LEAP: A Language with Eval And Polymorphism

Frank Pfenning and Peter Lee

Department of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890

Abstract

We describe the core of a new strongly-typed functional programming language
called LEAP, a “Language with Eval And Polymorphism.” Pure LEAP is an exten-
sion of the w-order polymorphic A-calculus (F,) by global definitions that allows the
representation of programs and the definition of versions of reify, reflect, and eval
for all of F,,. Pure LEAP is therefore highly reflexive and strongly typed. We believe
that Pure LEAP can be extended to a practical and efficient metalanguage in the ML
tradition. At present we are experimenting with a prototype implementation of Pure

LEAP.

1 Introduction

In this paper we describe the core of a new strongly-typed functional programming language
called LEAP, a “Language with Eval And Polymorphism.” Our initial motivation came
from the problem of finding a strongly-typed language suitable for use as a metalanguage
for manipulating programs, proofs, and other similar symbolic data. The language ML [11]
seemed to satisfy many of our criteria, but was not powerful enough to serve as its own
metalanguage in a natural way. (We discuss what we mean by “natural” in Section 2.)

This then led us to the question, first posed by Reynolds in [17], of whether strongly-
typed languages admit metacircular interpreters. Conventional wisdom seemed to indicate
that the answer was “No.” Our answer is “Almost.” After a brief review of F|, in Section 3,
we explain this answer in Sections 4 and 5 by giving a construction reminiscent of the
reflective tower of Smith [18,19]. Wand and Friedman’s analysis of the reflective tower [3,22]
emphasizes reification, the translation from programs to data, and reflection, the translation
from data to programs, as central concepts. In the setting of a strongly-typed functional
language, we have found elegant and concise definitions of reification and reflection.

Somewhat unexpectedly for us, the “tower” begins with an interpreter for the second-
order polymorphic A-calculus (F;) (see Girard [5,6] and Reynolds [16]) written in the third-
order polymorphic A-calculus (F3). This does not easily extend to higher orders—only

This research was supported in part by the Office of Naval Research under contract N00014-84-K-0415
and in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 5404, monitored
by the Office of Naval Research under the same contract.

LEAP 2

the addition of global definitions with polymorphic kinds to F, allowed us to extend the
construction. The result is a core language called Pure LEAP which is strong enough to

allow the definition of reification and reflection functions for all of F,.

These theoretical results lead us to ask whether LEAP can be usefully extended while
still preserving this ability to build a reflective tower. This is, in fact, possible, and we
describe several such extensions in Section 6. First we extend LEAP with inductive data
type definitions and primitive recursion (a conservative extension), and then we briefly
sketch out extensions involving references, exceptions, and general recursion (no longer
conservative, but preserving the reflection property as before).

We claim that LEAP can be the core of a practical language in which efficient (meta-)pro-
grams can be written. To test its practicality, we are presently experimenting with a
prototype implementation of LEAP as well as designing a full language around it.

2 Reflection, Reflexivity, and Static Typing

The idea of reflection in untyped programming languages can be found in both the early and
the recent literature. In [17] Reynolds gives a metacircular interpreter for a simple, untyped
functional language within itself. This was pursued further by Steele and Sussman [20] and
others. In fact, writing metacircular interpreters has long been a standard practice in
LISP [8,9]. Smith, in [18,19], introduces the notion of the reflective tower, illustrating it
in the language 3-LISP. Friedman and Wand give their own analysis of the reflective tower
in [4] and [3,22], isolating reification and reflection as key concepts.

This paper reports on our attempt to model reification and reflection in a strongly-typed
language. Our results may be summarized as follows: (1) The third-order polymorphic
A-calculus (F3) is powerful enough to represent programs written in the second-order poly-
morphic A-calculus (F%) and also the functions reify and reflect. This allows the definition
of eval for Fy in Fs. (2) If one extends F,, by allowing polymorphic kinds (forming the Pure
LEAP language), then one can define reify and reflect for all of F,, thus falling just short
of a complete metacircular interpreter for all of LEAP. (3) The analogue of the structure
of the reflective tower emerges when one considers the restriction of Pure LEAP to types
of order n (LEAP,). Then LEAP,; is powerful enough to allow the definition of F, for
n > 2. (4) We conjecture that it is impossible to define reify and reflect for the simply
typed A-calculus in Fy, that is, the tower begins with an interpreter for Fs in Fs.

