
Programming Languages Overview
Frank Pfenning

Carnegie Mellon University

Computer Science Open House

March 2004

CMU CSD Open House, Mar 2004 – p.1

PL Research at CMU

• The Principles of Programming (POP) group
• Members
• Research projects
• Course offerings

• Project samplers (subjective selection!)
• ConCert : Language Technology for Trustless

Software Dissemination
• Triple: Type Refinement in Programming

Languages
• Twelf : Logical and Meta-Logical Frameworks

CMU CSD Open House, Mar 2004 – p.2

Core Members

• Stephen Brookes, concurrency
• Karl Crary, certified code, typed compilation
• Robert Harper, certifying compilation, logical

frameworks, module systems, type refinement
• Peter Lee, proof-carrying code, compilers
• Frank Pfenning, logical frameworks, automated

theorem proving, type refinement
• John Reynolds, imperative programming,

reasoning about low-level languages
• Dana Scott (retd. May’03)

CMU CSD Open House, Mar 2004 – p.3

POP and Software Engineering

• Jonathan Aldrich (ISRI), language techniques in
software engineering

• Ed Clarke, hardware and software verification,
model checking

• David Garlan, software architecture
• Mike Reiter (ECE/CS), security
• Bill Scherlis (ISRI), software dependability
• Dawn Song (ECE/CS), security
• Jeannette Wing, software specification and

verification, security
CMU CSD Open House, Mar 2004 – p.4

POP and Theory

• Peter Andrews (Math), automated theorem
proving, higher-order logic

• Jeremy Avigad (Phil), theory of computation
• Steven Awodey (Phil), category theory
• Guy Blelloch, algorithms, parallelism, scientific

computation
• Multidisciplinary program

Pure and Applied Logic
(Computer Science, Philosophy, Mathematics)
http://www.cs.cmu.edu/˜pal

CMU CSD Open House, Mar 2004 – p.5

More Project Samplers

• Claytronics (Seth Goldstein, Todd Mowry, et al.,
see separate talk)

• Self-Adjusting Computation (Guy Blelloch, Bob
Harper)

• Separation Logic (John Reynolds)
• ArchJava (Jonathan Aldrich)
• Proof-Carrying Authorization (Lujo Bauer, Frank

Pfenning, Mike Reiter)
• Model-Checking (Ed Clarke, Jeannette Wing)

CMU CSD Open House, Mar 2004 – p.6

Some Recent Graduates

• Andrej Bauer, University of Ljubljana
• Lars Birkedal, IT University of Copenhagen
• Perry Cheng, IBM Research
• Alberto Momigliano (Phil), University of Edinburgh

[postdoc]
• Robert OCallahan, IBM Research
• George Necula, Berkeley
• Gerald Penn (LTI), University of Toronto

CMU CSD Open House, Mar 2004 – p.7

More Recent Graduates

• Brigitte Pientka, McGill University
• Jeff Polakow, University of Edinburgh [postdoc]
• Carsten Schuermann, Yale
• Chris Stone, Harvey Mudd College
• Roberto Virga (Math), Princeton [postdoc]
• HongWei Xi (Math), Boston University

CMU CSD Open House, Mar 2004 – p.8

Some Course Offerings

• 15-714∗ Type Systems (Harper/Fa04)
• 15-812∗ Semantics (Brookes/S04)
• 15-819 Advanced Topics in PL

• Type Refinement (Harper/Fa03)
• Reasoning about Low-Level Languages

(Reynolds/Sp02,Sp04)
• Advanced Module Systems (Harper/Fa02)
• Concurrency and Mobility (Harper/Sp02)

CMU CSD Open House, Mar 2004 – p.9

More Course Offerings

• 15-851 Computation and Deduction (Crary/F04)
• 15-815 Automated Theorem Proving

(Pfenning/Sp04)
• 15-816 Linear Logic (Pfenning/Fa01)

CMU CSD Open House, Mar 2004 – p.10

Factors in Programmer Productivity

• Programmer productivity
• Initial development time
• Program correctness and robustness
• Software maintainability

• Crucial factors
• Programming language(s)
• Development environment
• Software engineering practices

CMU CSD Open House, Mar 2004 – p.11

Language Is Critical

• How do we implement data structures?
• How do we design and structure the code?
• How do we express assumptions and guarantees?
• How do we read and analyze a program?

CMU CSD Open House, Mar 2004 – p.12

Two Quotes

An ideal language allows us to express easily what is
useful for the programming task and at the same time
makes it difficult to write what leads to incomprehensible
or incorrect programs.

—Nico Habermann

Good languages make it easier to establish, verify, and
maintain the relationship between code and its
properties. —Robert Harper

CMU CSD Open House, Mar 2004 – p.13

Too Many Languages?

• In the last three years I have written code in at
least the following languages:

Standard ML Emacs Lisp Twelf PHP
TeX Csh C MySQL
Perl Java CML

• Different languages for different purposes
• Many are poorly designed

• Those authors did not graduate from CMU!
• Your favorite mis-feature?

