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Abstract

We describe the core of a new strongly-typed functional programming language

called LEAP, a \Language with Eval And Polymorphism." Pure LEAP is an exten-

sion of the !-order polymorphic �-calculus (F

!

) by global de�nitions that allows the

representation of programs and the de�nition of versions of reify, reflect, and eval

for all of F

!

. Pure LEAP is therefore highly re
exive and strongly typed. We believe

that Pure LEAP can be extended to a practical and e�cient metalanguage in the ML

tradition. At present we are experimenting with a prototype implementation of Pure

LEAP.

1 Introduction

In this paper we describe the core of a new strongly-typed functional programming language

called LEAP, a \Language with Eval And Polymorphism." Our initial motivation came

from the problem of �nding a strongly-typed language suitable for use as a metalanguage

for manipulating programs, proofs, and other similar symbolic data. The language ML [11]

seemed to satisfy many of our criteria, but was not powerful enough to serve as its own

metalanguage in a natural way. (We discuss what we mean by \natural" in Section 2.)

This then led us to the question, �rst posed by Reynolds in [17], of whether strongly-

typed languages admit metacircular interpreters. Conventional wisdom seemed to indicate

that the answer was \No." Our answer is \Almost." After a brief review of F

!

in Section 3,

we explain this answer in Sections 4 and 5 by giving a construction reminiscent of the

re
ective tower of Smith [18,19]. Wand and Friedman's analysis of the re
ective tower [3,22]

emphasizes rei�cation, the translation from programs to data, and re
ection, the translation

from data to programs, as central concepts. In the setting of a strongly-typed functional

language, we have found elegant and concise de�nitions of rei�cation and re
ection.

Somewhat unexpectedly for us, the \tower" begins with an interpreter for the second-

order polymorphic �-calculus (F

2

) (see Girard [5,6] and Reynolds [16]) written in the third-

order polymorphic �-calculus (F

3

). This does not easily extend to higher orders|only
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the addition of global de�nitions with polymorphic kinds to F

!

allowed us to extend the

construction. The result is a core language called Pure LEAP which is strong enough to

allow the de�nition of rei�cation and re
ection functions for all of F

!

.

These theoretical results lead us to ask whether LEAP can be usefully extended while

still preserving this ability to build a re
ective tower. This is, in fact, possible, and we

describe several such extensions in Section 6. First we extend LEAP with inductive data

type de�nitions and primitive recursion (a conservative extension), and then we brie
y

sketch out extensions involving references, exceptions, and general recursion (no longer

conservative, but preserving the re
ection property as before).

We claim that LEAP can be the core of a practical language in which e�cient (meta-)pro-

grams can be written. To test its practicality, we are presently experimenting with a

prototype implementation of LEAP as well as designing a full language around it.

2 Re
ection, Re
exivity, and Static Typing

The idea of re
ection in untyped programming languages can be found in both the early and

the recent literature. In [17] Reynolds gives a metacircular interpreter for a simple, untyped

functional language within itself. This was pursued further by Steele and Sussman [20] and

others. In fact, writing metacircular interpreters has long been a standard practice in

LISP [8,9]. Smith, in [18,19], introduces the notion of the re
ective tower, illustrating it

in the language 3-LISP. Friedman and Wand give their own analysis of the re
ective tower

in [4] and [3,22], isolating rei�cation and re
ection as key concepts.

This paper reports on our attempt to model rei�cation and re
ection in a strongly-typed

language. Our results may be summarized as follows: (1) The third-order polymorphic

�-calculus (F

3

) is powerful enough to represent programs written in the second-order poly-

morphic �-calculus (F

2

) and also the functions reify and reflect. This allows the de�nition

of eval for F

2

in F

3

. (2) If one extends F

!

by allowing polymorphic kinds (forming the Pure

LEAP language), then one can de�ne reify and reflect for all of F

!