There are two representation “tricks” that make reflection possible in Pure LEAP. The
first is to dispense entirely with the environments that play such a crucial role in previous
work on metacircular interpreters and reflective towers. This trick seems necessary, since
environments bind variables of different type, and therefore cannot be typed consistently.
Instead, one uses continuations to reify (represent) A-abstraction. As a result we obtain
a reification mechanism similar to the Lisp quote operator, but in which all variables are
antiquoted (and hence captured in the current environment) at the time they are reified.
(Actually, reification is more akin to the backquote operator, since backquote is typically
used in Lisp to create program data structures containing captured variables.) Hence the

LEAP 3

environments of, for example, 3-LISP are implicitly carried by the reified data structures.
(This is described in greater detail in Section 4.)

The second trick is the solution to the technical challenge of dealing with inductively
defined data types with polymorphic constructors. This problem had been addressed in the
literature (see [1] and [11] for two different approaches) only for the case where types are
guaranteed to be uniform over any given element of the inductive type (such as lists: a list
of type a has sublists only of type o). Programs do not have this uniformity property, since

programs of type & can have subprograms of arbitrary type.

2.1 Reflexivity of languages

We are concerned not only with the ability of a language to form a reflective tower, but also
with how easily and naturally this construction can be expressed. We call this the reflezivity
of the language. We will not attempt to give a formal definition for when a language is re-
flexive. Instead we will try to give some informal criteria for judging the degree of reflexivity
of alanguage, the basic one being the ability of a language to serve as its own metalanguage.
This by itself does not seem enough, since then every Turing-complete language would be
reflexive. In addition, we would like to require that the language /metalanguage relationship
is “natural.” When is this relationship “natural”? We think the answers to the following

questions provide some hints when evaluating the degree of reflexivity of a language.

e How redundant is the definition of a metacircular interpreter? In a highly reflexive
language, the metacircular interpreter should be simple and direct. The more that
features of the object language can be implemented by using the corresponding fea-
tures of the metalanguage, the more reflexive the language. We call this phenomenon
inheritance of object language features from the metalanguage. Typical examples of
features for which inheritance might be desirable are evaluation order (e.g., call-by-
value vs. call-by-name) and, as we shall see, static type-checking.

e How much of the metalanguage can be interpreted by the metacircular interpreter?

Ideally, the metalanguage and object language should coincide.

e Can we define the functions reify and reflect in addition to eval? That is, can we

coerce data into programs and vice versa?

e How well can object language syntax and metalanguage syntax be integrated? We
will mainly ignore this issue: with the aid of good syntactic tools one should always be
able to achieve a reasonably smooth integration of metalanguage and object language.

2.2 Inheritance of metalanguage features

We believe that the concept of inheritance is important when considering the relationship
of a metalanguage to its object language. Inheritance (though not under this name) was
already considered by Reynolds [17]. The following examples should help to illustrate the

concept.

LEAP 4

e An ML interpreter written in ML would likely be highly redundant, since type inference
would have to be reimplemented explicitly. In other words, it seems that ML type
inference cannot be inherited, in part because because of the complexity of the data
type of programs, and also because of the “generic” nature of the ML let construct.
Our solution to the generic let problem is discussed in Section 6.1.2.

e An interpreter written for a dynamically-scoped LISP will also be redundant, since
environments must be represented and manipulated explicitly by the interpreter. The
notion of variable binding cannot be inherited and must be programmed explicitly.
However, many other features such as automatic storage management clearly are
inherited in a typical metacircular LISP interpreter. However, our results for LEAP
indicate that a statically-scoped LISP could use closures in the metainterpreter instead

of environments.

e An interpreter for (pure) Prolog without cut written in Prolog is not very redundant,
in particular since unification can be inherited. Other properties, such as whether
search should be conducted in depth-first or breadth-first order can also be inherited.
Prolog with cut is less reflexive, since the notion of cut must be implemented explicitly
and cannot be inherited.

e In the LEAP language, type inference and variable binding mechanisms will both be
inherited. Evaluation order will also be inherited, thus making LEAP very reflexive.
It should be noted that this is not so important for the pure language, since it has
the strong normalization property (see Theorem 3).