CMU CSD Open House, Mar 2004 – p.14

Language Evaluation Criteria

• Some objective criteria
• Is the grammar LALR(1)?
• Is the language type-safe?
• Is the language dynamically or statically typed?
• Is the language Turing-complete?
• Is the language call-by-value or call-by-name?
• Is the language completely specified?
• Does the language require a heap?
• Does the language require dynamic dispatch?

• A subjective statement: “(I ((like Lisp)) (syntax))”
CMU CSD Open House, Mar 2004 – p.15

From the Perl Manual

When presented with something that might have several
different interpretations, Perl uses the DWIM (that’s ”Do
What I Mean”) principle to pick the most probable
interpretation. This strategy is so successful that Perl
programmers often do not suspect the ambivalence of
what they write. But from time to time, Perl’s notions
differ substantially from what the author honestly meant.

CMU CSD Open House, Mar 2004 – p.16

From the TEX manual

Please don’t read this material until you’ve had plenty of
experience with plain TEX. After you have read and
understood the secrets below, you’ll know all sort of
devious combinations of TEX commands, and you will
often be tempted to write inscrutable macros.

—Donald E. Knuth

CMU CSD Open House, Mar 2004 – p.17

Some Obfuscated TEX Code

\let˜\catcode˜‘76˜‘A13˜‘F1˜‘j00˜‘P2jdefA71F˜‘7113jdefPALLF

PA’’FwPA;;FPAZZFLaLPA//71F71iPAHHFLPAzzFenPASSFthP;A$$FevP

A@@FfPARR717273F737271P;ADDFRgniPAWW71FPATTFvePA**FstRsamP

AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA&&71jfi

Fjfi71PAVVFjbigskipRPWGAUU71727374 75,76Fjpar71727375Djifx

:76jelse&U76jfiPLAKK7172F71l7271PAXX71FVLnOSeL71SLRyadR@oL

RrhC?yLRurtKFeLPFovPgaTLtReRomL;PABB71 72,73:Fjif.73.jelse

B73:jfiXF71PU71 72,73:PWs;AMM71F71diPAJJFRdriPAQQFRsreLPAI

I71Fo71dPA!!FRgiePBt’el@ lTLqdrYmu.Q.,Ke;vz vzLqpip.Q.,tz;

;Lql.IrsZ.eap,qn.i. i.eLlMaesLdRcna,;!;h htLqm.MRasZ.ilk,%

s$;z zLqs’.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW,@;G

LcYlaDLbJsW,SWXJW ree @rzchLhzsW,;WERcesInW qt.’oL.Rtrul;e

doTsW,Wk;Rri@stW aHAHHFndZPpqar.tridgeLinZpe.LtYer.W,:jbye

CMU CSD Open House, Mar 2004 – p.18

Science of Programming Languages

• There is an established science of programming
languages. Among its first papers:

“Some Properties of Conversion”, Alonzo
Church and J.B. Rosser, Transactions of the
American Mathematical Society, Vol. 39(3),
pp. 472–482, May 1936.

CMU CSD Open House, Mar 2004 – p.19

Basic Tools

• Type theory: Techniques for structuring
languages to ensure safety and modularity of
programs

• Operational semantics: Techniques for
describing the execution behavior of programs, at
various level of abstraction

• Mathematical logic: Techniques for specifying
and verifying programs

CMU CSD Open House, Mar 2004 – p.20

ConCert

• Language Technology for Trustless Software
Dissemination (NSF ITR)

• Faculty: Karl Crary, Robert Harper, Peter Lee,
Frank Pfenning

• Students: Tom Murphy, Joe Vanderwaart, Leaf
Petersen, Aleksey Kliger, Andrew Bernard, . . .

• Idea: reliable and secure grid computing via
certified code

• http://www.cs.cmu.edu/˜concert

CMU CSD Open House, Mar 2004 – p.21

Twelf

• Logical and Meta-Logical Frameworks (NSF GSC)
• Faculty: Frank Pfenning
• Students: Kevin Watkins, Jason Reed, Kaustuv

Chaudhuri
• Idea: formal meta-language for specifying and

reasoning about logics and programming
languages

• http://www.cs.cmu.edu/˜twelf

CMU CSD Open House, Mar 2004 – p.22

Triple

• Type Refinement in Programming Languages
(NSF SEL)

• Faculty: Robert Harper, Frank Pfenning
• Students: Joshua Dunfield
• Idea: catching more programming errors at

compile time via refined type analysis
• http://www.cs.cmu.edu/˜triple

CMU CSD Open House, Mar 2004 – p.23

Summary: The POP Group

• is a close group of teachers and researchers with
common values

• touches software engineering, formal methods,
and theory

• proves theorems and builds systems
• welcomes new students
• has the best squash players on campus

CMU CSD Open House, Mar 2004 – p.24

	PL Research at CMU
	Core Members
	POP and Software Engineering
	POP and Theory
	More Project Samplers
	Some Recent Graduates
	More Recent Graduates
	Some Course Offerings
	More Course Offerings
	Factors in Programmer Productivity
	Language Is Critical
	Two Quotes
	Too Many Languages?
	Language Evaluation Criteria
	From the Perl Manual
	From the TeX manual
	Some Obfuscated TeX Code
	Science of Programming Languages
	Basic Tools
	ConCert
	Twelf
	Triple
	Summary: The POP Group