, thus falling just short

of a complete metacircular interpreter for all of LEAP. (3) The analogue of the structure

of the re
ective tower emerges when one considers the restriction of Pure LEAP to types

of order n (LEAP

n

). Then LEAP

n+1

is powerful enough to allow the de�nition of F

n

for

n � 2. (4) We conjecture that it is impossible to de�ne reify and reflect for the simply

typed �-calculus in F

2

, that is, the tower begins with an interpreter for F

2

in F

3

.

There are two representation \tricks" that make re
ection possible in Pure LEAP. The

�rst is to dispense entirely with the environments that play such a crucial role in previous

work on metacircular interpreters and re
ective towers. This trick seems necessary, since

environments bind variables of di�erent type, and therefore cannot be typed consistently.

Instead, one uses continuations to reify (represent) �-abstraction. As a result we obtain

a rei�cation mechanism similar to the Lisp quote operator, but in which all variables are

antiquoted (and hence captured in the current environment) at the time they are rei�ed.

(Actually, rei�cation is more akin to the backquote operator, since backquote is typically

used in Lisp to create program data structures containing captured variables.) Hence the
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environments of, for example, 3-LISP are implicitly carried by the rei�ed data structures.

(This is described in greater detail in Section 4.)

The second trick is the solution to the technical challenge of dealing with inductively

de�ned data types with polymorphic constructors. This problem had been addressed in the

literature (see [1] and [11] for two di�erent approaches) only for the case where types are

guaranteed to be uniform over any given element of the inductive type (such as lists: a list

of type � has sublists only of type �). Programs do not have this uniformity property, since

programs of type � can have subprograms of arbitrary type.

2.1 Re
exivity of languages

We are concerned not only with the ability of a language to form a re
ective tower, but also

with how easily and naturally this construction can be expressed. We call this the re
exivity

of the language. We will not attempt to give a formal de�nition for when a language is re-


exive. Instead we will try to give some informal criteria for judging the degree of re
exivity

of a language, the basic one being the ability of a language to serve as its own metalanguage.

This by itself does not seem enough, since then every Turing-complete language would be

re
exive. In addition, we would like to require that the language/metalanguage relationship

is \natural." When is this relationship \natural"? We think the answers to the following

questions provide some hints when evaluating the degree of re
exivity of a language.

� How redundant is the de�nition of a metacircular interpreter? In a highly re
exive

language, the metacircular interpreter should be simple and direct. The more that

features of the object language can be implemented by using the corresponding fea-

tures of the metalanguage, the more re
exive the language. We call this phenomenon

inheritance of object language features from the metalanguage. Typical examples of

features for which inheritance might be desirable are evaluation order (e.g., call-by-

value vs. call-by-name) and, as we shall see, static type-checking.

� How much of the metalanguage can be interpreted by the metacircular interpreter?

Ideally, the metalanguage and object language should coincide.

� Can we de�ne the functions reify and reflect in addition to eval? That is, can we

coerce data into programs and vice versa?

� How well can object language syntax and metalanguage syntax be integrated? We

will mainly ignore this issue: with the aid of good syntactic tools one should always be

able to achieve a reasonably smooth integration of metalanguage and object language.

2.2 Inheritance of metalanguage features

We believe that the concept of inheritance is important when considering the relationship

of a metalanguage to its object language. Inheritance (though not under this name) was

already considered by Reynolds [17]. The following examples should help to illustrate the

concept.
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� AnML interpreter written inML would likely be highly redundant, since type inference

would have to be reimplemented explicitly. In other words, it seems that ML type

inference cannot be inherited, in part because because of the complexity of the data

type of programs, and also because of the \generic" nature of the ML let construct.

Our solution to the generic let problem is discussed in Section 6.1.2.

� An interpreter written for a dynamically-scoped LISP will also be redundant, since

environments must be represented and manipulated explicitly by the interpreter. The

notion of variable binding cannot be inherited and must be programmed explicitly.

