Programming L anguages Overview

Frank Pfenning

Carnegie Mellon University

Computer Science Immigration Course
August 2003

I Beforel Forget ...

¢ Squash community at CMU!
Squash ladder; intramurals

e Squash community in Pittsburgh (PSRA)
Three major annual tournaments
Two squash pros

 Links from my home page (or send me mail)

|

| PL Research at CMU

e The Principles of Programming (POP) group
Members
Research projects
Course offerings

* Project samplers (subjective selection!)

ConCert: Language Technology for Trustless
Software Dissemination

Triple: Type Refinement in Programming
Languages

Twelf: Logical and Meta-Logical Frameworks I

| Core Members

« Stephen Brookes, concurrency
« Karl Crary, certified code, typed compilation

* Robert Harper, certifying compilation, logical
frameworks, module systems, type refinement

* Peter Lee, proof-carrying code, compilers

* Frank Pfenning, logical frameworks, automated
theorem proving, type refinement

« John Reynolds, imperative programming,
reasoning about low-level languages

e Dana Scott (retd. May’'03) I

POP and Software Engineering

« Jonathan Aldrich (ISRI), language techniques in
software engineering

e Ed Clarke, hardware and software verification,
model checking

« David Garlan, software architecture

 Bill Scherlis (ISRI), software dependability
 Dawn Song (ECE/CS), security

« Jeannette Wing, software specification and

verification, security I

I POP and Theory

* Peter Andrews (Math), automated theorem
proving, higher-order logic

« Jeremy Avigad (Phil), theory of computation
« Steven Awodey (Phil), category theory

» Guy Blelloch, algorithms, parallelism, scientific
computation

« Multidisciplinary program
Pure and Applied Logic
(Computer Science, Philosophy, Mathematics)

http://www.cs.cmu.edu/ pal I

| Some Recent Graduates

« Andre] Bauer, University of Ljubljana
 Lars Birkedal, IT University of Copenhagen
* Perry Cheng, IBM Research

« Alberto Momigliano (Phil), University of Edinburgh
[postdoc]

* Robert OCallahan, IBM Research
« George Necula, Berkeley
e Gerald Penn (LTI), University of Toronto

|

| More Recent Graduates

 Brigitte Pientka, McGill University

 Jeff Polakow, University of Edinburgh [postdoc]
« Carsten Schuermann, Yale

« Chris Stone, Harvey Mudd College

* Roberto Virga (Math), Princeton [postdoc]

 HongWel Xi (Math), Boston University [postdoc]

|

| Some Cour se Offerings

e 15-714" Type Systems (Crary/Fa03)
« 15-812* Semantics (Brookes/S04)

« 15-819 Advanced Topics in PL
Type Refinement (Harper/Fa03)

Reasoning about Low-Level Languages
(Reynolds/Sp02,5p04)

Advanced Module Systems (Harper/Fa02)
Concurrency and Mobility (Harper/Sp02)

|

I More Cour se Offerings

« 15-815 Automated Theorem Proving
(Pfenning/Sp04)

« 15-851 Computation and Deduction
(Pfenning/Sp01)

e 15-816 Linear Logic (Pfenning/Fa01)

|

I Factorsin Programmer Productivity

* Programmer productivity
Initial development time
Program correctness and robustness
Software maintainability

 Crucial factors
Programming language(s)
Development environment
Software engineering practices

|

I L anguage Is Critical

 How do we implement data structures?
 How do we design and structure the code?
 How do we express assumptions and guarantees?

 How do we read and analyze a program?

|

| Two Quotes

An ideal language allows us to express easily what is
useful for the programming task and at the same time
makes it difficult to write what leads to incomprehensible
or incorrect programs.

—Nico Habermann

Good languages make it easier to establish, verify, and
maintain the relationship between code and its

properties. —Robert Harper

B

I Too Many L anguages?

* In the last three years | have written code in at
least the following languages:

Standard ML Emacs Lisp Twelf
TeX Csh C
Per] Java CML

 Different languages for different purposes

« Many are poorly designed
Those authors did not graduate from CMU!

Your favorite mis-feature? I

L anguage Evaluation Criteria

¢ Some objective criteria

s the grammar LALR(1)?

s the language type-safe?

s the language dynamically or statically typed?
s the language Turing-complete?

s the language call-by-value or call-by-name?
s the language completely specified?

Does the language require a heap?

Does the language require dynamic dispatch?

