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The essence of object-orientation

39 concepts (“quarks”) of object-orientation [Armstrong06]: 
object, encapsulation, message passing, information hiding, dynamic 
dispatch, reuse, modularization, inheritance, etc.

Object-orientation in its inception: 
• Objects encapsulate state (Simula) 
• Objects interact by message exchange (Smalltalk, Actor model) 

Object-orientation to Alan Kay [public email]: 
“OOP to me means only messaging, local retention and protection and 
hiding of state-process, and extreme late-binding of all things. It can be 
done in Smalltalk and in LISP. There are possibly other systems in which 
this is possible, but I’m not aware of them.”
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Objects encapsulate state

Computation by message exchange

Messages are exchanged simultaneously

State transitions due to message exchange

Suggested model of computation:

• inherently concurrent 
• allows expression of valid sequences of state transitions



This paper in a nutshell

A fresh look at object-oriented programming: 
• Objects as processes 
• Objects interact by sending messages along channels, where objects 

are identified with offering channel 
• Channels (and offering object) are typed by linear session types, 

making client own the offering object 

We introduce the programming language CLOO and show that: 
• typical oo patterns (dynamic dispatch, subtyping) arise naturally 
• new forms of expression (type-directed reuse, internal choice) emerge 

Important concern: 
• Support program reasoning, whilst maintaining object-oriented style
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Contributions

Concurrent message-passing programming model with: 
• static protocol assurance 
• absence of data races and deadlocks 

Object-oriented programming model with: 
• typical oo concepts (encapsulation, dynamic dispatch, subtyping) 
• new forms of expressions (type-directed reuse, internal choice) 

Prototype compiler: 
• Supports most of presented features 

Progress and preservation proof (in meantime): 
• for core subset of language
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17[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

hd c, g h

Linearity guarantees session fidelity and freedom from data 
races and deadlock
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Objects as processes

A process has state and identity.  Process state: local + protocol.

Processes are encapsulated

Process local state can only be read or written by process.
Protocol state can only be changed by message exchange.

Method invocations as receives of labels from external choice

Processes also permit sends of labels from internal choice.

References as channels

Channels are bidirectional and linear.  Ownership transfer possible.
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subtyping arises between external and internal choices

supertype:
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process:inferable from session type declaration 
and subtyping relationship
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choice ctr {<ctr> Inc; <!int; > Val;};

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits; 
choice bits {<> Eps; <!bool; bits> Bit;};

Bit string is represented in terms of Bit and Eps messages, 
rather than bit and eps processes
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typedef <?choice ctr> ctr; 
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) { 
 … 
}

ctr $l eps() { 
  … 
}

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits; 
choice bits {<> Eps; <!bool; bits> Bit;};

Lead to different program modularization

External choice facilitates addition of new variants, internal 
choice addition of new operations



Conclusions

A fresh look at object-oriented programming 
• accommodates existing and new object-oriented features 
• inherently concurrent and protocol-aware 

Ongoing work: 
• compiler support of subtyping and type-directed delegation 
• extend formalization 

Future work: 
• polymorphism for generic data structures 
• affine and shared channels 
• shared channels combined with traditional locking primitives
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