Algorithms for Equality and Unification in the
Presence of Notational Definitions

Frank Pfenning and Carsten Schiirmann *

Carnegie Mellon University
School of Computer Science
fp@cs.cmu.edu carsten@cs.cmu.edu

1 Introduction

Notational definitions are pervasive in mathematical practice and are therefore
supported in most automated theorem proving systems such as Coq [BT98],
PVS [ORS92], Lego [LP92], or Isabelle [Pau94]. Semantically, notational defi-
nitions are transparent, that is, one obtains the meaning of an expression by
interpreting the result of expanding all definitions. Pragmatically, however, ex-
panding all definitions as they are encountered is unsatisfactory, since it can be
computationally expensive and complicate the user interface.

In this paper we investigate the interaction of notational definitions with
algorithms for testing equality and unification. We propose a syntactic crite-
rion on definitions which avoids their expansion in many cases without losing
soundness or completeness with respect to Gd-conversion. Our setting is the de-
pendently typed A-calculus [HHP93], but, with minor modifications, our results
should apply to richer type theories and logics.

The question when definitions need to be expanded is surprisingly subtle and
of great practical importance. Most algorithms for equality and unification rely
on decomposing a problem

CMl...Mnich...Nn

into
My = Ny,...,M, = N,.

However, if ¢ is defined this is not necessarily complete. For example, if k = A\z. ¢/
then
kM=kN

for every M and N. Always expanding definitions is computationally expensive,
especially when they duplicate their arguments. Expanding them only when the
equality between the arguments fails, often performs much redundant computa-
tion, and, moreover, is incomplete in the presence of meta-variables. For example,
with the same definition for k&,

kX =kc

* This work was supported by NSF Grant CCR-9619584
To appear in TYPES’98, Springer-Verlag LNCS

would succeed without expanding k with the substitution X = ¢, even though
the most general unifier leaves X uninstantiated.

We identify a class of definitions (called strict) for which decomposition
is complete. It also solves a related problem with the completeness of the so-
called occurs-check during unification by generalizing Huet’s rigid path criterion
[Hue75]. Fortunately, most notational definitions are strict in the sense we de-
fine. We do not deal with recursive definitions, for example, which require dif-
ferent considerations and have been treated in the literature on functional logic
programming [Han94]. Other aspects of notational definitions in mathematical
practice have been studied by Griffin [Gri88].

We have implemented a strictness checker and unification algorithm in
Twelf [PS98], an implementation of the logical framework LF which sup-
ports type reconstruction, logic programming, and theorem proving. It has
been applied to a variety of examples from the area of logics and program-
ming languages. The Twelf system is freely available from the Twelf homepage
http://www.cs.cmu.edu/ "twelf.

This paper is organized as follows. In Section 2 we describe a spine formula-
tion of LF with definitions, and in Section 3 a small logic as running example.
In Section 4 we describe the strictness criterion and show its correctness. We
generalize our results from conversion to unification in Section 5 and conclude
and describe future work in Section 6.

2 Language

The type theory underlying the logical framework LF [HHP93] is divided into
three levels: objects, types, and kinds. We deviate from standard formulations
by adopting a spine notation for application [CP97] and by adding definitions.
In spine notation, we write ¢ - My; ...; My; nil for a term ¢ M; ... M, to make its
head explicit. It contributes significantly to the concise presentation of the theory
in Section 4 and corresponds closely to the implementation in Twelf. We use a
for constant type families, x for object-level variables, and ¢ for constructors
(that is, declared constants without a definition) and d for defined constants.
For simplicity, we only allow definitions at the level of objects, but the results
also apply to definitions at the level of types.

Kinds: K :=type| z:A. K

Types: Av=a-S|Hx:A; A

Objects: M :u:=H-S|Xx:AM|M-S

Heads: H:u=x|c|d

Spines: Su=nil | M;S

Signature: X = |X,a: K| X,c: A| X, d:A=M
Contexts: I'ni=-|I,z:A

a-S and H - S are our notation for the application of a variable or constant to
arguments given as a spine. Such terms are in weak head-normal form unless the

constant at the head is defined. For the sake of readability, we omit the trailing
nil from spines, and if the spine is empty, we also omit the “.”. ITz: A;. As is a
function type, which we may write as A; — A, if x does not occur free in As,.
In the examples we sometimes omit types and write definitions as d = M.