A subjective statement: “(I ((like Lisp)) (syntax))” I

| From the Perl M anual

When presented with something that might have several
different interpretations, Perl uses the DWIM (that’s "Do
What | Mean”) principle to pick the most probable
Interpretation. This strategy is so successful that Perl
programmers often do not suspect the ambivalence of
what they write. But from time to time, Perl’s notions
differ substantially from what the author honestly meant.

|

I From the TEX manual

Please don’t read this material until you've had plenty of
experience with plain TeX. After you have read and
understood the secrets below, you’ll know all sort of
devious combinations of TeX commands, and you will

often be tempted to write inscrutable macros.
—Donald E. Knuth

|

Some Obfuscated TeX Code

\let™"\catcode™ “767 “A13"“F1™“jJ00™ “P2jdefA71F “7113jdefPALLF
PA””FwPA; ; FPAZZFLaLPA//71F711PAHHFLPAZzZFenPASSFthP ; A3$FevP
AQ@FFPARR717273F737271P ; ADDFRgNi1PAWN71FPATTFvePA**FstRsamP
AGGFRruoPAqqQ71.72.F717271PAYY7172F727171PA??F1*LmPA&&71jTi
FJF171PAVVFIbigskipRPWGAUU71727374 75,76F)jpar71727375D) 1fx
:76)else&U76) FIPLAKK7172F7117271PAXX71FVLNOSeL71SLRyadR@oL
RrhC?yLRurtKFeLPFovPgaTLtReRomL ; PABB71 72,73:Fjif.73.jelse
B73:JFiXF71PU71 72,73:PWs; AMM71F71di1PAJIFRdri1PAQQFRsrelLPAl
171Fo71dPAITFRg1ePBt’el@ ITLgdrYmu.Q.,Ke;vz vzLgpip.Q.,tz;
;Lgl.lrsZ.eap,gn.i. i1.eLIMaesLdRcna, ;!;h htLgm.MRasZ.ilk,%
s$;z zLgs’.ansZ.Ymi,/sx ;LYegseZRyal,@i1;@ TLRlogdLrDsW,@;G
LcYlaDLbJsW,SWXJW ree @rzchLhzsW, ;WERcesInW gt.’oL.Rtrul;e
doTsW,Wk;Rri@stW aHAHHFndZPpqgar.tridgeLinZpe.LtYer.W, - jbye

| Science of Programming L anguages

e There Is an established science of programming
languages. Among its first papers:

“*Some Properties of Conversion”, Alonzo
Church and J.B. Rosser, Transactions of the
American Mathematical Society, Vol. 39(3),
pp. 472—482, May 1930.

|

| Basic Tools

» Type theory: Techniques for structuring
languages to ensure safety and modularity of
programs

e Operational semantics: Technigues for
describing the execution behavior of programs, at
various level of abstraction

 Mathematical logic: Technigues for specifying

and verifying programs

| ConCert

e Language Technology for Trustless Software
Dissemination (NSF ITR)

 Faculty: Karl Crary, Robert Harper, Peter Lee,
—-rank Pfenning

e Students: Tom Murphy, Joe Vanderwaart, Leaf
Petersen, Aleksey Kliger, Andrew Bernard, . ..

 Idea: reliable and secure grid computing via
certified code

e http://www.cs.cmu.edu/ concert

|

| Twelf

* Logical and Meta-Logical Frameworks (NSF GSC)
 Faculty: Frank Pfenning

o Students: Kevin Watkins, Jason Reed, Kaustuv
Chaudhuri

 ldea: formal meta-language for specifying and
reasoning about logics and programming
languages

e http://www.cs.cmu.edu/ twelf

|

I Triple

« Type Refinement in Programming Languages
(NSF SEL)

 Faculty: Robert Harper, Frank Pfenning
« Students: Joshua Dunfield, Donna Malayer!

 Idea: catching more programming errors at
compile time via refined type analysis

e http://www.cs.cmu.edu/ triple

|

| Summary: The POP Group

* IS a close group of teachers and researchers with
common values

 touches software engineering, formal methods,
and theory

 proves theorems and builds systems
« welcomes new students
 has the best squash players on campus

1

	Before I Forget $ldots $
	PL Research at CMU
	Core Members
	POP and Software Engineering
	POP and Theory
	Some Recent Graduates
	More Recent Graduates
	Some Course Offerings
	More Course Offerings
	Factors in Programmer Productivity
	Language Is Critical
	Two Quotes
	Too Many Languages?
	Language Evaluation Criteria
	From the Perl Manual
	From the TeX manual
	Some Obfuscated TeX Code
	Science of Programming Languages
	Basic Tools
	ConCert
	Twelf
	Triple
	Summary: The POP Group