However, many other features such as automatic storage management clearly are

inherited in a typical metacircular LISP interpreter. However, our results for LEAP

indicate that a statically-scoped LISP could use closures in the metainterpreter instead

of environments.

� An interpreter for (pure) Prolog without cut written in Prolog is not very redundant,

in particular since uni�cation can be inherited. Other properties, such as whether

search should be conducted in depth-�rst or breadth-�rst order can also be inherited.

Prolog with cut is less re
exive, since the notion of cut must be implemented explicitly

and cannot be inherited.

� In the LEAP language, type inference and variable binding mechanisms will both be

inherited. Evaluation order will also be inherited, thus making LEAP very re
exive.

It should be noted that this is not so important for the pure language, since it has

the strong normalization property (see Theorem 3).

As one can see from the examples, re
exivity is elusive. Care must be taken when

extending a language in order not to lose too much re
exivity. The re
exivity of pure

Prolog, for instance, seems to be diminished by the addition of a cut operator. In other

cases, the re
exivity of a language can be enhanced through strengthening. For example, we

shall see that the addition of explicit polymorphism to the simply-typed �-calculus results

in a highly re
exive language.

Languages that have a strong degree of re
exivity seem in some way to distill the

essence of a computational paradigm into a pure form. We believe that language designers

should pay attention to the issue of re
exivity, in particular when designing a language for

use as a metalanguage. We hope to demonstrate this principle in the following sections

as we describe Pure LEAP, a highly re
exive language based on the !-order polymorphic

�-calculus.

3 The !-Order Polymorphic �-Calculus

In [5,6], Girard de�nes a powerful extension to Church's simply typed �-calculus [2] and goes

on to give a constructive proof of strong normalization for his system. A fragment of Girard's

calculus was independently discovered by Reynolds [16] who introduced abstraction on type

variables and application of functions to types in order to de�ne explicitly polymorphic

functions. Reynolds' calculus is known as the second-order polymorphic �-calculus.
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Here we consider the !-order polymorphic �-calculus, which is an extension of Reynolds'

system but only a fragment of Girard's system (since it omits existentially quanti�ed types).

Our presentation of the calculus contains three distinct syntactic categories: kinds, types,

and terms.

Since our calculus is higher-order, we have, in addition to types of terms, functions from

types to types, etc. We will call every such object a type. The subset of these that are

�rst-order, or, equivalently, of kind \Type," can actually be the type of a term. These and

other properties of the calculus are summarized at the end of this section. Following Girard,

we will write F

n

for the language of the nth-order polymorphic �-calculus, and F

!

for the

union over all �nite orders.

The language should properly be parameterized over a signature for type constructors

and term constants. Since the pure language contains no such constants or constructors,

we will abbreviate the presentation. We use K;K

0

for kinds, �; �; . . . for types and type

variables, � for type variables, M;N; . . . for terms, and x; y; . . . for variables.

De�nition 1 The syntactic categories of kind, type, and term are de�ned inductively by

Kinds K ::= Type j K ! K

0

Types � ::= � j ��:K : � j �� j �) � j ��:K : �

Terms M ::= x j �x:� : M jMN j ��:K : M jM [�]

We will not give the formal type inference system for this language here, but merely

explain it informally. A more formal development can be found in [14]. The � symbol is

used to construct functions that can be applied to a term, yielding a term, and also to build

functions that can be applied to a type, yielding a type. The symbol � constructs functions

that can be applied to types, yielding a term. Such a function will have a � type. The order

of a term in this calculus is determined by what kind of abstractions over types are allowed:

we obtain the second-order polymorphic �-calculus (F

2

) if we allow abstractions only over

type variables of kind Type; we obtain F

3

if we allow abstractions over type variables of

kinds Type! . . .! Type; etc. We use \M 2 �" to indicate that term M has type �, and

\� 2 K" to indicate that � has kind K. We use � to stand for contexts, which uniquely

assign kinds to type variables and types to term variables. We will omit empty contexts.

In the second-order fragment F

2

of F

!

