
Objects as Session-Typed Processes

Stephanie Balzer and Frank Pfenning
Computer Science Department, Carnegie Mellon University

AGERE! 2015

The essence of object-orientation

2

The essence of object-orientation

39 concepts (“quarks”) of object-orientation [Armstrong06]:
object, encapsulation, message passing, information hiding, dynamic
dispatch, reuse, modularization, inheritance, etc.

2

The essence of object-orientation

39 concepts (“quarks”) of object-orientation [Armstrong06]:
object, encapsulation, message passing, information hiding, dynamic
dispatch, reuse, modularization, inheritance, etc.

Object-orientation in its inception:
• Objects encapsulate state (Simula)
• Objects interact by message exchange (Smalltalk, Actor model)

2

The essence of object-orientation

39 concepts (“quarks”) of object-orientation [Armstrong06]:
object, encapsulation, message passing, information hiding, dynamic
dispatch, reuse, modularization, inheritance, etc.

Object-orientation in its inception:
• Objects encapsulate state (Simula)
• Objects interact by message exchange (Smalltalk, Actor model)

Object-orientation to Alan Kay [public email]:
“OOP to me means only messaging, local retention and protection and
hiding of state-process, and extreme late-binding of all things. It can be
done in Smalltalk and in LISP. There are possibly other systems in which
this is possible, but I’m not aware of them.”

2

The essence of object-orientation

3

Objects encapsulate state

Computation by message exchange

Messages are exchanged simultaneously

State transitions due to message exchange

The essence of object-orientation

3

Objects encapsulate state

Computation by message exchange

Messages are exchanged simultaneously

State transitions due to message exchange

Suggested model of computation:

• inherently concurrent
• allows expression of valid sequences of state transitions

This paper in a nutshell

A fresh look at object-oriented programming:
• Objects as processes
• Objects interact by sending messages along channels, where objects

are identified with offering channel
• Channels (and offering object) are typed by linear session types,

making client own the offering object

We introduce the programming language CLOO and show that:
• typical oo patterns (dynamic dispatch, subtyping) arise naturally
• new forms of expression (type-directed reuse, internal choice) emerge

Important concern:
• Support program reasoning, whilst maintaining object-oriented style

4

Contributions

Concurrent message-passing programming model with:
• static protocol assurance
• absence of data races and deadlocks

Object-oriented programming model with:
• typical oo concepts (encapsulation, dynamic dispatch, subtyping)
• new forms of expressions (type-directed reuse, internal choice)

Prototype compiler:
• Supports most of presented features

Progress and preservation proof (in meantime):
• for core subset of language

5

Outline

Background: linear session types

Basic correspondence between CLOO - object-oriented concepts:
• Objects as processes
• Dynamic dispatch
• Structural subtyping

New forms of expression:
• Type-directed delegation
• Internal Choice

Conclusions

6

Outline

Background: linear session types

Basic correspondence between CLOO - object-oriented concepts:
• Objects as processes
• Dynamic dispatch
• Structural subtyping

New forms of expression:
• Type-directed delegation
• Internal Choice

Conclusions

6

Linear session-based communication

7[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c (object)(object’s owner)

Linear session-based communication

8[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

session type
defines protocol

(object)(object’s owner)

Linear session-based communication

9[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

<! int; >

(object)(object’s owner)

Linear session-based communication

9[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

<! int; >

(object)(object’s owner)

output

Linear session-based communication

9[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

<! int; >

10
(object)(object’s owner)

Linear session-based communication

9[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

<! int; >

10
(object)(object’s owner)

Linear session-based communication

9[Based on intuitionistic linear sequent calculus]

client process 10
(object’s owner)

Linear session-based communication

10[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c (object)(object’s owner)

Linear session-based communication

10[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

ctr = ?{<!int; > Val; <ctr> Inc}
read-once counter:

(object)(object’s owner)

Linear session-based communication

10[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

ctr = ?{<!int; > Val; <ctr> Inc}
read-once counter:

(object)(object’s owner)

input

Linear session-based communication

10[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

ctr = ?{<!int; > Val; <ctr> Inc}
read-once counter:

(object)(object’s owner)

Linear session-based communication

10[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

ctr = ?{<!int; > Val; <ctr> Inc}
read-once counter:

(object)(object’s owner)

recursive session type

Linear session-based communication

11[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

ctr = ?{<!int; > Val; <ctr> Inc}

Inc

read-once counter:

(object)(object’s owner)

Linear session-based communication

11[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

ctr = ?{<!int; > Val; <ctr> Inc}

Inc

read-once counter:

(object)(object’s owner)

Linear session-based communication

11[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

ctr = ?{<!int; > Val; <ctr> Inc}
read-once counter:

(object)(object’s owner)

Linear session-based communication

12[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

ctr = ?{<!int; > Val; <ctr> Inc}

Val

read-once counter:

