Objects as Session-Typed Processes

Stephanie Balzer and Frank Pfenning
Computer Science Department, Carnegie Mellon University

AGERE! 2015

The essence of object-orientation

The essence of object-orientation

39 concepts (“guarks”) of object-orientation [Armstrong0o6]:

object, encapsulation, message passing, information hiding, dynamic
dispatch, reuse, modularization, inheritance, etc.

The essence of object-orientation

39 concepts (“guarks”) of object-orientation [Armstrong0o6]:

object, encapsulation, message passing, information hiding, dynamic
dispatch, reuse, modularization, inheritance, etc.

Object-orientation in its inception:
* Objects encapsulate state (Simula)
* Objects interact by message exchange (Smalltalk, Actor model)

The essence of object-orientation

39 concepts (“guarks”) of object-orientation [Armstrong0o6]:

object, encapsulation, message passing, information hiding, dynamic
dispatch, reuse, modularization, inheritance, etc.

Object-orientation in its inception:
e Objects encapsulate state (Simula)
* Objects interact by message exchange (Smalltalk, Actor model)

Object-orientation to Alan Kay [public email]:

“O0P to me means only messaging, local retention and protection and

hiding of state-process, and extreme late-binding of all things. It can be

done in Smalltalk and in LISE There are possibly other systems in which
this is possible, but I’'m not aware of them.”

The essence of object-orientation

The essence of object-orientation

Suggested model of computation:

> R s,

This paper in a nutshell

A fresh look at object-oriented programming:
e Objects as processes

* Objects interact by sending messages along channels, where objects
are identified with offering channel

e Channels (and offering object) are typed by linear session types,
making client own the offering object

We introduce the programming language CLOO and show that:
e typical 0o patterns (dynamic dispatch, subtyping) arise naturally
* new forms of expression (type-directed reuse, internal choice) emerge

Important concern:

e Support program reasoning, whilst maintaining object-oriented style

Contributions

Concurrent message-passing programming model with:
e static protocol assurance
® absence of data races and deadlocks

Object-oriented programming model with:
e typical 00 concepts (encapsulation, dynamic dispatch, subtyping)
* new forms of expressions (type-directed reuse, internal choice)

Prototype compller:
e Supports most of presented features

Progress and preservation proof (in meantime):
e for core subset of language

Outline

Background: linear session types

Basic correspondence between CLOO - object-oriented concepits:
e Objects as processes

e Dynamic dispatch

e Structural subtyping

New forms of expression:
* [ype-directed delegation
* Internal Choice

Conclusions

Outline

Basic correspondence between CLOO - object-oriented concepts:

* Objects as processes
e Dynamic dispatch
e Structural subtyping

New forms of expression:
* Type-directed delegation
* |Internal Choice

Conclusions

LInear session-based communication

offering process
(object)

client process ‘—C‘
(object’s owner)

bidirectional channel

[Based on intuitionistic linear sequent calculus]

LInear session-based communication

| session type
i defines protocol

client process
(object’s owner)

offering process
(object)

bidirectional channel

[Based on intuitionistic linear sequent calculus]

LInear session-based communication

client process
(object’s owner)

offering process
(object)

bidirectional channel

[Based on intuitionistic linear sequent calculus]

LInear session-based communication

client process
(object’s owner)

offering process
(object)

bidirectional channel

[Based on intuitionistic linear sequent calculus]

LInear session-based communication

client process
(object’s owner)

offering process
(object)

bidirectional channel

[Based on intuitionistic linear sequent calculus]

LInear session-based communication

client process
(object’s owner)

offering process
(object)

bidirectional channel

[Based on intuitionistic linear sequent calculus]

LInear session-based communication

client process ‘
(object’s owner)

[Based on intuitionistic linear sequent calculus]

LInear session-based communication

offering process
(object)

client process ‘—C‘
(object’s owner)

bidirectional channel

[Based on intuitionistic linear sequent calculus]

10

LInear session-based communication

read-once counter: {—]
j ctr = ?{<lint; > Val; <ctr> Inc} |

client process
(object’s owner)

offering process
bidirectional channel

(object)

[Based on intuitionistic linear sequent calculus]

10

LInear session-based communication

iInput
read-once counter: T
j Ctr :<!int; > Val; <ctr> Inc} |

client process
(object’s owner)

offering process
bidirectional channel

(object)

[Based on intuitionistic linear sequent calculus]

10

LInear session-based communication

read-once counter: {—]
j ctr = ?{<lint; > Val; <ctr> Inc} |

client process
(object’s owner)

offering process
bidirectional channel

(object)

[Based on intuitionistic linear sequent calculus]

10

LInear session-based communication

recursive session type
read-once counter: {~

offering process
(object)

client process
(object’s owner)

bidirectional channel

[Based on intuitionistic linear sequent calculus]

ctr|= ?{<!lint; > Val; Inc) :

10

LInear session-based communication

read-once counter: ¢ T
j ctr = ?{<lint; > Val; <ctr> Inc} |

client process
(object’s owner)

offering process
bidirectional channel

(object)

[Based on intuitionistic linear sequent calculus]