As in [CP97] we assume throughout that all objects are in 7-long form. Note
that n-long forms are preserved under (3J-conversion. Working only with n-long
forms simplifies the presentation of the formal judgments and proofs, but is not
essential. Our results still hold if we drop this assumption, both with and without
n-conversion. The notion of definitional equality is then based on (3d-conversion
where §-reduction expands definitions.

M -nil —5 M
(Az:A.M)-(N;S) —g ([N/z]M) - S
d-S —s M-S whered: A=Me X

A (B-redex has the form M - S, a §-redex the form d - S.

We assume that constants and variables are declared at most once in a sig-
nature and context, respectively. As usual we apply tacit renaming of bound
variables to maintain this assumption and to guarantee capture-avoiding substi-
tution.

The LF type theory is defined by a number of mutually dependent judg-
ments which define valid objects, types, kinds, contexts, and signatures, and,
in our case, also heads and spines. We will not reiterate the rules here
(see [HHP93,CP97]). The main typing judgments are of the form I' -, M : A
— expressing that object M has type A in context ' —and '+, S: A > A" —
expressing that the spine S acts as a vector of well-typed arguments to a head
of type A returning a result of type A’. A definition d : A = M is well-formed
in a signature X if - -, M : A.

We generally assume that signature X' is valid and fixed and therefore omit
it from the typing and other related judgments introduced below. We take (36-
conversion as our notion of definitional equality which guarantees that every
well-typed object has an equivalent normal form. Since we also assume that
every object is in 7-long form these normal forms are long nJ-normal forms. We
write M 225 M’ for weak head reduction which applies local 3- or d-reductions.

We write I' = My, = M> to express that two well-typed objects M; and M,
are equivalent modulo #d-conversion. Similarly, for spines, we write I' - S = Ss.

Since all validity judgments are decidable with well-understood algorithms,
we tacitly assume that all objects, types, kinds, spines, heads, contexts, and
signatures are valid and, for equalities, that both sides have the same type or
kind.

Our proofs exploit the following standard properties of definitional equality
based on (é-conversion.

Property 1 (Equivalence).

1. TFM=M.

2. For all Hy, Hs of the form x or ¢,
Fl—Hl-Sleg-SgiflezHgandFl—Slz,S'Q

3. Fl—al-SlzaQ-SgiffalzagandFl—Slz,S'g

4. F")\yAlMlE)\yAQMQ IHFFAlEAQ andF,y:All—Mleg

5. F"HyAlBlEHyAQBQ IHFFAlEAQ andF,y:All—Blng

6. For all M7, M> in which y does not occur free,
F,yAl_MlyEnglﬁ‘FFMlEMQ

7. F"Ml;leMQ;SQ IHFFMlEMQ andFl—Slz,S'g

8. If My ™5 M| and My ™% M} then I' - My = M, iff '+ M} = M

For a well-typed definition d : A = M the head-normal form of M must
always exist and have the shape M = Axy : Ay. ... Az, : Ay. H - S. We call

T1,..., T, argument parameters, and all other parameters in the body H - S local
parameters.
3 Example

To illustrate our algorithms we use the encoding of a small fragment of propo-
sitional intuitionistic logic in LF [HHP93].

Formulas: F ::=T | L| F} D F3

Formulas are represented as a type and each connective as a constant.

o) : type
T = true true : o
10 = false false : o
TF D F, =imp- ("TF ;T imp :0—+0—0

This simple logic can now be extended by negation in the usual way, by
defining -F = F D1, which leads to a definition of the constant not in terms
of the other constants.

not: o — o = AF:o0.imp - (F'; false)

We write - F' to express that the formula F' has a natural deduction, using the
following four rules:

—Uu

FE

G FFOG FF
-7 —1E —— o —=T °-E
FT FE FFOSG -G

As shown in [HHP93], there is an adequate encoding of this calculus in LF.
The judgment - F' is represented as a dependent type family, and the four rules
as object constants.

nd :o0— type

truei :nd - true

falsee : IIF':0.nd - false — nd - F'

impi : [IF:0.IIG:0.(nd- F —nd-G) - nd- (imp - (F;G))
impe : IIF:0.IIG:0.nd - (imp- (F;G)) > nd- F - nd- G

The usual introduction and elimination rules of —=F can then be formulated as
derived rules of inference.