(object)(object’s owner)

Linear session-based communication

12[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

ctr = ?{<!int; > Val; <ctr> Inc}

Val

read-once counter:

(object)(object’s owner)

Linear session-based communication

12[Based on intuitionistic linear sequent calculus]

client process offering process

bidirectional channel
c

read-once counter:
<!int; >

(object)(object’s owner)

Linear session-based communication

13[Based on intuitionistic linear sequent calculus]

client process offering processc (object)(object’s owner)

Linear session-based communication

14[Based on intuitionistic linear sequent calculus]

c

Linear session-based communication

14[Based on intuitionistic linear sequent calculus]

cd

g

h

Linear session-based communication

15[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

h

Linear session-based communication

15[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

hg, hcd

Linear session-based communication

16[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

hg, hcd

g

Linear session-based communication

16[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

hg, hcd

g

Linear session-based communication

16[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

hd c, g h

Linear session-based communication

16[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

hd c, g h

Linear session-based communication

16[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

hd c, g h

Processes form (dynamically changing) tree

Linear session-based communication

17[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

hd c, g h

Linear session-based communication

17[Based on intuitionistic linear sequent calculus]

c

linearity: channels as resources

d

g

hd c, g h

Linearity guarantees session fidelity and freedom from data
races and deadlock

Outline

Background: linear session types

Basic correspondence between CLOO - object-oriented concepts:
• Objects as processes
• Dynamic dispatch
• Structural subtyping

New forms of expression:
• Type-directed delegation
• Internal Choice

Conclusions

18

Session types in CLOO

19

typedef <?choice ctr> ctr; // external choice
choice ctr {
 <ctr> Inc; // increment value, continue
 <!int; > Val; // send value, terminate
};

Session types in CLOO

19

typedef <?choice ctr> ctr; // external choice
choice ctr {
 <ctr> Inc; // increment value, continue
 <!int; > Val; // send value, terminate
};

choice

Process implementations in CLOO

20

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

session type:

Process implementations in CLOO

20

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

Process implementations in CLOO

20

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

h1
bit bit

h2
bit

h3
eps

client

Process implementations in CLOO

20

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

h1
bit bit

h2
bit

h3
eps

client

offering channel

Process implementations in CLOO

21

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

h1
bit bit

h2
bit

h3
eps

client

Process implementations in CLOO

21

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

h1
bit bit

h2
bit

h3
epsh1 h2 h3

client

channel resources

Process implementations in CLOO

21

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

h1
bit bit

h2
bit

h3
epsh1 h2 h3

client

Process implementations in CLOO

22

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

01
h1

bit bit

1
h2

bit
h3

epsh1 h2 h3

client

local state

Process implementations in CLOO

22

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

01
h1

bit bit

1
h2

bit
h3

epsh1 h2 h3

client

Process implementations in CLOO

22

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

01
h1

bit bit

1
h2

bit
h3

epsh1 h2 h3

1 × 20 0 × 21 1 × 22=5

client

Process implementations in CLOO

23

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

01
h1

bit bit

1
h2

bit
h3

epsh1 h2 h3

client

Process implementations in CLOO

24

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

1
h2

bit
h3

epsh1 h2 h3

client

Process implementations in CLOO

24

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

1
h2

bit
h3

epsh1 h2 h3

client

Process implementations in CLOO

24

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

1
h2

bit
h3

epsh1 h2 h3

if (b == false) {
 b = true;
} else {
 $h.Inc;
 b = false;
}

client

Process implementations in CLOO

25

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

0
h2

bit
h3

epsh1 h2 h3

client

Process implementations in CLOO

25

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

0
h2

bit
h3

epsh1 h2 h3

client

Process implementations in CLOO

25

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

0
h2

bit
h3

epsh1 h2 h3

client

Process implementations in CLOO

25

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

0
h2

bit
h3

epsh1 h2 h3

ctr $z = eps();
$l = bit(true, $z);

client

Process implementations in CLOO

25

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

0
h2

bit
h3

epsh1 h2 h3

ctr $z = eps();
$l = bit(true, $z);

eps
h4

client

Process implementations in CLOO

26

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

0
h2

bit

1h3
bith1 h2 h3

ctr $z = eps();
$l = bit(true, $z);

h4
eps

client

h4

Process implementations in CLOO

26

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l eps() {
 loop {
 switch ($l) {
 case Inc: … ;
 case Val: … ;
}}}

session type:

process implementation as bit string:

00
h1

bit bit

0
h2

bit

1h3
bith1 h2 h3

ctr $z = eps();
$l = bit(true, $z);

h4
eps

client

h4Dynamic dispatch of labels

Basic correspondence

27

Objects as processes

A process has state and identity. Process state: local + protocol.

