, : (Vf:file. pdf(f) —o Jg:file. pdf(g) ® 1)
indexs @ !(Vfifile. [pdf(f)] —o Tg-file. [pdf(g)] 1)

m Persistent file storage

store; : l(Vf:file.!3g:file.g =f®1)
stores : I(Vf:file.!3g:file.[g = f]®1)

m After erasure, communication can be optimized further

19/33



Examples: affirming the existence of proofs

m In the PDF indexing example, we may want to have some
evidence that g and f agree.

indexq : 1(Vf:file. [pdf(f)]
—o Jg-file. [pdf(g)] ® [agree(g, )] ® 1)

agree(g, f) if g and f differ at most in the index

m Since no proof is transmitted, client may require indexer
X's explicit affirmation (= digital signature)!

m Similarly, in the persistent file storage example

20/33
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m Judgment M i 7
m Principal K affirms property 7 due to evidence M.

ViEM:T ,
(affirms)
U <M:T>K KT

m Internalize judgment as proposition QxT

VEM:ir | VEM: Ot VU, x7EN:xo
VEM: Okt Vilet (xT)k =Min N :x o

m Note same principal K in premises and conclusion of QE
m (M:7)k can be realized by K's signature on M:7
m Assume some public key infrastructure

m Ok is a K-indexed family of strong monads

22 /33



Examples: affirmations

m PDF indexing service, with indexer X

indexs : |(Vf:file. [pdf(f)]
—o Jg:file. [pdf(g)] ® O x[agree(g, )] ® 1)

m Persistent file storage, with file system Y
storey : |(Vf:file. 13g:file. Oy [g = f]® 1)

m Idiom Qk[r] may transmit
m ([]:7)k, a certificate, digitally signed by K affirming 7
m Some proof that [7] follows from affirmations by K,
according to the laws of Ok

23/33



Example: a PDF compression service

m A PDF compression service, with compressor C

compress : (V£ file. [pdf(f)]
—o Jg-file. [pdf(g)] ® Oc[approx(g, f)] ® 1)

m A consolidator service: indexing and compression

ixc : 1(VF:file. [pdf(f)]
—o Jg-file. [pdf(g)] ® OxOclapprox(g, )] ® 1)

m Have to trust both X and C!
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Example: consolidator implementation

m Specification
ixc : |(Vf:file. [pdf(f)]
—o Jg:file. [pdf(g)] ® OxOclapprox(g, f)] ® 1)
m Implementation

consolidator =
lixc(a).a(f1)-a([p1])-
(vb)index(b).b{f1).b([p1])-b(£).b([p2])-b(g2)-
(vc)compress(c).c(f).c([pa]).c(f).c([ps])-c(gs)-
a(fs).a{[ps]).a{comb g2 g3).0

m Certificate types
G : Oxlagree(f, f)]

g3 : Oclapprox(fs, f)]
combgo g3 : OCOX[aPPrOX(fa,fl)]

25/33



Certificate combination

m Certificate types

g : Oxlagree(f, f)]
gz = Oclapprox(fs, f)]
combgxqz : OcOx[approx(fs, f1)]

m Proof
ida : agree(fy, f,) — approx(f, f;)
tra : approx(fs, ) — approx(fa, fi) — approx(fs, ;)

comb g, g3 =
let ([q3]:[approx(f3, )]) c = g3 in
(let ([qo]:[agree(f>, fi)])x = g2 in
([tra g3 (ida g3)]:-)x:-) ¢
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Trust axioms

m Affirmations track aspects of provenance and info. flow

m “Diamonds are forever”
m In general, Y Om — 7
m Need declassification

m Trust axioms
m For specific types 7 and principals K:

trustk » : OkT — T

m Implementable, in general, by stripping signature

m Omitted proofs [7] cannot be recovered, in general

Fr] — not implementable, in general
/ Ok[r] = 7 not implementable, in general
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Example: mobile code

m For sensitive documents we want to run indexing locally

m Specification

indexg : (O x (Mf:file. [pdf(f)]
— Y g:file. [pdf(g)] x [agree(g, )]) ® 1)

m Service persistently offers a function for indexing

m Cannot leak information since only process layer can
communicate
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Example: electronic commerce

m Signed certificates may have external meaning

m Signed certificates may flow in both directions

index; : 1(Q,[pay(u, X, 1)]
—o (Vf:file. [pdf(f)]
—o Jgfile. [pdf(g)] @ Ox[agree(g, f)] @ 1))

m Need to make principals more explicit?

m Some experience in proof-carrying authorization
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m A Curry-Howard isomorphism
m Linear propositions as session types
A —o B (input), A® B (output), A& B (external choice)
A @ B (internal choice), !A (replication)
m Sequent proofs as m-calculus processes
with a binary guarded choice and channel forwarding
m Cut reduction as mw-calculus reduction
m Term-passing extension with a type theory
m Vx:7.A (term input), 3x:7.A (term output)

m Additional type theory constructs
m [7] for proof irrelevance (not transmitted)
m Qi for affirmations (evidenced by digital signatures)
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Assessment

m Strong basis in logic and type theory

m Modular construction and extensibility
m Integrated computation and reasoning

m Uniform logical integration
m Proofs (implicit or explicit)
m Affirmations (implicit or explicit signatures)
m Enable gradual integration of formal proofs in current
practice based on digital signatures?
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Current and Future Work

m Practical language design and implementation

m Explicit spatial distribution, principals, and authorization
(with Jamie Morgenstern)

m Interaction with databases
(with Jodo Seco and OutSystems)

m Reasoning about processes
(with Jorge Pérez and Henry DeYoung)

m Observational equivalence via proof theory
m Towards concurrent type theory
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