11

LInear session-based communication

read-once counter: ¢ T
j ctr = ?{<lint; > Val; <ctr> Inc} |

client process
(object’s owner)

offering process
bidirectional channel

(object)

[Based on intuitionistic linear sequent calculus]

11

LInear session-based communication

read-once counter: ¢ T
j ctr = ?{<lint; > Val; <ctr> Inc} |

client process
(object’s owner)

offering process
bidirectional channel

(object)

[Based on intuitionistic linear sequent calculus]

11

LInear session-based communication

read-once counter: ¢ T
j ctr = ?{<lint; > Val; <ctr> Inc} |

client process
(object’s owner)

offering process
bidirectional channel

(object)

[Based on intuitionistic linear sequent calculus]

12

LInear session-based communication

read-once counter: ¢ T
j ctr = ?{<lint; > Val; <ctr> Inc} |

client process
(object’s owner)

offering process
bidirectional channel

(object)

[Based on intuitionistic linear sequent calculus]

12

LInear session-based communication

(Ea0-0ONCE COUNTEp: sy

<lint; >

client process
(object’s owner)

offering process
(object)

bidirectional channel

[Based on intuitionistic linear sequent calculus]

12

Linear session-based communication

offering process
(object)

client process ‘—C‘
(object’s owner)

[Based on intuitionistic linear sequent calculus]

13

Linear session-based communication

® O

[Based on intuitionistic linear sequent calculus]

14

Linear session-based communication

[Based on intuitionistic linear sequent calculus]

14

Linear session-based communication

| linearity: channels as resources |

[Based on intuitionistic linear sequent calculus]

15

Linear session-based communication

| linearity: channels as resources |

d C
o o Coh

[Based on intuitionistic linear sequent calculus]

15

Linear session-based communication

| linearity: channels as resources |

d C
o o Coh

[Based on intuitionistic linear sequent calculus]

16

Linear session-based communication

| linearity: channels as resources |

d C
o o Coh

[Based on intuitionistic linear sequent calculus]

16

Linear session-based communication

| linearity: channels as resources |

d C
o oo o

[Based on intuitionistic linear sequent calculus]

16

Linear session-based communication

| linearity: channels as resources |

d C
o oo o

[Based on intuitionistic linear sequent calculus]

16

Linear session-based communication

| linearity: channels as resources |

[Based on intuitionistic linear sequent calculus]

Linear session-based communication

| linearity: channels as resources |

d C
o oo o

[Based on intuitionistic linear sequent calculus]

17

Linear session-based communication

| linearity: channels as resources |

[Based on intuitionistic linear sequent calculus]

Outline

Background: linear session types

New forms of expression:
* Type-directed delegation
* |Internal Choice

Conclusions

18

Session types in CLOO

Session types in CLOO

typedef <?choice ctr> ctr; //external choice

choice ctr {
<ctr> Inc; // increment value, continue
<!int; > Val; // send value, terminate

¥

choice

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

20

Process implementations in CLOO

session type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps () {
loop { loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;

case Val: .. ; case Val: .. ;

b1} b1}

20

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps () {
loop { loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;
case Val: .. ; case Val: .. ;

b1} b1}

client

bit bit bit eps

20

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctrbit(bool b, ctr Sh) { ctr $1 eps () {
loop loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;
case Val: .. ; case Val: .. ;

b1} b1}

offering channel

client

bit bit bit eps

20

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps () {
loop { loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;
case Val: .. ; case Val: .. ;

b1} b1}

client

bit bit bit eps

21

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 bit (bool b, { ctr $1 eps() {

loop { loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;
case Val: .. ; case Val: .. ;

b1l IS8

channel resources

client

3
(D)ot (02)oi

eps

21

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps () {
loop { loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;
case Val: .. ; case Val: .. ;

IS IS8

client

21

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr S1 bit ctr Sh) { ctr $1 eps () {

loop { loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;
case Val: .. ; case Val: .. ;
b1} b1}
local state

client

hi bit

eps

22

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps () {
loop { loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;
case Val: .. ; case Val: .. ;

IS IS8

client

22

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps () {
loop { loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;
case Val: .. ; case Val: .. ;
F 1} b1}
5 = 1x20 0 x 2 1 x 22

client

hi bit

eps

22

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps () {
loop { loop {
switch (S1) { switch (S1) {
case Inc: .. ; case Inc: .. ;
case Val: .. ; case Val: .. ;

IS IS8

client

23

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr S1 bit (bool b, ctr Sh) { ctr $1 eps () {
loop { loop {
switch switch ($1) {

IS IS8

client

case Inc: .. ;
case Val: .. ; case Val: .. ;

24

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr S1 bit (bool b, ctr Sh) {
loop {
switch 1
case
case Val: .. ;

IS

client

24

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr S1 bit (bool b, ctr Sh) {

loop { 1f (b == false) {
switch b = true;
case } else {
case Val: .. ; Sh.Inc;
}h} b = false;

}

client

24

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr S1 bit (bool b, ctr Sh) {

loop {
switch ($1) {
case Inc: .. ;
case Val: .. ;

