
Optimizing Higher-Order
Pattern Unification

Brigitte Pientka and Frank Pfenning

Carnegie Mellon University

CADE-19, Miami Beach, Florida, August 2003

CADE-19, Aug 2003 – p.1

Logical Frameworks

• Logical frameworks: meta-languages for
deductive systems
• High-level specifications (e.g. logics, type systems)

• Direct implementations (e.g. proof search, type checking)

• Feasible meta-reasoning (e.g. cut elimination, type
preservation)

• Examples: λProlog, Isabelle, Twelf
• Results may apply to other higher-order systems

(e.g. Coq, HOL, NuPrl, PVS)

CADE-19, Aug 2003 – p.2

Higher-Order Unification

• Higher-order unification: solving equations in the
presence of λ-abstraction

• Central in higher-order logic and type theories
• General proof search

• Logic program execution

• Type and term reconstruction

• Definitional reflection and case analysis

• Undecidable for second order [Huet’73] [Goldfarb’81]

CADE-19, Aug 2003 – p.3

Tractable Cases

• Pre-unification often practical [Huet’75]

• Some solvable equations are postponed

• Non-determinism major drawback in practice

• Pattern unification decidable [Miller’91]

• Restricting β-reduction to β0: (λx.M) y −→ [y/x]M

• Most general unifiers exist!

• Extends to complex type theories [Pf’91]

• Higher-order patterns as a calculus of variable binding,
variable occurrences, and renaming

CADE-19, Aug 2003 – p.4

Implementation

• In practice, β0 often too weak [Michaylov & Pf’92]

• Implementation based on constraints
• Solve all pattern equations

• Postpone all other equations

• Many equations (≈ 95%) essentially first-order
• First-order equations with first-order efficiency?

CADE-19, Aug 2003 – p.5

Outline

• A logical foundation for meta-variables
• Techniques for efficient implementation
• Experimental results
• Conclusions and future work

CADE-19, Aug 2003 – p.6

Example: Quantifier Manipulation

• Object logic is simple first-order logic

Formulas A ::= P | A ⊃ A | ∀x.A | ∃x.A | . . .

• Specifying manipulation of quantifier scope
• Sample rule

(∀x.A(x) ⊃ B)⇔ ((∃x.A(x)) ⊃ B)

• Proviso: x may not be free in B

CADE-19, Aug 2003 – p.7

Specification in LF

• Language using higher-order abstract syntax
i : type.
o : type.
imp : o→ o→ o.
forall : (i→ o)→ o.
exists : (i→ o)→ o.

• Scope relation (∀x.A(x) ⊃ B)⇔ ((∃x.A(x)) ⊃ B)

eq : o→ o→ type.
eq

1
: ΠA: i→ o.ΠB:o.

eq (forall (λx. imp (A x) B)) (imp (exists (λx.A x) B).

CADE-19, Aug 2003 – p.8

Meta-Variables

• Sample query

?− eq (forall (λy. imp (imp (p y) (p y)) q)) C.

• Copy clause and unify
eq (forall (λx. imp (A x) B)) (imp (exists (λx.A x)) B)

.
= eq (forall (λy. imp (imp (p y) (p y)) q)) C

• Here A: i→ o, B:o, C:o are meta-variables (also
called unification variables or existential variables
or logic variables)

CADE-19, Aug 2003 – p.9

Closed Meta-Variables

• Unification problem
eq (forall (λx. imp (A x) B)) (imp (exists (λx.A x)) B)

.
= eq (forall (λy. imp (imp (p y) (p y)) q)) C

• Solution
A = λz. imp (p z) (p z)
B = q

C = imp (exists (λx.A x) B)
= imp (exists (λx. imp (p x) (p x)) q)

• Meta-variables contain no free ordinary variables!
[Huet’75]

CADE-19, Aug 2003 – p.10

Closed Meta-Variables

• A failing query
eq (forall (λx. imp (A x) B)) (imp (exists (λx.A x)) B)

.
= eq (forall (λy. imp q (imp (p y) (p y)))) C

• No solution
A = λz. q
B = (imp (p y) (p y)) fails

C = . . .