As one can see from the examples, reflexivity is elusive. Care must be taken when
extending a language in order not to lose too much reflexivity. The reflexivity of pure
Prolog, for instance, seems to be diminished by the addition of a cut operator. In other
cases, the reflexivity of a language can be enhanced through strengthening. For example, we
shall see that the addition of explicit polymorphism to the simply-typed A-calculus results
in a highly reflexive language.

Languages that have a strong degree of reflexivity seem in some way to distill the
essence of a computational paradigm into a pure form. We believe that language designers
should pay attention to the issue of reflexivity, in particular when designing a language for
use as a metalanguage. We hope to demonstrate this principle in the following sections
as we describe Pure LEAP, a highly reflexive language based on the w-order polymorphic
A-calculus.

3 The w-Order Polymorphic A-Calculus

In [5,6], Girard defines a powerful extension to Church’s simply typed A-calculus [2] and goes
on to give a constructive proof of strong normalization for his system. A fragment of Girard’s
calculus was independently discovered by Reynolds [16] who introduced abstraction on type
variables and application of functions to types in order to define explicitly polymorphic

functions. Reynolds’ calculus is known as the second-order polymorphic A-calculus.

LEAP 5

Here we consider the w-order polymorphic A-calculus, which is an extension of Reynolds’
system but only a fragment of Girard’s system (since it omits existentially quantified types).
Our presentation of the calculus contains three distinct syntactic categories: kinds, types,

and terms.

Since our calculus is higher-order, we have, in addition to types of terms, functions from
types to types, etc. We will call every such object a type. The subset of these that are
first-order, or, equivalently, of kind “Type,” can actually be the type of a term. These and
other properties of the calculus are summarized at the end of this section. Following Girard,
we will write F,, for the language of the nth-order polymorphic A-calculus, and F,, for the

union over all finite orders.

The language should properly be parameterized over a signature for type constructors
and term constants. Since the pure language contains no such constants or constructors,
we will abbreviate the presentation. We use K, K' for kinds, «, 3, ... for types and type

variables, @ for type variables, M, N, ... for terms, and z,y,... for variables.

Definition 1 The syntactic categories of kind, type, and term are defined inductively by

Kinds K := Type|K — K'
Types a = 0|X:K.o|laf|a=F]| ALK .«
Terms M = z|lzia . M|MN |A:K.M|M o

We will not give the formal type inference system for this language here, but merely
explain it informally. A more formal development can be found in [14]. The A symbol is
used to construct functions that can be applied to a term, yielding a term, and also to build
functions that can be applied to a type, yielding a type. The symbol A constructs functions
that can be applied to types, yielding a term. Such a function will have a A type. The order
of a term in this calculus is determined by what kind of abstractions over types are allowed:
we obtain the second-order polymorphic A-calculus (F3) if we allow abstractions only over
type variables of kind Type; we obtain F3 if we allow abstractions over type variables of
kinds Type — ... — Type; etc. We use “M € «” to indicate that term M has type «, and
“a € K” to indicate that o has kind K. We use I' to stand for contexts, which uniquely
assign kinds to type variables and types to term variables. We will omit empty contexts.

In the second-order fragment Fy of F,,, one can explicitly define common data types
and operations on them, such as natural numbers (int = A8 . § = (§ =) = 6), products,
disjoint sum, and lists (list = Aae . A8 . (& = 6 = 0) = 0 =). For a good exposition see
Reynolds [15] or Bohm [1]. We will give an alternative way of defining some of these data

types in Section 6.1.3.

Next we define the judgments of the inference system that allow us to find valid types

for terms and kinds for types.

Definition 2 The judgments we use to define when a term s well-typed are:

F T context I' is a valid context
F K € kind K 15 a valid kind
''Yree K a has kind K

Fr'Fuea u has type o

LEAP 6

The inference rules used to establish the validity of types, terms, or contexts can be
found in [14]. We will regard a-convertible types and terms (with binders A, A, and A) to

be equal. Thus we will ignore the issues of variable renaming and name clashes.

