Optimizing Higher-Order
Pattern Unification

Brigitte Pientka and Frank Pfenning

Carnegie Mellon University

CADE-19, Miami Beach, Florida, August 2003

CADE-19, Aug 2003 — p.1

I Logical Frameworks

 Logical frameworks: meta-languages for
deductive systems

High-level specifications (e.g. logics, type systems)
Direct implementations (e.g. proof search, type checking)

Feasible meta-reasoning (e.g. cut elimination, type
preservation)

« Examples: AProlog, Isabelle, Twelf
« Results may apply to other higher-order systems

(e.g. Coqg, HOL, NuPrl, PVS)

CADE-19, Aug 2003 — p.2

I Higher-Order Unification

e Higher-order unification: solving equations in the
presence of A-abstraction

« Central in higher-order logic and type theories
General proof search
Logic program execution
Type and term reconstruction

Definitional reflection and case analysis

» Undecidable for second order [Huet'73] [Goldfarb’81]

|

CADE-19, Aug 2003 — p.3

| Tractable Cases

* Pre-unification often practical [Huet'75]
Some solvable equations are postponed

Non-determinism major drawback in practice

» Pattern unification decidable [Miller91]
Restricting g-reduction to Gy: (A\e. M)y — |y/z|M
Most general unifiers exist!

Extends to complex type theories [Pf'91]
Higher-order patterns as a calculus of variable binding,

variable occurrences, and renaming

CADE-19, Aug 2003 — p.4

I Implementation

* In practice, G, often too weak [Michaylov & Pf'92]
* Implementation based on constraints

Solve all pattern equations
Postpone all other equations

« Many equations (= 95%) essentially first-order
 First-order equations with first-order efficiency?

|

CADE-19, Aug 2003 — p.5

| Outline

A logical foundation for meta-variables
e Techniques for efficient implementation
« Experimental results

« Conclusions and future work

I Example: Quantifier Manipulation

* Object logic Is simple first-order logic

Formulas A = P|ADA|Vx A|dz.A|...

« Specifying manipulation of quantifier scope
« Sample rule

(Vx.A(x) D B) & ((dz.A(x)) D B)

CADE-19, Aug 2003 — p.7

* Proviso: z may not be free in B

| Specification in LF

e Language using higher-order abstract syntax

i . type.
o) . type.
imp : 0— 0 — 0.
forall : (i— o) — o.
exists : (i — 0) — o.
 Scope relation (Vz.A(x) D B) < ((dz.A(x)) D B)
eq : 0 — 0 — type.

eq; : ITA:i—o.1IB:o.
eq (forall (Ax.imp (A x) B)) (imp (exists (Ax. A x) B).

CADE-19, Aug 2003 — p.8

| Meta-Variables

e Sample query
?— eq (forall (Ay.imp (imp (py) (py)) a)) C.

e Copy clause and unify

eq (forall (Ax.imp (A x) B)) (imp (exists (Ax. A x)) B)
= eq (forall (Ay.imp (imp (py) (py)) a)) C

« Here A:i — o, B:o, C:o0 are meta-variables (also
called unification variables or existential variables

or logic variables)

| Closed Meta-Variables

« Unification problem

eq (forall (Ax.imp (A x) B)) (imp (exists (Ax. A x)) B)
= eq (forall (Ay.imp (imp (py) (py)) a)) C

* Solution
A = Xz.imp (pz) (pz)
B = q
C = imp (exists (Ax. A x) B)

imp (exists (Ax.imp (p x) (p x)) q)

« Meta-variables contain no free ordinary variables!

[Huet'75]

| Closed Meta-Variables

A failing query

eq (forall (Ax.imp (A x) B)) (imp (exists (Ax. A x)) B)
= eq (forall (Ay.imp q (imp (py) (py)))) C

e No solution

A = Az.g
B = (imp(py)(py)) fails
C = ...

* |n fact:

(Vo.q D (p(z) D p(x))) ¥ ((F2.9) D (p(x) D p(2)))

CADE-19, Aug 2003 — p.11

I Modal Logic of Necessity

 Modal logic of necessity captures closedness

 In Hilbert Style
- A

= A
« With proof terms in natural deduction

e=M: A
'+ box M :[L1A

e [Ni=- | x:A

 Rule enforces that M closed I

I Necessity via Judgments

e Separate judgments from propositions
[Martin-Lof’83]

« Extended to modal logic [Pf & Davies’01]

« Two basic judgments
A true (proposition A is true)
A wvalid (proposition A is valid)

* Form hypothetical judgment

A valid, ... A, valid; By true, ..., B,, true = C true
—_—— ~—————

CADE-19, Aug 2003 — p.13

I Necessity via Judgments

« Definitional rule for validity

A+ C true
A+ C valid

* Hypothesis rule

A, Avalid, AT = A true

« Substitution principle
If A; - A true (means: A + A valid)

and A, Avalid:T' - C true
then A;T' F C true I

I Adding Proof Terms

« Two kinds of variables for two kinds of hyps

« Modal variables
A=< Au:A
u::A expresses A valid (stands for closed terms)
Represent (closed) meta-variables