Processes are encapsulated

Process local state can only be read or written by process.
Protocol state can only be changed by message exchange.

Method invocations as receives of labels from external choice

Processes also permit sends of labels from internal choice.

References as channels

Channels are bidirectional and linear. Ownership transfer possible.

Structural subtyping

28

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

Structural subtyping

28

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

typedef <?choice ctr_inc2> ctr_inc2;
choice ctr_inc2 {
 <ctr_inc2> Inc;
 <ctr_inc2> Inc2;
 <!int; > Val;
};

supertype:

subtype:

Structural subtyping

28

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

typedef <?choice ctr_inc2> ctr_inc2;
choice ctr_inc2 {
 <ctr_inc2> Inc;
 <ctr_inc2> Inc2;
 <!int; > Val;
};

ctr_inc2 is a subtype of ctr, it accepts at least same choices

supertype:

subtype:

Structural subtyping

28

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

typedef <?choice ctr_inc2> ctr_inc2;
choice ctr_inc2 {
 <ctr_inc2> Inc;
 <ctr_inc2> Inc2;
 <!int; > Val;
};

ctr_inc2 is a subtype of ctr, it accepts at least same choices

subtyping arises between external and internal choices

supertype:

subtype:

Outline

Background: linear session types

Basic correspondence between CLOO - object-oriented concepts:
• Objects as processes
• Dynamic dispatch
• Structural subtyping

New forms of expression:
• Type-directed delegation
• Internal Choice

Conclusions

29

Type-directed delegation

30

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

typedef <?choice ctr_inc2> ctr_inc2;
choice ctr_inc2 {
 <ctr_inc2> Inc;
 <ctr_inc2> Inc2;
 <!int; > Val;
};

supertype:

subtype:

Type-directed delegation

30

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

typedef <?choice ctr_inc2> ctr_inc2;
choice ctr_inc2 {
 <ctr_inc2> Inc;
 <ctr_inc2> Inc2;
 <!int; > Val;
};

supertype:

subtype:

ctr_inc2 $c counter_inc2(ctr $d) {
 loop {
 switch ($c) {
 case Inc2: $d.Inc; $d.Inc; break;
 default:
 $c <=> $d; // type-directed delegation to ‘d'
}}}

process:

Type-directed delegation

30

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

typedef <?choice ctr_inc2> ctr_inc2;
choice ctr_inc2 {
 <ctr_inc2> Inc;
 <ctr_inc2> Inc2;
 <!int; > Val;
};

supertype:

subtype:

ctr_inc2 $c counter_inc2(ctr $d) {
 loop {
 switch ($c) {
 case Inc2: $d.Inc; $d.Inc; break;
 default:
 $c <=> $d; // type-directed delegation to ‘d'
}}}

process:

Type-directed delegation

30

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

typedef <?choice ctr_inc2> ctr_inc2;
choice ctr_inc2 {
 <ctr_inc2> Inc;
 <ctr_inc2> Inc2;
 <!int; > Val;
};

supertype:

subtype:

ctr_inc2 $c counter_inc2(ctr $d) {
 loop {
 switch ($c) {
 case Inc2: $d.Inc; $d.Inc; break;
 default:
 $c <=> $d; // type-directed delegation to ‘d'
}}}

process:inferable from session type declaration
and subtyping relationship

Internal choice

31

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

Internal choice

31

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

Internal choice

31

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

Bit string is represented in terms of Bit and Eps messages,
rather than bit and eps processes

External vs internal choice

32

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 …
}

ctr $l eps() {
 …
}

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

bits $succ inc(bits $ctr) {…} <!int;> $val val(bits $ctr) {…}

bits $zero zero() {…}

External vs internal choice

32

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 …
}

ctr $l eps() {
 …
}

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

bits $succ inc(bits $ctr) {…} <!int;> $val val(bits $ctr) {…}

bits $zero zero() {…}

External vs internal choice

32

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 …
}

ctr $l eps() {
 …
}

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

External vs internal choice

32

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 …
}

ctr $l eps() {
 …
}

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

Lead to different program modularization

External vs internal choice

32

typedef <?choice ctr> ctr;
choice ctr {<ctr> Inc; <!int; > Val;};

ctr $l bit(bool b, ctr $h) {
 …
}

ctr $l eps() {
 …
}

bit string as external choice:

bit string as internal choice:
typedef <!choice bits> bits;
choice bits {<> Eps; <!bool; bits> Bit;};

Lead to different program modularization

External choice facilitates addition of new variants, internal
choice addition of new operations

Conclusions

A fresh look at object-oriented programming
• accommodates existing and new object-oriented features
• inherently concurrent and protocol-aware

Ongoing work:
• compiler support of subtyping and type-directed delegation
• extend formalization

Future work:
• polymorphism for generic data structures
• affine and shared channels
• shared channels combined with traditional locking primitives

33