In the inference rules of the polymorphic A-calculus, we will allow conversion between
Bn-equivalent types. We define 8 and # conversions of types as is usually done on terms.
For example, a f-redex has the form (A0:K . a)~.

In the conversions for terms we now also include the #-conversion of type applications,
(Aa . M) [A] = (B/a)M and the n-conversion, (Aa . M [a]) = M, a not free in M, of type
n

abstractions. We write M 5 N if M is Bn-equivalent to N in this extended sense.

During the remainder of the paper, we will make use of some fundamental properties of
the calculus whose proofs can be found elsewhere (see, for example, [5]) or follow immedi-
ately from known results. We state here only a few of them.

Theorem 3 [Girard| (Basic properties of F,)

1. If THFMeca then Tt acType.
2.If THoae€ K then o has a unique Bn-normal form.
3. If THFMea then M has a unique Bn-normal form.

4. TFMeca s decidable.

4 Pure LEAP

In order to be able to give a finitary definition of reify and reflect at all levels of F,,, we
need to allow global definition of types and functions with free variables ranging over kinds.
Such variables are generic in the same way that some type variables are generic in ML (see
Milner [12]). We will use the concrete syntax:

0 B global definition of 8 to stand for 8

M global definition of z to stand for M

for global definitions of types and terms, respectively. This addition to F, is benign in the
sense that given any term M to be type-checked and evaluated in a given global context, we
can find an equivalent term N in F,, itself. N is obtained from M simply by expanding the
definitions from the context. This is also how type-checking and evaluation for Pure LEAP
are defined. Later, if the language is extended to allow side-effects, and a commitment to
call-by-value is made, evaluation must be reconsidered. In Pure LEAP, every term will have
a unique normal form, so the issue of a call-by-value or call-by-name semantics does not

arise.

LEAP 7

5 Reflection in LEAP

We now describe the representation of programs in Pure LEAP, and present our definitions

of reify, reflect, and eval.

5.1 Representation of programs

When attempting to build a reflexive language, the first concern must be the ability to
represent programs in the language as data. Two approaches seem plausible: to build in a
new special data type for programs, or to use combinations of existing built-in data types
to represent programs. Since we would like (at the outset) to keep our language as pure as

possible, we will follow the latter approach.

Perhaps the best way to understand this construction is in terms of inductively defined
types. An inductively defined type is given by a list of its “constructors” and their types.
This is an extension of the datatype construction in ML, since constructors may be ex-
plicitly polymorphic. It is shown in [13] (extending ideas of Bohm & Berarducci [1]) that
these types do not require an addition to the core language, since inductively defined types
are representable by closed types. With this in mind, we can now present a specification of
the type of programs:

indtype 7 : Type = Type with
rep: Aa:Type .a=> 71
lam: Ao:Type . AB:Type . (o = 7 8) = 7 (. = B)
app : Aa:Type . AB:Type .n(a = B) =>ra=>7p
typlam : Aa:Type — Type . (AB:Type . 7 (aB)) = 7 (AB:Type . (o B))
typapp : Aa:Type — Type . 7 (AB:Type . (aB)) = AB:Type . 7 (o)
end

The basic problem is to be able to explicitly define a function # from types to types,
such that 7« is a type representing programs of type . The usual, well-known approach for
defining inductive data types in the second-order polymorphic A-calculus (see [1,15]) fails,
but we do not have a proof that such a representation is impossible. The data types that
have been shown to be representable in F5 either have constructors that are not polymorphic
(such as int = Aa . o = (¢ = &) = «, which has constructors O:int and succ:int = int),
or have the property that the type variables in the constructor are uniform over the whole
data type (such as list = A . A8 . (@ = § = 0) = 6§ => 6 with constructors cons:Af .
9 = listd = list§ and nil:Af . list#). This allows the definitions of the constructors to be
uniform over this type variable.

An attempt at a straightforward extension of this approach to the case of a data type
of programs fails, since a program of type # may have components of type @ = 8 and «,

and thus in fact of arbitrary type.