• In fact:

(∀x.q ⊃ (p(x) ⊃ p(x))) 6⇔ ((∃x.q) ⊃ (p(x) ⊃ p(x)))

CADE-19, Aug 2003 – p.11

Modal Logic of Necessity

• Modal logic of necessity captures closedness
• In Hilbert Style

` A
` �A

• With proof terms in natural deduction

• `M : A
Γ ` box M : �A

• Γ ::= • | Γ, x:A

• Rule enforces that M closed

CADE-19, Aug 2003 – p.12

Necessity via Judgments

• Separate judgments from propositions
[Martin-Löf’83]

• Extended to modal logic [Pf & Davies’01]

• Two basic judgments
• A true (proposition A is true)

• A valid (proposition A is valid)

• Form hypothetical judgment

A1 valid , . . . An valid
︸ ︷︷ ︸

∆

; B1 true, . . . , Bm true
︸ ︷︷ ︸

Γ

` C true

CADE-19, Aug 2003 – p.13

Necessity via Judgments

• Definitional rule for validity

∆; • ` C true

∆ ` C valid

• Hypothesis rule

∆, A valid , ∆′; Γ ` A true

• Substitution principle
If ∆; • ` A true (means: ∆ ` A valid)
and ∆, A valid ; Γ ` C true

then ∆; Γ ` C true

CADE-19, Aug 2003 – p.14

Adding Proof Terms

• Two kinds of variables for two kinds of hyps
• Modal variables
• ∆ ::= • | ∆, u::A
• u::A expresses A valid (stands for closed terms)
• Represent (closed) meta-variables

• Ordinary variables
• Γ ::= • | Γ, x:A
• x:A expresses A true (stands for any term)
• Ordinary variables can be bound by lambda

CADE-19, Aug 2003 – p.15

Adding Proof Terms

• Judgment ∆; Γ `M : A

• Hypothesis rule

(∆, u::A, ∆); Γ ` u : A

• Substitution principle (without dependencies)
If ∆; • `M : A
and ∆, u::A; Γ ` N : C
then ∆; Γ ` [[M/u]]N : C

• Need substitution operation [[M/u]]N

CADE-19, Aug 2003 – p.16

Substitution for Meta-Variables

• Terms M ::= c | x | u | (λx.M) |M1 M2

[[M/u]]c = c

[[M/u]]x = x

[[M/u]]u = M

[[M/u]]w = w for u 6= w

[[M/u]](N1 N2) = ([[M/u]]N1) ([[M/u]]N2)

[[M/u]](λx.N) = λx.[[M/u]]N

• No side condition on last rule (M closed)!
• Can implement with destructive update!

CADE-19, Aug 2003 – p.17

Example Revisited

• Recall unification problem with meta-variables
eq (forall (λx. imp (A x) B)) (imp (exists (λx.A x)) B)

.
= eq (forall (λy. imp (imp (p y) (p y)) q)) C

• First meta-variable / term subproblem:

z : i ` A z
.
= imp (p z) (p z)

• To solve, traverse imp (p z) (p z)

• Check for occurrences of A (occurs-check)

• Ensure A is closed (pruning)

• Build λz. imp (p z) (p z)

CADE-19, Aug 2003 – p.18

Avoiding Term Traversal

• To solve ∆; Γ ` ux1 . . . xn

.
= M we traverse M

• Check there is no occurrence of u (occurs-check)

• Ensure {x1, . . . , xn} ⊆ FV (M) (pruning to M ′)

• Build u = λx1. . . . λxn.M ′

• Goal: avoid traversal of right-hand side M

• Condition: remain sound (unlike Prolog)
• Highly significant optimization for logic

programming and theorem proving

CADE-19, Aug 2003 – p.19

Eliminating Occurs-Check

• We obtain left-hand side of
eq (forall (λx. imp (A x) B)) (imp (exists (λx.A x)) B)

.
= eq (forall (λy. imp (imp (p y) (p y)) q)) C

by copying
eq

1
: ΠA: i→ o.ΠB:o.

eq (forall (λx. imp (A x) B)) (imp (exists (λx.A x) B).