, one can explicitly de�ne common data types

and operations on them, such as natural numbers (int � �� : � ) (� ) �)) �), products,

disjoint sum, and lists (list � �� : �� : (� ) � ) �) ) � ) �). For a good exposition see

Reynolds [15] or B�ohm [1]. We will give an alternative way of de�ning some of these data

types in Section 6.1.3.

Next we de�ne the judgments of the inference system that allow us to �nd valid types

for terms and kinds for types.

De�nition 2 The judgments we use to de�ne when a term is well-typed are:

` � context � is a valid context

` K 2 kind K is a valid kind

� ` � 2 K � has kind K

� ` u 2 � u has type �
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The inference rules used to establish the validity of types, terms, or contexts can be

found in [14]. We will regard �-convertible types and terms (with binders �, �, and �) to

be equal. Thus we will ignore the issues of variable renaming and name clashes.

In the inference rules of the polymorphic �-calculus, we will allow conversion between

��-equivalent types. We de�ne � and � conversions of types as is usually done on terms.

For example, a �-redex has the form (��:K : �)
.

In the conversions for terms we now also include the �-conversion of type applications,

(�� : M) [�] =

�

(�=�)M and the �-conversion, (�� : M [�]) =

�

M , � not free in M , of type

abstractions. We write M =

�

N if M is ��-equivalent to N in this extended sense.

During the remainder of the paper, we will make use of some fundamental properties of

the calculus whose proofs can be found elsewhere (see, for example, [5]) or follow immedi-

ately from known results. We state here only a few of them.

Theorem 3 [Girard] (Basic properties of F

!

)

1. If � `M 2 � then � ` � 2 Type.

2. If � ` � 2 K then � has a unique ��-normal form.

3. If � `M 2 � then M has a unique ��-normal form.

4. � `M 2 � is decidable.

4 Pure LEAP

In order to be able to give a �nitary de�nition of reify and reflect at all levels of F

!

, we

need to allow global de�nition of types and functions with free variables ranging over kinds.

Such variables are generic in the same way that some type variables are generic in ML (see

Milner [12]). We will use the concrete syntax:

� � � global de�nition of � to stand for �

x � M global de�nition of x to stand for M

for global de�nitions of types and terms, respectively. This addition to F

!

is benign in the

sense that given any termM to be type-checked and evaluated in a given global context, we

can �nd an equivalent term N in F

!

itself. N is obtained from M simply by expanding the

de�nitions from the context. This is also how type-checking and evaluation for Pure LEAP

are de�ned. Later, if the language is extended to allow side-e�ects, and a commitment to

call-by-value is made, evaluation must be reconsidered. In Pure LEAP, every term will have

a unique normal form, so the issue of a call-by-value or call-by-name semantics does not

arise.
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5 Re
ection in LEAP

We now describe the representation of programs in Pure LEAP, and present our de�nitions

of reify, reflect, and eval.

5.1 Representation of programs

When attempting to build a re
exive language, the �rst concern must be the ability to

represent programs in the language as data. Two approaches seem plausible: to build in a

new special data type for programs, or to use combinations of existing built-in data types

to represent programs. Since we would like (at the outset) to keep our language as pure as

possible, we will follow the latter approach.

Perhaps the best way to understand this construction is in terms of inductively de�ned

types. An inductively de�ned type is given by a list of its \constructors" and their types.