« Ordinary variables
[i=e|T,2:A
r:A expresses A true (stands for any term)
Ordinary variables can be bound by lambda

CADE-19, Aug 2003 — p.15

I Adding Proof Terms

e Judgment A;I'= M : A
* Hypothesis rule

(A, u A, AT HFu: A

« Substitution principle (without dependencies)
fA:e-M:A
and A, u:A; ' N C
then A;T' = [M/u|N : C

« Need substitution operation | M /u]| N

CADE-19, Aug 2003 — p.16

| Substitution for Meta-Variables

e Terms M :=c|x|u| (Ax.M) | My M

[M/ue = ¢

[M/ulz = x

[M/ulu = M

[M/u]jw = w foru+#w
[M/u] (N1 N2) = ([M/u]N1) ([M/u]N2)

[M /u](Ax.N) Ax.|[M/u| N

* No side condition on last rule (M closed)!
o Can implement with destructive update!

I Example Revisited

« Recall unification problem with meta-variables

eq (forall (Ax.imp (A x) B)) (imp (exists (Ax. A x)) B)
= eq (forall (Ay.imp (imp (py) (py)) q)) C

 First meta-variable / term subproblem:
z:i F Az=imp(pz) (p2z

 To solve, traverse imp (p z) (p z)
Check for occurrences of A (occurs-check)

Ensure A is closed (pruning)

Build A\z.imp (p z) (p 2) I

I Avoiding Term Traversal

e Tosolve A:T'+uzy... x, = M we traverse M
Check there is no occurrence of u (occurs-check)
Ensure {z,...,z,} C FV (M) (pruning to M")

Build v = Axqy.... \x,,. M’

« Goal: avoid traversal of right-hand side M
« Condition: remain sound (unlike Prolog)

 Highly significant optimization for logic
programming and theorem proving

CADE-19, Au .19

Eliminating Occurs-Check

 We obtain left-hand side of
eq (forall (Ax.imp (A x) B)) (imp (exists (Ax. A x)) B)
= eq (forall (Ay.imp (imp (py) (pYy))q)) C

by copying
eq; : IIA:i—o.IIB:o.
eq (forall (Ax.imp (A x) B)) (imp (exists (Ax. A x) B).
 The meta-variables A and B are fresh
A and B cannot occur on right-hand side

Eliminate occurs-check for first variable occurrences

CADE-19, Aug 2003 — p.20

Eliminating Occurs-Check

 Rename duplicate occurrences
« Construct residual equations (variable defns)
« Example: compile

s : IITA:o.same A A.

to

s : ITIA:o0.1IA’:0.same A A’ — A = A’.

» Technical complication due to dependent types
« See paper in proceedings for solution

B

CADE-19, Aug 2003 — p.21

I Eliminating Pruning

* Recall
eq (forall (Ax.imp (A x) B)) (imp (exists (Ax. A x)) B)
= eq (forall (Ay.imp (imp (py) (py)) q)) C

« Would like to replace (A x) by A’ such that
x:i F A’:o0

* Yields
x:i = A" =imp (px) (px)

« Then substitute (with apparent capture)

limp (p x) (px)/A] I

I Eliminating Pruning

e Note that meta-variable A’ with x:i— A’ : 0is no
longer closed.

e General form: ¥, -« : A, for context ¥, of
ordinary variables [Dowek, Hardin, C.Kirchner'95]

* Does it have a logical foundation?
« Generalize validity to relative validity

CADE-19, Au .23

I Relative Validity

« Definitional rule for validity

AU C true
A+ C valid ¥

* Hypothesis rule

A, A valid W, A':T'+ B; true for all B; true in ¥
A, A valid WV, N':T'+ A true

« Substitution principle (w/o dependent types)
If A; U - A true

and A, A valid V:T' = C true I
then A;T' F C true

I Adding Proof Terms

e u:(W - A) expresses A valid ¥
* Need simultaneous substitutions ¢
« Generalized hypothesis rule

(A, uz(UHA),A);T'Fo: U
(A, u(U - A),A); T Fulo]: A

« Substitution principle (w/o dependent types)

fFA:WVEM:A
and A, uz(U - A, T'EN:C

then A;T' = [M/u|N : C I

| Simultaneous Substitution

e Substitutions ¢ ::=+| 0, M /x
« Show the fully dependent case

A;THo: U ATEM:[o]A
AT ()2 (0 AT (o, M/x) : (P, 2:A)

« Applying a substitution is straightforward
 Substitution |¢|M and |o|7 is capture avoiding

CADE-19, Aug 2003 — p.26

| Meta-Variable Substitution

e Terms M :=c | x | ulo] | (Ax.M) | My M,
* Note closures only for meta-variables
« Changed cases In meta-variable substitution

[M/u](ulo]) = [[M/u]o]M
[M/ul(w[7]) = w[[M/u]7] foruw

« Can still substitute in place (grafting) if |[M /u]o|M
IS postponed

* Implemented via a calculus of explicit substitutions I

| Abstraction Over Meta-Variables

« We can directly abstract over meta-variables

« Modal logic and judgments dictate the rules
« New type IT u: (¥ - A). B
* New application and abstraction

MIZ:...’)\DUJ.M‘MlmMQ

* Theory not yet fully investigated
e Currently only used in prefix form

CADE-19, Aug 2003 — p.28

I Example Revisited

e Recall

eq; : ITA:i—o.1IB:o.
eq (forall (Ax.imp (A x) B)) (imp (exists (Ax. A x) B).

