Church and Curry: Combining Intrinsic

and Extrinsic Typing

Frank Pfenning

Dedicated to Peter Andrews
on the occasion of his retirement

Department of Computer Science
Carnegie Mellon University

April 5, 2012

Church's Simple Theory of Types

m Language and logic for the formalization of mathematics
m (Church 1940)
m Stood the test of time (72 years!)
m HOL, Isabelle/HOL, TPS, LEO, Satallax, ...

Church's Simple Theory of Types

m Language and logic for the formalization of mathematics
m (Church 1940)
m Stood the test of time (72 years!)
m HOL, Isabelle/HOL, TPS, LEO, Satallax, ...

m Synthesis, simplification, and generalization of

m Russell and Whitehead's ramified theory of types
m Church and Rosser's (untyped) A-calculus

Church's Simple Theory of Types

m Language and logic for the formalization of mathematics
m (Church 1940)
m Stood the test of time (72 years!)
m HOL, Isabelle/HOL, TPS, LEO, Satallax, ...
m Synthesis, simplification, and generalization of
m Russell and Whitehead's ramified theory of types
m Church and Rosser's (untyped) A-calculus

m Some objections

Church's Simple Theory of Types

m Language and logic for the formalization of mathematics
m (Church 1940)
m Stood the test of time (72 years!)
m HOL, Isabelle/HOL, TPS, LEO, Satallax, ...
m Synthesis, simplification, and generalization of
m Russell and Whitehead's ramified theory of types
m Church and Rosser's (untyped) A-calculus
m Some objections
m As a computer scientist: classical

Church's Simple Theory of Types

m Language and logic for the formalization of mathematics
m (Church 1940)
m Stood the test of time (72 years!)
m HOL, Isabelle/HOL, TPS, LEO, Satallax, ...
m Synthesis, simplification, and generalization of
m Russell and Whitehead's ramified theory of types
m Church and Rosser's (untyped) A-calculus
m Some objections

m As a computer scientist: classical
m As a philosopher: impredicative

Church's Simple Theory of Types

m Language and logic for the formalization of mathematics
m (Church 1940)
m Stood the test of time (72 years!)
m HOL, Isabelle/HOL, TPS, LEO, Satallax, ...
m Synthesis, simplification, and generalization of
m Russell and Whitehead's ramified theory of types
m Church and Rosser's (untyped) A-calculus
m Some objections
m As a computer scientist: classical
m As a philosopher: impredicative

m Components

Church's Simple Theory of Types

m Language and logic for the formalization of mathematics
m (Church 1940)
m Stood the test of time (72 years!)
m HOL, Isabelle/HOL, TPS, LEO, Satallax, ...
m Synthesis, simplification, and generalization of
m Russell and Whitehead's ramified theory of types
m Church and Rosser's (untyped) A-calculus
m Some objections
m As a computer scientist: classical
m As a philosopher: impredicative
m Components

m Simply typed A-calculus (this talk)
m Logical axioms and inference rules

Simply Typed A-Calculus

m Church’s definitions

Simply Typed A-Calculus

m Church’s definitions
m Types

¢t and o are types.
If & and 8 are types, then @ — [is a type.
(Church wrote Sa)

Simply Typed A-Calculus

m Church’'s definitions
m Types
¢t and o are types.
If & and 8 are types, then @ — [is a type.
(Church wrote Sa)
m Well-formed terms M® of type «
Any variable x® or constant c% is a term.

If x* is a variable and M? a term then (Ax. M)*~# is a
term.

If MZ7F and Mg are terms, then (M; Ma)? is a term.

Intrinsic Typing

m Every well-formed term has an intrinsic type, including
variables

Intrinsic Typing

m Every well-formed term has an intrinsic type, including
variables

m This kind of intrinsic formulation has become rare, but it
has a number of advantages

Intrinsic Typing

m Every well-formed term has an intrinsic type, including
variables
m This kind of intrinsic formulation has become rare, but it
has a number of advantages
m Supports conventions, such as
In the remainder of this [talk] we assume that

all terms are well-formed according to the above
definition.