— U

-F

kL F-F FF
-J* ———-FE

- -F FL

Clearly, —I* is a restriction of DI* and —F is a restriction of DE. We repre-
sent these rules as defined constants in LF. This is an example of a notational
definition at the level of derivations.

noti : IIF:o0.(nd- F — nd - false) — nd - (not - F)
= AF:0.\u:(nd- F — nd - false). impi - (F'; false; u)
note : IIF:0.nd- (not- F) — nd- F — nd - false
= AF:0.\up:nd - (not - F). Aug:nd - F.impe - (F; false; uq; uz)

4 Definitions and Algorithms for Equality

In this paper we study only notational definitions. We do not explicitly treat
other forms of definitions, such as recursive definitions, but our techniques are
applicable in more general circumstances. For example, in MLF [HP98] — an
implementation of LF extended with a module system — definitions are used to
express logical interpretations.

Semantically, definitions are transparent, that is, the meaning of any term
can be determined by expanding all definitions. But from a pragmatic point of
view expanding all definitions is unsatisfactory for several reasons. First of all,
even if the definitions are simple, their expansion is likely to be required fre-
quently, in the core of an implementation. Secondly, definitions can duplicate
their arguments, leading to a potential explosion size unless special implemen-
tation techniques are employed. Thirdly, expanding all definitions means that
error messages and other output are often rendered illegible.

In this section we characterize a class of definitions whose expansion can
frequently be avoided when comparing terms for equality. Based on these results,
we show in the next section that the same criterion can be used to even greater
benefit in unification.

4.1 Injectivity

Most algorithms for equality and unification rely on decomposing a problem

into
S1=5 (2)
but if H =d and d : A = M is a notational definition, then (1) stands for

Since = is a congruence, it follows trivially that (2) always implies (3). But
the reverse does not necessarily hold, for example, if M ignores an argument.
We call those terms M for which (3) implies (2) injective. For definitions which
are injective, decomposition is complete. Recall that we assume all signatures,
context, objects, equations, etc. to be valid.

Definition 1 (Injectivity). A definition d : A = M s injective iff for all
contexts A and spines S1 and S,

AFM-S1=M-Sy, implies AF Sy = 5s.

4.2 Strictness

Many algorithms for equality avoid expanding definitions in equations of the
form d- 51 = d- S5 until the equality of the arguments S; = S, fails. If that hap-
pens, definitions are expanded, and the algorithm continues with the expanded
terms, probably redoing much previous computation. Without further improve-
ments such an algorithm could be exponential for first-order terms and worse at
higher types. In contrast, if we know that d is injective, the algorithm can fail
immediately.

Since injectivity is a semantic criterion, we have developed a syntactic cri-
terion called strictness which guarantees injectivity and which can be easily
checked. Informally, a notational definition is said to be strict, if each argu-
ment parameter occurs at least once in a rigid position [Hue75], applied only to
pairwise distinct local parameters. If there are no defined constants, the rigid
positions in a f-normal form are those resulting from erasing the spines following
argument parameters. If there are defined constants we distinguish (inductively)
between strict and non-strict ones: the former are treated like constructors, the
latter are expanded. We also do not consider the head of a definition to be a
rigid position (see Example 2). Our notion of strictness is a crude approximation
of the notion of strictness found in functional programming.

The definition of not, for example, is strict, because F' appears in a rigid
position. noti is also strict, because its argument parameters F' and u occur in
rigid positions. The same holds for note, because F', uy, and uy occur in rigid
positions.

In the following we analyze some counterexamples to illustrate strictness and
its relation to injectivity.

Ezample 1 (Universal quantification). The logic presented in Section 3 can be
extended to first order by introducing terms 7" and a universal quantifier

F:=..|Vz.F

In LF, terms are represented by objects of a new type i, and the universal
quantifier by a new constructor

forall : (i — o) — o.

The (true) formula (Va.F(z)) D F(t) can be defined as
allinst = AF':i — o. AT":i.imp - (forall - F; F - T)

allinst is not strict because T' does not occur in a rigid position, even though
F does. Indeed, if F(z) does not actually depend on x, then ¢ is not uniquely
determined and

allinst - (F; T) = allinst - (F;T")

holds even if T and T” are different.