• The meta-variables A and B are fresh
• A and B cannot occur on right-hand side

• Eliminate occurs-check for first variable occurrences

CADE-19, Aug 2003 – p.20

Eliminating Occurs-Check

• Rename duplicate occurrences
• Construct residual equations (variable defns)

• Example: compile

s : ΠA:o. same A A.

to

s′ : ΠA:o.ΠA′ :o. same A A′ ← A = A′.

• Technical complication due to dependent types
• See paper in proceedings for solution

CADE-19, Aug 2003 – p.21

Eliminating Pruning

• Recall
eq (forall (λx. imp (A x) B)) (imp (exists (λx.A x)) B)

.
= eq (forall (λy. imp (imp (p y) (p y)) q)) C

• Would like to replace (A x) by A′ such that

x : i ` A′ : o

• Yields

x : i ` A′
.
= imp (p x) (p x)

• Then substitute (with apparent capture)

[[imp (p x) (p x)/A′]]

CADE-19, Aug 2003 – p.22

Eliminating Pruning

• Note that meta-variable A′ with x : i ` A′ : o is no
longer closed.

• General form: Ψu ` u : Au for context Ψu of
ordinary variables [Dowek, Hardin, C.Kirchner’95]

• Does it have a logical foundation?
• Generalize validity to relative validity

CADE-19, Aug 2003 – p.23

Relative Validity

• Definitional rule for validity

∆; Ψ ` C true

∆ ` C valid Ψ

• Hypothesis rule

∆, A valid Ψ, ∆′; Γ ` Bi true for all Bi true in Ψ
∆, A valid Ψ, ∆′; Γ ` A true

• Substitution principle (w/o dependent types)
If ∆; Ψ ` A true

and ∆, A valid Ψ; Γ ` C true

then ∆; Γ ` C true
CADE-19, Aug 2003 – p.24

Adding Proof Terms

• u::(Ψ ` A) expresses A valid Ψ

• Need simultaneous substitutions σ

• Generalized hypothesis rule

(∆, u::(Ψ ` A), ∆); Γ ` σ : Ψ

(∆, u::(Ψ ` A), ∆); Γ ` u[σ] : A

• Substitution principle (w/o dependent types)
If ∆; Ψ `M : A
and ∆, u::(Ψ ` A); Γ ` N : C
then ∆; Γ ` [[M/u]]N : C

CADE-19, Aug 2003 – p.25

Simultaneous Substitution

•• Substitutions σ ::= • | σ,M/x

• Show the fully dependent case

∆; Γ ` (•) : (•)

∆; Γ ` σ : Ψ ∆; Γ `M : [σ]A

∆; Γ ` (σ,M/x) : (Ψ, x:A)

• Applying a substitution is straightforward
• Substitution [σ]M and [σ]τ is capture avoiding

CADE-19, Aug 2003 – p.26

Meta-Variable Substitution

• Terms M ::= c | x | u[σ] | (λx.M) |M1 M2

• Note closures only for meta-variables

• Changed cases in meta-variable substitution

[[M/u]](u[σ]) = [[[M/u]]σ]M

[[M/u]](w[τ]) = w[[[M/u]]τ] for u 6= w

• Can still substitute in place (grafting) if [[[M/u]]σ]M
is postponed

• Implemented via a calculus of explicit substitutions

CADE-19, Aug 2003 – p.27

Abstraction Over Meta-Variables

• We can directly abstract over meta-variables
• Modal logic and judgments dictate the rules
• New type Π�u::(Ψ ` A). B

• New application and abstraction

M ::= . . . | λ�u.M |M1 � M2

• Theory not yet fully investigated
• Currently only used in prefix form

CADE-19, Aug 2003 – p.28

Example Revisited

• Recall
eq

1
: ΠA: i→ o.ΠB:o.

eq (forall (λx. imp (A x) B)) (imp (exists (λx.A x) B).

• Compile as
eq

1
: Π�A′::(x : i ` o).Π�B′::(x : i ` o).

Π�A′′::(x : i ` o).Π�B′′::(x : i ` o).
Π�B::(• ` o).
eq (forall (λx. imp A′[id] B′[id]))

(imp (exists (λx.A′′[id]) B′′[id])
← (Πx : i.A′[id] = A′′[id])
← (Πx : i.B[•] = B′[id] = B′′[id]).