Intrinsic Typing

m Every well-formed term has an intrinsic type, including
variables

m This kind of intrinsic formulation has become rare, but it
has a number of advantages

m Supports conventions, such as

In the remainder of this [talk] we assume that
all terms are well-formed according to the above
definition.

m In a logical framework
tp : type.
arrow : tp -> tp -> tp.
tm : tp —-> type.
lam : (tm A -> tm B) -> tm (arrow A B).
app : tm (arrow A B) -> tm A -> tm B.

Untyped A-Calculus

m (Church 1932) (Church and Rosser 1936)
m Terms

Any variable x or constant c is a term.
If x is a variable and M a term then (Ax. M) is a term.
If My and M, are terms, then (M; M) is a term.

Extrinsic Typing

m (Curry 1934) [for combinators, not A-terms]
m Types as properties of terms

Extrinsic Typing

m (Curry 1934) [for combinators, not A-terms]
m Types as properties of terms
m Typing judgments defined by rules

xa€el co € X
N=x:« Fc:a
MxabEM:5 (x¢&dom(l))
FrEXAx.M:a—p

rN=M:a—p TEN:«
rN-MN:g

Types as Properties

m A term can have multiple types

EAXX L=
FXxx:(t—=10) = (=)

Types as Properties

m A term can have multiple types

EAXX L=
FXxx:(t—=10) = (=)

m Express explicitly in the form of a single type

Types as Properties

m A term can have multiple types

EAXX L=
FXxx:(t—=10) = (=)

m Express explicitly in the form of a single type

m Parametric polymorphism (universal types)

FAXx.x:Vt.t—=t

Types as Properties

m A term can have multiple types

EAXX L=
FXxx:(t—=10) = (=)

m Express explicitly in the form of a single type

m Parametric polymorphism (universal types)
FAx.x:Vt.t >t
m Ad hoc polymorphism (intersection types)

FXMx (=)N (e =) = (L —=0)

Extrinsic Rules

m Parametric polymorphism

r=m:g (t¢ftv(|_))w = M:Vt.«
Fr=M:Vt.p e M:[p/tla

VE

Extrinsic Rules

m Parametric polymorphism

r=m:g (t¢ftv(|_))w = M:Vt.«
Fr=M:Vt.p e M:[p/tla

VE

m Intersection polymorphism

r'-=M:A I'=M:B
rN=M:AANB

Al

FrN=M:AAB rN=M:AAB
————— NE; — NE
FrN=M: A r'-=M:B

Types as Properties: The Good News

m Can type terms more generally

FXxoxx: (VYoo — o) = (V6.8 — f)
Edxoxx (=)A=

Types as Properties: The Good News

m Can type terms more generally

FXxoxx: (VYoo — o) = (V6.8 — f)
Edxoxx (=)A=

m Can type type terms more accurately

-F Ax.s(s(sx)) : (even — odd) A (odd — even)

Types as Properties: The Bad News

m The typing judgment is undecidable

10/24

Types as Properties: The Bad News

m The typing judgment is undecidable
m Challenge: generalize to a complete language

m Practical

Useful

Philosophically justified
Easy to reason about

10/24

Layering Type Systems

m Intrinsic simple types for basic consistency
m Avoiding Russell's paradox

11/24

Layering Type Systems

m Intrinsic simple types for basic consistency
m Avoiding Russell's paradox
m Extrinsic sorts on well-formed terms for precision

m Circumvent problems with general extrinsic types
m Achieve pragmatic goals

11/24

Layering Type Systems

m Intrinsic simple types for basic consistency
m Avoiding Russell's paradox
m Extrinsic sorts on well-formed terms for precision

m Circumvent problems with general extrinsic types
m Achieve pragmatic goals

m Instances

m Intersection types to datasort refinement (this talk)
m Dependent types to index refinements