This problem disappears when one goes to the third-order polymorphic A-calculus, since

in it one can explicitly use a function from types to types that maps the type of the

LEAP

components to the type of a term. We will begin the formalization of these ideas by giving

an F3 encoding of Fy programs. Each line is annotated with a corresponding constructor

function that is defined below. We use © for a bound variable of kind Type — Type, that

is, for a function from types to types.

T =

Ay . AO:Type — Type .

(Aa.a=>0a)=> (* rep *)
(AaAB . (a=>08)=>0(a=>p) = (* lam *)
(AaAB.O(a=p)=>0a=>04))=> (* app *)
(Aa:Type — Type . (AB . O (aB)) => 0O (AB . af)) = (* typlam %)
(Aa:Type — Type . © (AB . aB) = (AB . O (ap))) = (* typapp *)
=0

This is a special case of a very general transformation from an inductive definition of a

data type into an encoding into F,, described in [13]. The definitions of the constructors in

this encoding can be found in Figure 1.

rep

rep

lam
lam

app
app

typlam
typlam

typapp
typapp

Aa.a=>rma

Ao Az .

AO Arep Alam Aapp Atyplam Atypapp .
rep [a] z

AaAB . (a=>7p) =7 (a=p)

Ao AB Af:a=>np.

AO Arep Alam Aapp Atyplam Atypapp .

lam [a] [B] (A\z:cx . f z[©] rep lam app typlam typapp)

AaAB .n(a=>B)=>ra=>7p

Ao AB dz:m(a = B) Ay:ma .

AO Arep Alam Aapp Atyplam Atypapp .

app [@] [B] (z [©] rep lam app typlam typapp) (y [©] rep lam app typlam typapp)

Aoa:Type — Type . (AB .7 (aB)) = 7 (AB . ap)
Ao:Type — Type Af:AB .7 (af) .

AO Arep Alam Aapp Atyplam Atypapp .

typlam [o] (AB . f [B][©] rep lam app typlam typapp)

Aoa:Type — Type . 7 (AB . aB) = (AB . 7 (af))
Ao:Type — Type Af:w (AB . aB) AB .

AO Arep Alam Aapp Atyplam Atypapp .

typapp [o] (f [©)] rep lam app typlam typapp) [B]

Figure 1: Definition of program constructors for F3 in Fs.

Several things should be noted in this definition:

LEAP 9

1. Representations of programs are not unique. That is, any program M in normal form
can be represented as rep [o] M (« the type of M), but it also has a representation in
terms of lam, app, typlam, typapp, and rep, where rep is applied only to variables.

2. The rep constructor can not be eliminated, since it is crucial in order to convert
bound variables into their representations. We do not see a simple way of fixing this
by changing the type of the lam constructor to Aa AB . (ta = 7 8) = 7 (a = B),
since that seems to preclude a representation of lam.

5.2 Reification and reflection
In the definition and theorems below we will omit contexts. They can be filled in easily.

Definition 4 (Program representation) Let M be a term of Fy. We define the standard
representation M of M in Fs inductively as follows:

If z€a then T = replojz

If Adxia . Mca=p then Ao M = lam[o] [8] Mz . M)
If Mcea= B and N € o then MN = appla][B(]M N

If AB. MecAp.af then AB. M = typlam[o]|(AB. M)
§ Mlglcap then B = typepp|a] M [6]

We define the relation “represents” inductively like the standard representation, except that
rep [a| M (which is not the standard representation of any term unless M 1s a variable) is

defined as representing M.

The following theorem shows that this is a proper representation function, but the
crucial property will of course be that evaluation is definable over this representation (see
Theorem 8).

Theorem 5 (Soundness of program representation) Let N € a. Then N € 7 c.

Proof: By a simple induction on the structure of N.
|

Conjecture 6 (Faithfulness of program representation) Let N be a term of type # . Then
there ts an M € o such that N represents M.

It should be noted that this conjecture is not critical for the further development of
program representation and evaluation in the remainder of this paper. Should it turn out
that there are terms of type m @ which are not the representation of programs of type
«, the representation of the functions defined below are still correct on terms that are

representation of programs, and will again produce representations of programs.