This is an extension of the datatype construction in ML, since constructors may be ex-

plicitly polymorphic. It is shown in [13] (extending ideas of B�ohm & Berarducci [1]) that

these types do not require an addition to the core language, since inductively de�ned types

are representable by closed types. With this in mind, we can now present a speci�cation of

the type of programs:

indtype � : Type) Type with

rep : ��:Type : �) � �

lam : ��:Type : ��:Type : (�) � �)) � (�) �)

app : ��:Type : ��:Type : � (�) �)) � �) � �

typlam : ��:Type! Type : (��:Type : � (��))) � (��:Type : (��))

typapp : ��:Type! Type : � (��:Type : (��))) ��:Type : � (��)

end

The basic problem is to be able to explicitly de�ne a function � from types to types,

such that �� is a type representing programs of type �. The usual, well-known approach for

de�ning inductive data types in the second-order polymorphic �-calculus (see [1,15]) fails,

but we do not have a proof that such a representation is impossible. The data types that

have been shown to be representable in F

2

either have constructors that are not polymorphic

(such as int � �� : � ) (� ) �) ) �, which has constructors 0:int and succ:int ) int),

or have the property that the type variables in the constructor are uniform over the whole

data type (such as list � �� : �� : (� ) � ) �) ) � ) � with constructors cons:�� :

� ) list � ) list � and nil:�� : list �). This allows the de�nitions of the constructors to be

uniform over this type variable.

An attempt at a straightforward extension of this approach to the case of a data type

of programs fails, since a program of type � may have components of type � ) � and �,

and thus in fact of arbitrary type.

This problem disappears when one goes to the third-order polymorphic �-calculus, since

in it one can explicitly use a function from types to types that maps the type of the
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components to the type of a term. We will begin the formalization of these ideas by giving

an F

3

encoding of F

2

programs. Each line is annotated with a corresponding constructor

function that is de�ned below. We use � for a bound variable of kind Type! Type, that

is, for a function from types to types.

� � �
 : ��:Type! Type :

(�� : �) ��)) (* rep *)

(�� �� : (�) ��)) �(�) �))) (* lam *)

(�� �� : � (�) �)) ��) ��))) (* app *)

(��:Type! Type : (�� : � (��))) � (�� : � �))) (* typlam *)

(��:Type! Type : �(�� : ��)) (�� : �(��)))) (* typapp *)

) �


This is a special case of a very general transformation from an inductive de�nition of a

data type into an encoding into F

!

described in [13]. The de�nitions of the constructors in

this encoding can be found in Figure 1.

rep : �� : �) � �

rep � �� �x:� :

�� �rep �lam �app �typlam �typapp :

rep [�] x

lam : �� �� : (�) � �)) � (�) �)

lam � �� �� �f :�) � � :

�� �rep �lam �app �typlam �typapp :

lam [�] [�] (�x:� : f x [�] rep lam app typlam typapp)

app : �� �� : � (�) �)) � �) � �

app � �� �� �x:�(�) �) �y:�� :

�� �rep �lam �app �typlam �typapp :

app [�] [�] (x [�] rep lam app typlam typapp) (y [�] rep lam app typlam typapp)

typlam : ��:Type! Type : (�� : � (��))) � (�� : � �)

typlam � ��:Type! Type �f :�� : � (��) :

�� �rep �lam �app �typlam �typapp :

typlam [�] (�� : f [�][�] rep lam app typlam typapp)

typapp : ��:Type! Type : � (�� : ��)) (�� : � (��))

typapp � ��:Type! Type �f :� (�� : � �) �� :

�� �rep �lam �app �typlam �typapp :

typapp [�] (f [�] rep lam app typlam typapp) [�]

Figure 1: De�nition of program constructors for F

2

in F

3

.

Several things should be noted in this de�nition:
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1. Representations of programs are not unique. That is, any program M in normal form

can be represented as rep [�]M (� the type of M), but it also has a representation in

terms of lam, app, typlam, typapp, and rep, where rep is applied only to variables.

2. The rep constructor can not be eliminated, since it is crucial in order to convert

bound variables into their representations. We do not see a simple way of �xing this

by changing the type of the lam constructor to �� �� : (� � ) � �) ) � (� ) �),

since that seems to preclude a representation of lam.

5.2 Rei�cation and re
ection

In the de�nition and theorems below we will omit contexts. They can be �lled in easily.