11/24

Layering Type Systems

m Intrinsic simple types for basic consistency
m Avoiding Russell's paradox
m Extrinsic sorts on well-formed terms for precision

m Circumvent problems with general extrinsic types
m Achieve pragmatic goals

m Instances

m Intersection types to datasort refinement (this talk)
m Dependent types to index refinements

m Parametric polymorphism is a different story

11 /24

Representing Data

m Multiple techniques in Church's Type Theory

m Church numerals
m Constants and axioms

12/24

Representing Data

m Multiple techniques in Church's Type Theory

m Church numerals
m Constants and axioms

m We have only basic type ¢ (o is for truth values)

12/24

Representing Data

m Multiple techniques in Church's Type Theory

m Church numerals

m Constants and axioms
m We have only basic type ¢ (o is for truth values)
m Example: natural numbers

m Constants z* and s*~** (constructors)
m Constant nat~7° (predicate)
m Axioms
nat(z)
Vx'. nat(x) D nat(s(x))

12/24

Representing Data

m Multiple techniques in Church's Type Theory

m Church numerals

m Constants and axioms
m We have only basic type ¢ (o is for truth values)
m Example: natural numbers

m Constants z* and s*~** (constructors)
m Constant nat~7° (predicate)

m Axioms
nat(z)
Vx'. nat(x) D nat(s(x))

m Lists, trees, etc. all have type ¢
m Sort out using sorts

12 /24

Simple Sorts

m Example
nat’ sort
z' nat
s*7* : nat — nat

13/24

Simple Sorts

m Example
nat’ sort
z' nat
s*7* : nat — nat

m Define sorts S® refining type a under signature -

A base sort Q* declared in X is a simple sort.
If S* and T7 are simple sorts, then (§ — T)a_’ﬁ is a
simple sort.

13/24

Sorting Judgment

m Context [consisting of declarations x* : §¢
m Sorting judgment [= M* : §¢

14 /24

Sorting Judgment

m Context [consisting of declarations x* : §¢
m Sorting judgment [= M* : §¢

m Defined only for terms of intrinsic type « and sort refining
the same type a!

14 /24

Sorting Judgment

m Context [consisting of declarations x* : §¢
m Sorting judgment [= M* : §¢

m Defined only for terms of intrinsic type « and sort refining
the same type a!

m Rules
xSerl c.Sex

N=x:8S lFc:S
Fx:SEM: T (x¢dom(IlN))
TEXXxM:S—T

rrEM:S—T TEN:S
r=EMN: T

14 /24

m Subsort declarations Q) < Q4

m New rules

Q<@ K<

R<Q Q< @
rEM:Q Q<
r-m:Q

m Defined on base types only

m Can derive principles for higher types

15 /24

Subsorting Example

m Refining natural numbers

zero < nat
pos < nat
z . zero

S © nat — pos

16 /24

Subsorting Example

m Refining natural numbers

zero < nat

pos < nat

z . zero

S © nat — pos

m Examples

- Ax.x : nat — nat

- Ax.x : zero — nat

-F M. Ay.xy : (nat — zero) — (zero — nat)
-F Ax.sx : nat — pos

16 /24

Combining Properties

m Want to express and exploit multiple properties of terms

17 /24

Combining Properties

m Want to express and exploit multiple properties of terms

m Example: even and odd numbers

even < nat

odd < nat

z © even

S : even — odd

S : odd — even

17 /24

Combining Properties

m Want to express and exploit multiple properties of terms

m Example: even and odd numbers

even < nat

odd < nat

z © even

S : even — odd
S . odd — even

m Have no way to express in one sort:

-F Ax*.s(s(s x)) : even — odd
-F Ax*.s(s(sx)) : odd — even

17 /24

Intersection Sorts

m Define sorts S* refining types « (in intrinsic style)

A base sort Q" declared in X is a sort.

If S* and T# are sorts, then (S — T)*~# is a sort.
If S* and T are sorts then (S A T)“ is a sort.

T is a sort for each type a.