Ezample 2 (Identity). The definition of the identity at function type, id = AF':
0 — 0.\G:o0. F - G, is not strict for two reasons: the only occurrence of F' is at
the head of the definition, and the only occurrence of G is as an argument to F'.
It is also not injective, because

id - (AF':o. true; false) = id - (AF': 0. true; true)

can be reduced to
true = true.

Ezample 3 (Identity at base type). The definition id' = AF :o. F is not strict
since F' occurs at the head of the definition. However, the identity at base type
is injective. We must rule it out for different reasons (see the discussion of the
occurs-check in unification in Section 5).

Ezample 4 (Application to constant). Consider at = AF':0 — o.not - (F' - true).
Note, that the argument to F' is not a local parameter but a constant. The
definition is hence not strict. The equality problem

at - (AF:0.F)=at- (AF:o.true)
can be expanded to

(AF:0— o.not - (F - true)) - (AF:0. F)
= (AF:0— o.not- (F - true)) - (AF:o0.true)

which holds because not - true = not - true. Hence, the definition is not injective.

The first part in the definition of strictness formalizes the requirement that
arguments to rigid occurrences of argument parameters must be pairwise distinct
local parameters. This is exactly the requirement imposed on higher-order pat-
terns [Mil91]. In the judgments below we generally use I for a context consisting
of argument parameters to a definition, and A consisting of local parameters.

Definition 2 (Pattern spine). Let A be a context, S be a spine. S is a pattern
spine iff A S pat holds which is defined by the following rules:

Al, AQ S pat
s_nil ps-_cons

— P
A+ nil pat A,z A Ay xS pat

The formal system for strictness is defined by four mutually dependent judg-
ments. The central judgment of local strictness, I'; A b, M, enforces that the
argument parameter x occurs in a rigid position in M where it is applied to a
pattern spine. Every argument parameter must be locally strict, which is en-
forced by global strictness, I' & M. As an auxiliary judgment we use relative
strictness, I' , M where the leading abstractions in M are treated as argu-
ment parameters. J-redices and d-redices involving non-strict defined constants
are reduced by M — M’.

Definition 3 (Strictness). Let I' be a context of argument parameters, and A
a context of local parameters. We define

M — M’ M weak head-reduces to M’

;A M x s locally strict in M

'k, M x 18 strict in M

Ir'-m M is strict
by the rules in Figure 1. We say that the definition d : A = M is strict if -+ M
holds.

The main technical contribution of this paper is that strict definitions are
injective. The proof is non-trivial and requires a sequence of properties sketched
below.

Lemma 1 (Pattern spines). Let S be a spine s.t. A+ S pat and My and M,
be objects valid in I' disjoint from A.

IfF,A"MlsEMQS thenFI—Mleg
Proof. By induction over the derivation of A+ S pat.

Using inductions over local, relative, and global strictness, we can then show
the completeness direction of our claim for strict d : A = M:

F"MSlEMSQ 1mphes F"SlESQ

We cannot prove this directly by induction, but must generalize to the following
lemma which requires substitutions 0. We use standard notation for substitu-
tions, which must always be the identity on local parameters (usually declared

d:A=MeX M M-S —sz M
nr_delta - nr_beta
d-S— M-S M-S —M
.................... F’Al—xAF,A,yAI—xM
— Is_d —— Is_lb
Al My:AM Al My:AM
AR, A Iy Ay A bs As
Is_pd Is_pb
'y Ab, ITy: Ayl A ' Al ITy: Aq. A
M—M TI;A+. M d:A=McX -+M I;A+.S
Is_red Is_d
Ak, M I'yAb,d-S
;A S ;AR S
——Isc ——Is.a
I'’Abpc- S I'’Abpa-S
AF Spat Is_pat y:Aed F;A'_xsls_var no rule for I'; Ak, y- S
I'yAbgp x-S I'’At,y-S forz#£y,y: Al
AR, M ;AR S
_ Is_sp
I's Ak, M; S 'y Ak, M; S
M—M Tk, M d:A=MecX WM I;+yd-S
rs_red rs_d
'ty M I't.d-S
Iy Fyc- S Ny: A, M
rs_c rs_lam
I't,c-S 't Ay: A
M—M TFM d:A=McXYX T'+FM-S
gs-red gsd
M rt+d-S
Ne: A, M TIz: A+ M
____gsc gs-lam
I'tc-S I'MXe:A. M

Fig. 1. A formal system for strictness

in A). Because of possible dependencies, a substitution which maps variables
in I' to objects with variables in I/ will map a parameter context A to a con-
text A’ where each declaration y : A in A is mapped to y : Alo]. We write
I'' A’ o : I'; A for valid substitutions.