CADE-19, Aug 2003 – p.29

Operational Semantics

• Unification in clause head always byassignment
• No occurs-check

• No pruning

• No copying

• Assignment as in-place update (as in Prolog),
but safe

• Residual equations solved by ordinary pattern
unification (almost)

CADE-19, Aug 2003 – p.30

Experimental Results

• Meta-interpreter for ordered linear logic

example opt stand speed-up residual eqns

none fail

sqnt (bf) 0.84 2.09 149% 44% 46%

sqnt (dfs) 0.93 2.35 152% 44% 47%

sqnt (perm) 4.44 7.11 60% 44% 52%

sqnt (rev) 1.21 1.70 40% 45% 48%

sqnt (mergesort) 2.26 3.39 50% 46% 53%

CADE-19, Aug 2003 – p.31

Experimental Results

• Foundational proof-carrying code

example opt stand speed-up residual eqns

none fail

inc 5.8 9.19 58% 64% 46%

switch 36.00 49.69 38% 64% 48%

mul2 5.51 9.520 72% 64% 46%

div2 121.96 153.610 26% 63% 48%

divx 333.69 1133.150 239% 63% 50%

listsum 1073.33 ∞ ∞ 65% 45%

polyc 2417.85 ∞ ∞ 65% 41%

pack 197.07 1075.610 445% 66% 45%

CADE-19, Aug 2003 – p.32

Experimental Results

• Intuitionistic sequent calculus

example opt stand speed-up residual eqns

none fail

dist-1 53.00 57.11 8% 100% 0%

distImp 0.40 0.44 10% 100% 0%

pierce 1520.77 1563.35 3% 100% 0%

trans 0.13 0.13 0% 100% 0%

CADE-19, Aug 2003 – p.33

Experimental Results

• Proof search in classical natural deduction

example opt stand speed-up residual eqns

none fail

andEff1-nk 7.67 13.14 71% 100% 0%

andEff2-nk 3.86 6.58 70% 100% 0%

assocAnd-nk 2.24 3.74 67% 100% 0%

combS-nk 3.85 6.64 72% 100% 0%

CADE-19, Aug 2003 – p.34

Summary

• A foundation for meta-variables in modal logic
• Resulting techniques for efficient implementation
• Clearly significant in practice
• Logic programming

• Generic theorem proving

• Also insights into some internal invariants (“just
because”)

CADE-19, Aug 2003 – p.35

Some Related Work

• Higher-order unification via explicit substitutions
[Dowek, Hardin, C.Kirchner’95] [Dowek, Hardin, C.Kirchner, Pf’96]

• Meta-variables ΓX ` X : AX

• Substitution via grafting, missing other optimizations

• No dependent types

• No logical explanation

• Teyjus compiler for λProlog [Nadathur et al.]

• WAM-style optimization for occurs-check

• Uses Huet’s algorithm, not constraint-based patterns

• No dependent types

CADE-19, Aug 2003 – p.36

Future Work

• Higher-order term indexing [Pientka’03]

• Internal redundancy elimination
[Michaylov & Pf’93] [Necula & Lee’98]

• Specific to dependent types
• Avoid some unifications altogether
• Interacts with linearization

• Accounting for mode information
• More on modal type theory

[Nanevski, Pientka, Pf’03]

CADE-19, Aug 2003 – p.37

	Logical Frameworks
	Higher-Order Unification
	Tractable Cases
	Implementation
	Outline
	Example: Quantifier Manipulation
	Specification in LF
	Meta-Variables
	Closed Meta-Variables
	Closed Meta-Variables
	Modal Logic of Necessity
	Necessity via Judgments
	Necessity via Judgments
	Adding Proof Terms
	Adding Proof Terms
	Substitution for Meta-Variables
	Example Revisited
	Avoiding Term Traversal
	Eliminating Occurs-Check
	Eliminating Occurs-Check
	Eliminating Pruning
	Eliminating Pruning
	Relative Validity
	Adding Proof Terms
	Simultaneous Substitution
	Meta-Variable Substitution
	Abstraction Over Meta-Variables
	Example Revisited
	Operational Semantics
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Summary
	Some Related Work
	Future Work