De�nition 4 (Program representation) Let M be a term of F

2

. We de�ne the standard

representation M of M in F

3

inductively as follows:

If x 2 � then x = rep [�]x

If �x:� : M 2 �) � then �x:� : M = lam [�] [�] (�x:� : M)

If M 2 �) � and N 2 � then MN = app [�] [�]MN

If �� : M 2 �� : �� then �� : M = typlam [�] (�� : M)

If M [�] 2 �� then M [�] = typapp [�]M [�]

We de�ne the relation \represents" inductively like the standard representation, except that

rep [�]M (which is not the standard representation of any term unless M is a variable) is

de�ned as representing M .

The following theorem shows that this is a proper representation function, but the

crucial property will of course be that evaluation is de�nable over this representation (see

Theorem 8).

Theorem 5 (Soundness of program representation) Let N 2 �. Then N 2 � �.

Proof: By a simple induction on the structure of N .

Conjecture 6 (Faithfulness of program representation) Let N be a term of type � �. Then

there is an M 2 � such that N represents M .

It should be noted that this conjecture is not critical for the further development of

program representation and evaluation in the remainder of this paper. Should it turn out

that there are terms of type � � which are not the representation of programs of type

�, the representation of the functions de�ned below are still correct on terms that are

representation of programs, and will again produce representations of programs.
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5.3 The de�nition of reflect

The crucial step in the de�nition of eval is the de�nition of reflect, which maps the

representation of a term of type � into a term of type �, that is, reflect: �� : � � ) �.

Such a function will have to do some form of evaluation, since normal-form terms of type

� � can represent terms of type � that are not in normal form.

Let us �rst present the function in the form of an iterative de�nition (see [1] for a

discussion of iterative de�nitions in F

2

and [13] for a generalization that encompasses F

!

).

reflect [�] (rep [�]x) = x

reflect [�) �] (lam [�] [�]x) = �y:� : reflect [�] (xy)

reflect [�] (app [�] [�]x y) = (reflect [�) �]x) (reflect [�] y)

reflect [��:Type : � �] (typlam [�] x) = ��:Type : reflect [��] (x [�])

reflect [��] (typapp [�]x [�]) = reflect [��:Type : � �]x [�]

Note that x and y are object language variables ranging over terms, and that � and � are

object language type variables. These variables are essentially bound over the body of the

iterative de�nition.

Iteratively de�ned functions over inductively de�ned types turn out to be representable

in F

!

. In this case the explicit de�nition of reflect is surprisingly simple. This explicit

de�nition highlights the fact that a program is represented as its own iteration function|

iteration is achieved by applying the representation of a program to each of the cases from

an iterative de�nition. Let id � �� �x:� : x be the polymorphic identity. Then we get in

this case:

reflect : �
 : � 
 ) 


reflect � �
 �p:� 
 :

p [�� : � ]

(�� : id [�])

(�� �� : id [�) �])

(�� �� : id [�) �])

(��:Type! Type : id [�� : � �])

(��:Type! Type : id [�� : � �])

Theorem 7 (Correctness of reflect) Let N 2 � � be some (not necessarily standard)

representation of the term M . Then reflectN =

�

M .

Proof: By induction on the normal form of N in terms of the constructors of �.

5.4 The de�nitions of reify and eval

Given the de�nition of reflect, it is a simple matter to give the de�nition of eval:� �) � �.

Intuitively, eval should take the representation of a term and return a representation of its

normal form. This is achieved simply by composing re
ection with representation. This



LEAP 11

de�nition (given formally below) will not return the standard representation of the normal

form of the term, but rather exploit the fact that every normal form term M can be

represented as repM .

reify : �� : �) � �

reify � rep

eval : �� : � �) � �

eval � �� �x:� � : reify [�] (reflect [�] x)

Theorem 8 (Correctness of eval) Let N 2 � � be some (not necessarily standard) repre-

sentation of the term M . Then eval [�]N 2 � � is a representation of the normal form of

M .

