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39 concepts (“guarks”) of object-orientation [Armstrong0o6]:

object, encapsulation, message passing, information hiding, dynamic
dispatch, reuse, modularization, inheritance, etc.

Object-orientation in its inception:
e Objects encapsulate state (Simula)
* Objects interact by message exchange (Smalltalk, Actor model)

Object-orientation to Alan Kay [public email]:

“O0P to me means only messaging, local retention and protection and

hiding of state-process, and extreme late-binding of all things. It can be

done in Smalltalk and in LISE There are possibly other systems in which
this is possible, but I’'m not aware of them.”
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Suggested model of computation:
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This paper in a nutshell

A fresh look at object-oriented programming:
e Objects as processes

* Objects interact by sending messages along channels, where objects
are identified with offering channel

e Channels (and offering object) are typed by linear session types,
making client own the offering object

We introduce the programming language CLOO and show that:
e typical 0o patterns (dynamic dispatch, subtyping) arise naturally
* new forms of expression (type-directed reuse, internal choice) emerge

Important concern:

e Support program reasoning, whilst maintaining object-oriented style



Contributions

Concurrent message-passing programming model with:
e static protocol assurance
® absence of data races and deadlocks

Object-oriented programming model with:
e typical 00 concepts (encapsulation, dynamic dispatch, subtyping)
* new forms of expressions (type-directed reuse, internal choice)

Prototype compller:
e Supports most of presented features

Progress and preservation proof (in meantime):
e for core subset of language
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typedef <?choice ctr> ctr; //external choice

choice ctr {
<ctr> Inc; // increment value, continue
<!int; > Val; // send value, terminate

¥

choice
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Process implementations in CLOO

3ession type: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

process implementation as bit string:

ctr $1 eps () {

loop {
switch ($1) {
case
ctr $z = eps(); case vVal: .. ;

$l = bit(true, SZ),’ }}}




Basic correspondence

P Otecssspocess

A process has state and identity. Process state: local + protocol.

P Pocsssmsecwsited

Process local state can only be read or written by process.
Protocol state can only be changed by message exchange.

= Method invocations s rcshes ofsbss fom extemalchokce

Processes also permit sends of labels from internal choice.

P Foomncsssscrames

Channels are bidirectional and linear. Ownership transfer possible.
27
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Structural subtyping

supertype: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!'int; > Val;};

SUtﬁype: typedef <?choice ctr 1inc2> ctr inc2;
choice ctr inc2 {
<ctr 1inc2> Inc;
<ctr 1inc2> Inc2;
<!lint; > Val;

b g

=> iz is asubtyps o i t acospts atess samechoicss
=> subiyping ariss between extemal an temalhices
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subtype:

process:
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Type-directed delegation

SUpertype: typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

SUtﬁype: typedef <?choice ctr inc2> ctr 1inc2;
choice ctr inc2 {
<ctr 1inc2> Inc;
<ctr 1nc2> Inc2;
<lint; > Val;

b

c2 (ctr Sd) {

case Inc2: Sd.Inc; Sd.Inc;

default:
Sc <=> $d; //type-directed delegation to ‘0"

break;

b1l
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INnternal cholice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

bit string as internal choice:

typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};
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typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int;

bit string as internal choice:

typedef {:Fhoice bits> bits;
choice bits {<> Eps; {:Fool;

=)

> Val; };

bits> Bit; };
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External vs internal choice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps() {

} }

bit string as internal choice:

typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

bits Ssucc inc(bits Sctr) {..} <!int;> Sval wval (bits S$Sctr) {..}

bits Szero zero () {..}
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External vs internal choice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $1[bitfbool b, ctr $h) | ctr $1[epsf)

} }

bit string as internal choice:

typedef <!choice_pits> bits;

choice bits {<> <!bool; bits> Y

bits Ssucc inc(bits Sctr) {..} <!lint;> Sval val (bits Sctr)

bits Szero zero () {..}

{..

J
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External vs internal choice

bit string as external choice:

bit string as internal choice:

3

2
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bit string as external choice:

bit string as internal choice:

P Ledwdfeantpogam moddatzaton
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External vs internal choice

bit string as external choice:

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!'int,;, > Val;};

ctr $1 bit(bool b, ctr Sh) { ctr $1 eps() {

} }

bit string as internal choice:

typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

P Ledwdfeentpogan mosizaton
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Conclusions

A fresh look at object-oriented programming
e accommodates existing and new object-oriented features
* inherently concurrent and protocol-aware

Ongoing work:
e compiler support of subtyping and type-directed delegation
e cxtend formalization

Future work:

* polymorphism for generic data structures
e affine and shared channels

* shared channels combined with traditional locking primitives
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