Lemma 2 (Completeness). Let 01,02 by substitutions which satisfy I''; A"+
o1: A and I''; A’ = oy 2 'y A, respectively.

1. IfI' A, M and I''; A" = Mo1] = M|os] then I'" F o1(z) = o2(x).
2. If I'; A, S and I, A’ S[oq] = S[oz] then I'" F o1(z) = o2(x).

3. If 'ty M and I = Mo1] - S = Mlosz] - S then I'" b o1(z) = oa(x).
4. If'E M and I'"+ M[oq] - S1 = MJoa] - Se then I S; = Ss.

Proof. The four parts are proven by simultaneous induction over the given strict-
ness derivations, using Lemma 1 and Property 1.

As an immediate corollary, strictness is a sufficient criteria for injectivity.

Theorem 1 (Injectivity). Ifd: A= M is strict, that is, -+ M, thend : A =
M is injective.

Proof. Using Lemma 2, part 4, for o1 = 02 = id

The rules of strictness implicitly define an algorithm to decide if a defini-
tion is strict or not. The algorithm traverses the structure of a term visiting all
rigid positions. If it finds at least one occurrence of every argument parameter
of the definition applied to a pattern spine (Is_pat), it stops and signals success.
If the algorithm comes to a defined and strict constant, it applies Is.d or rs_d,
otherwise it expands the definition using Is_red or rs_red, respectively. The algo-
rithm terminates for Is_red and rs_red, because definitions cannot be recursive.
In an implementation of this algorithm, one would annotate each definition with
strictness information, and hence no redundant computation is necessary for Is_d,
rs_d, and nr_delta. A minor variant of this algorithm has been implemented in
the Twelf system [PS98].

It is easy to verify that all definitions from Section 3 satisfy the strictness
condition. Definitions at base type are always strict. Definitions in normal form
whose argument parameters are of base type are strict if each argument param-
eters occurs and it is not the identity. Most notational definitions of these two
forms are thus accepted by our criterion.

At higher types, one more frequently encounters definitions which are not
injective. Consequently, they cannot be strict according to our definition. A more
accurate extension would have to analyze the structure of functional arguments
to higher-order definitions, as in the case of strictness analysis for functional
programming languages (see, for example, [HM94]). However, we suspect one
quickly reaches the point of diminishing returns for this kind of complex analysis.

10

5 Results for Unification

So far we have shown how algorithms for testing equality (that is, (36-
convertibility) can be improved by using strictness. In the presence of meta-
variables these observations can be generalized to unification. We write ¥; A -
My =~ M for a unification problem, where Mj, M, are well-typed objects of the
same type which can contain meta-variables declared in ¥. All other parameters
which are not subject to instantiation are declared in A. So this corresponds to
a JV prefix of a unification problem.

Deciding when to expand definitions is in this setting more subtle than for
plain equality algorithms. Expanding them only in the case of failure may return
a unifier which is not most general and hence renders the algorithm incomplete.
Not expanding them may cause an unnecessary occurs-check failure, yet another
source of incompleteness. The following two examples show these situations.

Ezample 5 (Most-general unifier). Let tr : 0 — o = AF':0. true a definition, and
X a meta variable. The unification problem X : o;- F tr - false ~ tr - X has as
solution @ = false/ X if tr is not expanded. Obviously, this solution is not most
general, since the most general solution leaves X uninstantiated.

Ezample 6 (Occurs-check). Let tr be the same definition as above, and X a meta
variable. The unification problem X : o;- = X =& tr - X has no solution if tr is
not expanded, because X occurs on its left-hand side and as an argument to tr.
But obviously the problem has a solution, © = true/X.

Most unification algorithms decompose a unification problem of the form

into

Ui AR S~ S, (5)

where H is not a defined constant, otherwise they expand the definition. The
unification algorithm for the higher-order pattern fragment [DHKP96] which is
employed in T'welf follows the same technique. But strict definitions do not need
to be be expanded since, because of injectivity, every unifier © of (4) is also a
unifier of (5) and vice versa. This is expressed in the following theorem.