18 /24

Extended Sorting Judgments

m Recall T - M>: §«

19/24

Extended Sorting Judgments

m Recall [= M*: 5¢
m New typing rules

r=M:S5 T=M: S,

Al
r=M: f;l VAN f;z
r'=M: f;l /\.Sé F=M: fﬂ_/\ 5%
NEq E,
rEM: 5 r=M:S;

remer

19/24

Extended Sorting Judgments

m Recall [= M* . 5«
m New typing rules
r-=M:S TEM:S,
= M: f;l VAN f;z

Al

r'=M: f;l VAN f;2 A F=M: f;l VAN f;g
rEM: 5 r=M:S;

remer

m Philosophically justified in the sense of
Dummett/Martin-Lof

19/24

Example Revisited

m Can now conjoin properties

-F Ax.s(s(sx)) : (even — odd)
A (odd — even)
A (nat — pos)
AR

20 /24

Example Revisited

m Can now conjoin properties

-F Ax.s(s(sx)) : (even — odd)
A (odd — even)
A (nat — pos)
AR

m Every (well-formed) term has a principal sort

20 /24

Some Results

m Sort checking is decidable

m “Proof:" there are effectively only finitely many
refinements of a given type

21/24

Some Results

m Sort checking is decidable

m “Proof:" there are effectively only finitely many
refinements of a given type

m Sorting is closed under [3-reduction
m “Proof:" standard substitution property

21/24

Some Results

m Sort checking is decidable

m “Proof:" there are effectively only finitely many
refinements of a given type

m Sorting is closed under [3-reduction

m “Proof:" standard substitution property
m Sorting is closed under n-expansion

m “Proof:” induction over sorts

21/24

More Results

m Define n*(M) as n-long form of M*

22/24

More Results

m Define n*(M) as n-long form of M*
m Define subsorting S* < T at higher types

S<T:exSEn*(x): T

22/24

More Results

m Define n*(M) as n-long form of M*
m Define subsorting S* < T at higher types

S<T:exSEn*(x): T

m Extend subsumption rule

22/24

More Results

m Define n*(M) as n-long form of M*
m Define subsorting S* < T at higher types

S<T:exSEn*(x): T

m Extend subsumption rule
m Sorting is closed under 3-expansion
m "Proof:” intersect all sorts the abstracted term is used at

22/24

More Results

m Define n*(M) as n-long form of M*
m Define subsorting S* < T at higher types

S<T:exSkEn*(x): T

m Extend subsumption rule
m Sorting is closed under 3-expansion

m "“Proof:" intersect all sorts the abstracted term is used at
m Sorting is closed under n-reduction

m "“Proof:" by subsorting at higher types

22 /24

More Results

m Define n*(M) as n-long form of M*
m Define subsorting S* < T at higher types

S<T:exSkEn*(x): T

Extend subsumption rule

Sorting is closed under 3-expansion
m "Proof:” intersect all sorts the abstracted term is used at

Sorting is closed under n-reduction
m "“Proof:" by subsorting at higher types
m Conclusion
Extrinsic (Curry) sorting with intersections

refining intrinsic (Church) typing is closed under
A-conversion!

22 /24

Related Developments (my students only)

Expressive power extends tree automata to higher types

Canonical (= S-normal, 7n-long) terms can by typed
bidirectionally
m In: Festschrift in Honor of Peter B. Andrews on his 70th
Birthday, C. Benzmiiller, C. Brown, J. Siekmann, and R.
Statman, editors
m Crucial for logical frameworks (Lovas 2010)

Refinement type inference for ML (Freeman 1994)
Practical refinements type for SML (Davies 2005)
Dependent refinements over decidable domains (Xi 1998)

Unifying sort and dependent refinements (Dunfield 2007)

23 /24

Conclusion

m Church’s original intrinsic formulation of the simply-typed
A-calculus has fallen into disfavor, perhaps unjustly

24 /24

Conclusion

m Church’s original intrinsic formulation of the simply-typed
A-calculus has fallen into disfavor, perhaps unjustly

m It suggests an elegant layering with Curry’s extrinsic
typing judgment (translated to A-calculus)

24 /24

Conclusion

m Church’s original intrinsic formulation of the simply-typed
A-calculus has fallen into disfavor, perhaps unjustly

m It suggests an elegant layering with Curry’s extrinsic
typing judgment (translated to A-calculus)

m Can be usefully combined with Coppo et al.'s intersection
types for high expressiveness, precision, and surprisingly
strong metatheoretic results

24 /24