We do not have a simple and intuitive characterization of exactly which functions are

de�nable over the given representation of programs. In particular, we do not know whether

the apparently simpler one-step outermost �-reduction is representable. The problem is

that the �rst argument to lam expects a function of type � ) � �, not of type � � ) � �.

One-step call-by-value reduction is an example of another function (beside evaluation) that

is de�nable, that is, we can evaluate the argument to a top-level �-redex and then perform

one outermost reduction.

5.5 Generalizing to higher types

We will now generalize the de�nition of � to allow representation of programs in F

!

. Note

that a term representing a program in F

n

will be in F

n+1

.

� � �
 : ��:Type! Type :

(�� : �) ��)) (* rep *)

(�� �� : (�) � �)) � (�) �))) (* lam *)

(�� �� : � (�) �)) ��) � �))) (* app *)

(��:K ! Type : (��:K : �(��))) �(��:K : ��))) (* typlam *)

(��:K

0

! Type : �(��:K

0

: � �)) (��:K

0

: � (��)))) (* typapp *)

) � 


This de�nition and the corresponding de�nitions of the constructor functions are now

parameterized over the kinds K and K

0

. Since de�nitions with � are viewed as global, these

kind variables are generic and may be instantiated di�erently at di�erent occurrences of �.

This is a part of the language where full re
exivity fails, since � cannot be represented in

LEAP.

6 Extending Pure LEAP to LEAP

We now turn our attention to extending Pure LEAP to the full \LEAP core language." Our

goal here is to incorporate useful features of functional languages while adhering to the
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principle of re
exivity. Speci�cally, in order to arrive at full LEAP, we make extensions in

two phases: �rst those which can be de�ned entirely within Pure LEAP and hence constitute

only conservative, syntactic extensions, and then the nonconservative, semantic extensions

to Pure LEAP which still preserve re
exivity.

6.1 Syntactic Extensions

We begin with a brief description of the syntactic extensions.

6.1.1 Partial type inference

Explicit polymorphism makes Pure LEAP impractically verbose; a type inference system

for the language is essential. Partial type inference allows the types of bound variables and

the type arguments to terms to be omitted, but type abstractions and placeholders for type

arguments (denoted by [ ]) must be supplied. For example, self-application may be written

as �x : (x [ ] x), but not as �x : (x x). Partial type inference would type-check the former,

but not the latter.

In [14], Pfenning shows that the partial type inference problem for F

!

(and hence LEAP)

is undecidable, but also gives a complete semi-decision procedure based on higher-order

uni�cation. More extensive experiments are necessary in order to gauge the practicality of

this algorithm. Our current prototype uses a �Prolog [10] implementation of this algorithm,

with very encouraging preliminary results.

6.1.2 Generic polymorphism and the * syntax

In the �-calculus, the construction let x = N in M is taken as an abbreviation for (�x :

M)N . The enhanced legibility of the shorthand is due to the lexical proximity of the x and

N . In this form, the let construct can be carried over into LEAP in unadulterated form.

However, in ML the let construct is a convenient and critically important device for

establishing generic polymorphism.

Thus, for example,

let f = �x : x in (f 1; f true)

in ML is type-correct, since �x : x has principle type �) � for a type variable � and this

type variable may be instantiated di�erently at di�erent occurrences of f in the scope of the

binding on f (and is thus called generic). Hence let cannot be treated merely as syntactic

sugar, since the expanded version of the example above,

(�f : (f 1; f true)) (�x : x)

is not type-correct.

This genericity reduces re
exivity since it seems to be impossible for type-checking with

generic type variables to be inherited. We are left, then, with the problem of recovering the

programming convenience of ML's let without destroying the re
exivity of the language.
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The solution we propose introduces additional verbosity over ML, which fortunately can be

\sweetened" with some syntactic sugar.

We would rewrite the example above in LEAP as follows:

let f* = �� : �x:� : x in (f 1; f true)

Here the \starred" identi�er, f*, is de�ned in the body of the let term. The single star

is a purely syntactic, macro-like feature which in this case speci�es that occurrences of the

variable f (without the star) are to be macro-expanded into the term f* [ ].