Theorem 2 (Most general unifiers). Let d : A = M be a strict definition.
Then the unification problems

UsARd-S1~=d- S

and
W,Al— Sl ~ SQ

have the same set of solutions.

11

Proof. Let © be a unifier, satisfying ¥'; A’ + 6 : ¥; A.
A (d-51)[O] = (d- S52)[O)]
0L A ($1[6)) = d- (5:06))

iff W/, A/ = Sl [@] = SQ [@]

This guarantees that the unifier determined by the unification algorithm
which does not expand strict definitions unless the two heads differ, is most
general.

In addition, we can extend this algorithm to also treat the occurs-check prob-
lem correctly: We say that ¥; A+ X y; .. yx = M, where X is defined in ¥ and
Y1, -, Yx are parameters in A, fails the occurs-check if X has a strict occurrence in
M (not to be confused with a locally strict one). This is a generalization of Huet’s
original rigid path criterion for non-unifiability by allowing some arguments to
X. Note also that this definition of occurs-check does not need to expand strict
definitions. We show that unification problems which fail the occurs-check do
not have a unifier.

Informally, one assumes a solution © for X and then counts the number of
constructor and parameter occurrences in the normal form of (X y; .. yx)[©] and
M]O)] to arrive at a contradiction, a similar argument as in [Pfe91]. In addition,
we make use of two further properties. First, rigid positions in the arguments
are preserved under normalization, and second, meta-variables can never occur
in the head position of these normal forms.

The proof of the first property is rather difficult because definitions can be
nested. In our proof we resolve this problem by first showing the admissibility
of eliminating definitions and then inductively normalize each defined constant
starting from the inside out. We write nf(M) for the normal form of an object
M, based on Bd-conversion.

Lemma 3 (Admissibility of eliminating definitions). Let o be substitution
satisfying I''; A’ & o : I'; A. Furthermore, let x be in I', y in I, and M, S, o in
normal form.

1. If I'y Ay M, and I''; A’ &y o(z) then IV A’ =y nf (M]o]).
2. If 'y A, S and Iy A+ o(x) then I'; A’ =y nf (S[o]).
3. If 'ty M and I''; A’ vy o(x) then I''; A" =y nf(M[o] - S).
4. IfT'HM and I'"; A’y S then I'"; A" By nf (M[o] - S).

Proof. The four parts are proven by simultaneous induction over the given strict-
ness derivations.

A direct consequence of the admissibility of eliminating definitions is that the
property of being strict is preserved under normalization.

Lemma 4 (Eliminating definitions).

1. If I'; Al M then I'; A, nf(M).

12

2. If I'; A, S then I'; A, nf(S) .
3. If 'ty M then I' b, nf (M).
4. If ' M then I' b nf(M).

Proof. The proof proceeds by simultaneous induction over the given strictness
derivations, using Lemma 3.

To arrive at the contradiction described above, we must ensure that the head
of a definition is never a meta-variable (the head of a A-term is defined as the
head of its body). We call such objects rigid.

Definition 4 (Rigid objects). An object M defined in ¥, A, where parameters
in A are not subject to instantiation, is called a rigid object iff head (nf(M)) is
either a constant or a parameter defined in A.

The head of a definition, no matter to which arguments it is applied, cannot
be a meta-variable.

Lemma 5 (Head). Ifd : A = M is a strict definition (I' &+ M), and o a
substitution with domain I', then M|o]- S is a rigid object.

Proof. By induction over the strictness derivation of I' M.

The other part of the argument involves counting the number of parameter
and constructor occurrences in a term M which we write as |M|. It can be
easily shown that this measure satisfies the following property on the unification
problem in question.

Lemma 6 (Size). Let U; AF X y1 .. yr = M be a unification problem, where
M is strict in X (W; Atx M), and © be a unifier. Then

[nf (X yz - ye)[€])] < |nf (M[O)])]
Proof. By induction over the strictness derivation ¥; A Fx M, using Lemma 4.

The third technical result of our paper can now be stated and proven: If a
unification problem fails the occurs-check, it cannot have any unifiers.

Theorem 3 (Occurs-check). Let M be a rigid object, and ¥ a context of
free variables. Furthermore, let X occur strictly in M (@; A Fx M). Then the

unification problem
W,A"Xyl yk%M

has no unifiers.