« Compile as

eq; : A" (x:iFo0).II°B":(x:i F o).
[T°A"::(x:i F o). II"B"::(x:i - o).
[1°B::(+ o).

eq (forall (Ax.imp A’[id] B[id]))
(|mp (exists (Ax. A”[id]) B”[id])
- (HXZ!.A/[Id] = A”]id])
«— (IIx:i.B[+] = B’|id] = B"|[id]).

CADE-19, Aug 2003 — p.29

| Operational Semantics

« Unification in clause head always byassignment
No occurs-check
NO pruning
No copying

« Assignment as in-place update (as in Prolog),
but safe

« Residual equations solved by ordinary pattern

unification (almost)

I Experimental Results

* Meta-interpreter for ordered linear logic

example opt | stand || speed-up || residual egns

none fall
sqnt (bf) 0.84 | 2.09 149% || 44% | 46%
sgnt (dfs) 093 | 2.35 152% || 44% | 47%
sgnt (perm) 444 | 7.11 60% || 44% | 52%
sgnt (rev) 1.21 | 1.70 40% || 45% | 48%
sgnt (mergesort) | 2.26 | 3.39 50% || 46% | 53%

B

CADE-19, Aug 2003 — p.31

I Experimental Results

* Foundational proof-carrying code

example opt stand || speed-up || residual egns

none fall
Inc 5.8 9.19 58% || 64% | 46%
switch 36.00 49.69 38% || 64% | 48%
mul2 5.51 9.520 72% || 64% | 46%
div2 121.96 | 153.610 26% || 63% | 48%
divx 333.69 | 1133.150 239% || 63% | 50%
listsum 1073.33 00 oo || 65% | 45%
polyc 2417.85 00 oo || 65% | 41%
pack 197.07 | 1075.610 445%

66% | 45% I

CADE-19, Aug 2003 — p.32

I Experimental Results

e Intuitionistic sequent calculus

example opt stand || speed-up || residual egns

none fail
dist-1 53.00 57.11 8% || 100% 0%
distimp 0.40 0.44 10% || 100% 0%
pierce 1520.77 | 1563.35 3% || 100% 0%
trans 0.13 0.13 0% || 100% 0%

|

CADE-19, Aug 2003 — p.33

I Experimental Results

e Proof search in classical natural deduction

example opt | stand || speed-up || residual egns

none fall
andEff1-nk 7.67 | 13.14 71% || 100% 0%
andEff2-nk 3.86 | 6.58 70% || 100% 0%
assocAnd-nk | 2.24 | 3.74 67% || 100% 0%
combS-nk 3.85 | 6.64 72% || 100% 0%

B

CADE-19, Aug 2003 — p.34

| Summary

« A foundation for meta-variables in modal logic
« Resulting techniques for efficient implementation
 Clearly significant in practice

Logic programming
Generic theorem proving

 Also insights into some internal invariants (“just

because”)

CADE-19, Aug 2003 — p.35

| Some Related Work

« Higher-order unification via explicit substitutions
[Dowek, Hardin, C.Kirchner’'95] [Dowek, Hardin, C.Kirchner, P{'96]

Meta-variables I'xy H X : Ax
Substitution via grafting, missing other optimizations

No dependent types
No logical explanation

* Teyjus compiler for AProlog [Nadathur et al.]
WAM-style optimization for occurs-check
Uses Huet’s algorithm, not constraint-based patterns
No dependent types

CADE-19, Aug 2003 — p.36

| Future Work

» Higher-order term indexing [Pientka’'03]
e Internal redundancy elimination
‘Michaylov & Pf’93] [Necula & Lee’98]
Specific to dependent types

Avoid some unifications altogether
Interacts with linearization

» Accounting for mode information

 More on modal type theory
[Nanevski, Pientka, Pf'03]

CADE-19, Au .37

	Logical Frameworks
	Higher-Order Unification
	Tractable Cases
	Implementation
	Outline
	Example: Quantifier Manipulation
	Specification in LF
	Meta-Variables
	Closed Meta-Variables
	Closed Meta-Variables
	Modal Logic of Necessity
	Necessity via Judgments
	Necessity via Judgments
	Adding Proof Terms
	Adding Proof Terms
	Substitution for Meta-Variables
	Example Revisited
	Avoiding Term Traversal
	Eliminating Occurs-Check
	Eliminating Occurs-Check
	Eliminating Pruning
	Eliminating Pruning
	Relative Validity
	Adding Proof Terms
	Simultaneous Substitution
	Meta-Variable Substitution
	Abstraction Over Meta-Variables
	Example Revisited
	Operational Semantics
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Summary
	Some Related Work
	Future Work