IS

client

25

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr S1 bit (bool b, ctr Sh) { ctr $1 eps () {
loop { loop {

switch ($1) { switch ($1) {
case Inc: .. ; case :
case Val: .. ; case Val: .. ;

IS IS8

client

25

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 eps () {

loop {
switch ($1) {
case
case Val: .. 7

IS8

client

25

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 eps () {

loop {
switch ($1) {
case
ctr $z = eps(); case vVal: .. ;
$1 = bit(true, $z); 111

client

25

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 eps () {

loop {
switch ($1) {
case
ctr $z = eps(); case vVal: .. ;
$1 = bit(true, $z); 111

client

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 eps () {

loop {
switch ($1) {
case
ctr $z = eps(); case vVal: .. ;
$1 = bit(true, $z); 111

client

Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 eps () {

loop {
switch ($1) {
case
ctr $z = eps(); case vVal: .. ;

$l = bit(true, SZ),’ }}}

Basic correspondence

P Otecssspocess

A process has state and identity. Process state: local + protocol.

P Pocsssmsecwsited

Process local state can only be read or written by process.
Protocol state can only be changed by message exchange.

= Method invocations s rcshes ofsbss fom extemalchokce

Processes also permit sends of labels from internal choice.

P Foomncsssscrames

Channels are bidirectional and linear. Ownership transfer possible.
27

Structural subtyping

Structural subtyping

subtype:

28

Structural subtyping

subtype:

=> curnczis asubtype of ot scosptsat st same chokoss

28

Structural subtyping

supertype: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!'int; > Val;};

SUtﬁype: typedef <?choice ctr 1inc2> ctr inc2;
choice ctr inc2 {
<ctr 1inc2> Inc;
<ctr 1inc2> Inc2;
<!lint; > Val;

b g

=> iz is asubtyps o i t acospts atess samechoicss
=> subiyping ariss between extemal an temalhices

28

Outline

Background: linear session types

Basic correspondence between CLOO - object-oriented concepts:
* Objects as processes
e Dynamic dispatch

e Structural subtyping

Conclusions

29

Type-directed delegation

subtype:

30

Type-directed delegation

SUpertype: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

SUtﬁype: typedef <?choice ctr inc2> ctr 1inc2;
cholce ctr inc2 {
<ctr 1inc2> Inc;
<ctr 1inc2> Inc2;
<!lint, > Val;
I
Process.

ctr inc2 Sc counter inc2(ctr $d) |
loop {
switch (Sc) {
case Inc2: Sd.Inc; Sd.Inc; break;
default:

Sc <=> $d; //type-directed delegation to ‘0"
b}

Type-directed delegation

supertype:

subtype:

process:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

typedef <?choice ctr inc2> ctr 1inc2;
choice ctr inc2 {

<ctr 1inc2> Inc;
<ctr 1inc2> Inc2;
<lint; > Val;

b

ctr inc2 Sc counter inc2(ctr $d) |
loop {
switch (Sc) {
case Inc2: Sd.Inc; Sd.Inc; break;

b1l

30

Type-directed delegation

SUpertype: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

SUtﬁype: typedef <?choice ctr inc2> ctr 1inc2;
choice ctr inc2 {
<ctr 1inc2> Inc;
<ctr 1nc2> Inc2;
<lint; > Val;

b

c2 (ctr Sd) {

case Inc2: Sd.Inc; Sd.Inc;

default:
Sc <=> $d; //type-directed delegation to ‘0"

break;

b1l

30

INnternal cholice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

bit string as internal choice:

typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

31

INnternal cholice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

bit string as internal choice:

typedef {:khoice bits> bits;
choice bits {<> Eps; {:Fool; bits> Bit; };

31

INnternal cholice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int;

bit string as internal choice:

typedef {:Fhoice bits> bits;
choice bits {<> Eps; {:Fool;

=)

> Val; };

bits> Bit; };

31

External vs internal choice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps() {

} }

bit string as internal choice:

typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

bits Ssucc inc(bits Sctr) {..} <!int;> Sval wval (bits S$Sctr) {..}

bits Szero zero () {..}

32

External vs internal choice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $1[bitfbool b, ctr $h) | ctr $1[epsf)

} }

bit string as internal choice:

typedef <!choice_pits> bits;

choice bits {<> <!bool; bits> Y

bits Ssucc inc(bits Sctr) {..} <!lint;> Sval val (bits Sctr)

bits Szero zero () {..}

{..

J

32

External vs internal choice

bit string as external choice:

bit string as internal choice:

3

2

External vs internal choice

bit string as external choice:

bit string as internal choice:

P Ledwdfeantpogam moddatzaton

32

External vs internal choice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!'int,;, > Val;};

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps() {

} }

bit string as internal choice:

typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

P Ledwdfeentpogan mosizaton
> e

Conclusions

A fresh look at object-oriented programming
e accommodates existing and new object-oriented features
* inherently concurrent and protocol-aware

Ongoing work:
e compiler support of subtyping and type-directed delegation
e cxtend formalization

Future work:

* polymorphism for generic data structures
e affine and shared channels

* shared channels combined with traditional locking primitives

33