Proof. Assume the unification problem fails the occurs-check and has the unifier
©. By Lemma 6, it follows that

[nf (X y1 - y)[O])] < |nf (M]O)])]

but because of Lemma 5 we can show, that

[nf (X g1 - y)[O])] < [nf (M[O])]

contradicting the assumption that @ is a unifier.

13

Hence, a unification problem which fails the occurs-check does not have any
unifiers. The occurs-check is also the reason why identity functions are not con-
sidered strict. An equation X = id’ - X would fail the occurs-check but have a
solution (where X is uninstantiated).

Therefore, strict definitions can be treated mostly as constructors in a unifi-
cation algorithm. They must be expanded only in the case of a constant clash at
the head during decomposition of so-called rigid-rigid equations. The unification
algorithm remains sound and complete. Note that this observation is indepen-
dent of whether one uses an algorithm based on Miller’s higher-order patterns
or Huet’s original algorithm for higher-order unification.

6 Conclusion

We have identified a class of strict notational definitions and analyzed the way
they interact with algorithms for equality and unification. Notational definitions
must be expanded only in the case of constant clash. This property can be
exploited to make many implementations of these algorithms more efficient, while
preserving completeness and soundness with respect to Gd-conversion. We also
presented an algorithm to efficiently check definitions for strictness.

Many theorem provers rely on an ad hoc treatment of definitions. We believe
that these systems can benefit from the results in this paper in terms of efficiency
and robustness.

In future work we plan to evaluate the concept of strictness empirically in
our implementation. If warranted by the results, we may investigate partially
strict definitions, that is, definitions, where some of the argument parameters
are locally strict and others are not. In such a situation definitions may only
need to be “partially expanded”, comparing the strict and reducing the non-
strict argument positions.

References

[B*98] Bruno Barras et al. The Coq Proof Assistant, Reference Manual, Version
6.2. INRIA, CNRS, France, 1998.

[CP97] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Technical
Report CMU-CS-97-125, CMU, 1997.

[DHKP96] Gilles Dowek, Thérese Hardin, Claude Kirchner, and Frank Pfenning.
Unification via explicit substitutions: The case of higher-order patterns.
In Joint International Conference and Symposium on Logic Programming
(JICSLP’96), Bonn, Germany, 1996.

[Gri88] Timothy G. Griffin. Notational definition — a formal account. In Third
Annual Symposium on Logic in Computer Science, Edinburgh, Scotland,
pages 372-383. IEEE, July 1988.

[Han94] M. Hanus. The integration of functions into logic programming: From theory
to practice. Journal of Logic Programming, 19420:583-628, 1994.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery, 40(1):143—
184, January 1993.

14

[HM94]

[HP9S]

[Hue75]

[LP92]

[Mil91]

[ORS92]

[Pau94]

[Pfe91]

[PS98]

Chris Hankin and Daniel Le Métayer. Deriving algorithms from type in-
ference systems: Application to strictness analysis. In Proceedings of the
Twenty-First Annual ACM Symposium on Principles of Programming Lan-
guages, Portland, pages 202-212. ACM, January 1994.

Robert Harper and Frank Pfenning. A module system for a programming
language based on the LF logical framework. Journal of Logic and Com-
putation, 8(1):5-31, 1998. A preliminary version is available as Technical
Report CMU-CS-92-191, September 1992.

Gérard Huet. A unification algorithm for typed A-calculus. Theoretical
Computer Science, 1:27-57, 1975.

Zhaohui Luo and Robert Pollack. The LEGO proof development system:
A user’s manual. Technical Report ECS-LFCS-92-211, University of Edin-
burgh, May 1992.

Dale Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. Journal of Logic and Computation,
1(4):497-536, 1991.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748-752, Saratoga, NY, June 1992. Springer-Verlag.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag
LNCS 828, 1994.

Frank Pfenning. Unification and anti-unification in the Calculus of Con-
structions. In Sixth Annual IEEE Symposium on Logic in Computer Science,
pages 74-85, Amsterdam, The Netherlands, July 1991.

Frank Pfenning and Carsten Schiirmann. Twelf User’s Guide, 1.2 edition,
September 1998. Available as Technical Report CMU-CS-98-173, Carnegie
Mellon University.

15