We adopt this as a general syntactic feature of LEAP so that whenever x* . . . * is de�ned,

in-scope occurrences of x appearing without a type argument are automatically expanded

to x* . . . * [ ]:::[ ], where the number of *'s matches the number of [ ]'s. This essentially

\syntacti�es" generic polymorphism without giving up much expressive convenience (and

still preserving re
exivity). The additional verbosity over ML occurs at the place where a

polymorphic function is de�ned, since type abstractions must be made explicit. However,

functions are typically used much more often than de�ned, and so this overhead does not

seem an undue burden.

Taking the example of eval and the �-constructors from the previous section, we can

replace eval with eval*, rep with rep*, lam with lam**, and so on, in order to make eval

and the �-constructors to appear \generically" polymorphic.

6.1.3 Primitive recursion and inductively-de�ned data types

In [15], Reynolds gives several examples of encodings of inductively-de�ned data types in

the second-order polymorphic �-calculus. Among the examples are integers, lists, and trees.

Nonrecursive data types such as the unit type, pairs, and disjoint sums can also be encoded

in a similar manner as special cases of the general encoding. These encodings require only

the second order, and can be transferred directly into Pure LEAP. Our encoding of the the

type of program representations, �, is an example of such an encoding that seems to require

functions from types to types, i.e., the third-order polymorphic �-calculus.

For a practical language, such encodings are much too unwieldy. Hence, we make a

syntactic extension to Pure LEAP which provides a sublanguage for inductively-de�ned type

speci�cations. An example of such a speci�cation appears in Section 5.1, where we de�ne

the type � using this syntactic extension. A full discussion of the de�nition of primitive

recursion and inductively-de�ned data types in Pure LEAP is given in another paper [13].

6.2 Semantic Extensions

Several features found in languages such as Standard ML can not be de�ned simply through

syntactic extension of Pure LEAP. These include general recursion, polymorphic assignable

references, and polymorphic exceptions (or call/cc).

In all three cases, it appears to be possible to incorporate these features into the language

by adding new constants which embody the desired semantics. Having chosen the constants,
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it remains for us only to verify that re
exivity is not violated by the extensions. For

polymorphic references and exceptions, we have found that the explicit polymorphism in

Pure LEAP with suitable restrictions which can be easily checked, provide an extra degree

of control which eliminates the need for \weak" [7] or \imperative" [21] type variables.

7 Conclusions

As we stated in the introduction, our original goal was to design an practical, statically-

typed language suitable for use as a metalanguage for manipulating programs, proofs, and

other similar symbolic data. What we have attained is Pure LEAP, a statically-typed

language core which admits the de�nition of a metacircular interpreter for a large language

fragment in a natural and direct way. This language is based on the !-order polymorphic

�-calculus of Girard, extended by global de�nitions and some syntactic sugar. In what ways

does Pure LEAP satisfy our original goal? In other words, how well does Pure LEAP serve

as a metalanguage?

Of course, without a serious implementation we can only speculate on this question, but

almost any argument that might be made for ML as a metalanguage can also be made for

LEAP. In addition, Pure LEAP is able to represent and manipulate data (e.g., programs

in object languages) with richer type structures than is possible in ML. How useful this

added power is in practice will require much further investigation and experience with the

language.

Other issues to be studied further include the exact extent of the language, in particular

with respect to additions such as references, exceptions, recursion, and so on. We have

done some preliminary work along these lines, and have some evidence that such extensions

will not destroy the re
exivity of the language. Another issue is the e�cient implemen-

tation of LEAP. Work here is presently underway, with a simple implementation based on

�Prolog currently operational. One of the main challenges appears to be devising e�cient

implementation strategies for inductively-de�ned data types.

We hope to have more to report as the design and implementation of a full language

around Pure LEAP proceeds.
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