LEAP 10

5.3 The definition of reflect

The crucial step in the definition of eval is the definition of reflect, which maps the
representation of a term of type « into a term of type «, that is, reflect: Aa . T = a.
Such a function will have to do some form of evaluation, since normal-form terms of type

7 o can represent terms of type o that are not in normal form.

Let us first present the function in the form of an iterative definition (see [1] for a
discussion of iterative definitions in F3 and [13] for a generalization that encompasses F,,).

reflect [a] (rep[]) = x

reflect [= S (lam[a] [8]) = Ay . reflect [B] (zy)

reflect [3] (app [@] [B] T y) = (reflect[a = f]z) (reflect [y)
reflect [AB:Type . o B (typlam[a]z) = APB:Type . reflect[af](z[5])
reflect [a B] (typapp [z [B]) = reflect [AB:Type . a Bz [f]

Note that z and y are object language variables ranging over terms, and that o and £ are
object language type variables. These variables are essentially bound over the body of the

1terative definition.

Iteratively defined functions over inductively defined types turn out to be representable
in F,. In this case the explicit definition of reflect is surprisingly simple. This explicit
definition highlights the fact that a program is represented as its own iteration function—
iteration is achieved by applying the representation of a program to each of the cases from

an iterative definition. Let id = Aa Az:a . £ be the polymorphic identity. Then we get in

this case:
reflect : Avy.wmy=17
reflect = Ay Apw~y.
p[A6 . 6]

(Aa id [a])

(A AB . id o = f])

(Aa AB .id[a = ,8])

(Aa:Type — Type . id[Af . a §])
(Aa:Type — Type . id[Af . a §])

Theorem 7 (Correctness of reflect) Let N € ma be some (not necessarily standard)
representation of the term M. Then reflect N 5 M.

Proof: By induction on the normal form of N in terms of the constructors of =.

5.4 The definitions of reify and eval

Given the definition of reflect, it is a simple matter to give the definition of eval:m o = 7 c.
Intuitively, eval should take the representation of a term and return a representation of its

normal form. This is achieved simply by composing reflection with representation. This

LEAP 11

definition (given formally below) will not return the standard representation of the normal
form of the term, but rather exploit the fact that every normal form term M can be

represented as rep M.

reify : Aa.a=>7c«
reify = rep
eval : Aa.moa=>71o
eval = Ao Az:ma.reify o] (reflect [a] z)

Theorem 8 (Correctness of eval) Let N € ma be some (not necessarily standard) repre-

sentation of the term M. Then eval [a] N € m « is a representation of the normal form of

M.

We do not have a simple and intuitive characterization of exactly which functions are
definable over the given representation of programs. In particular, we do not know whether
the apparently simpler one-step outermost (-reduction is representable. The problem is
that the first argument to lam expects a function of type o = 7 8, not of type ra = 7 .
One-step call-by-value reduction is an example of another function (beside evaluation) that
1s definable, that is, we can evaluate the argument to a top-level 8-redex and then perform
one outermost reduction.

5.5 Generalizing to higher types

We will now generalize the definition of 7 to allow representation of programs in F,,. Note
that a term representing a program in F,, will be in F, 1.

T = Ay.AO:Type — Type.
(Aa.a=>0a)=> (* rep *)
(Aa AB . (a:>®,8):>®(a:>,8)) (* lam *)
(AaAB.O(a=p)=>0a=>04))=> (+ app *)
(Ao:K — Type . (AB:K . © (af)) = O (AB:K . afB)) = (* typlam *)
(Aa:K' — Type . © (AB:K' . af) = (AB:K' .0 (ap))) = (* typapp *)
=079

This definition and the corresponding definitions of the constructor functions are now
parameterized over the kinds K and K'. Since definitions with = are viewed as global, these
kind variables are generic and may be instantiated differently at different occurrences of #.

This is a part of the language where full reflexivity fails, since = cannot be represented in
LEAP.

6 Extending Pure LEAP to LEAP

We now turn our attention to extending Pure LEAP to the full “LEAP core language.” Our

goal here is to incorporate useful features of functional languages while adhering to the

LEAP 12

principle of reflexivity. Specifically, in order to arrive at full LEAP, we make extensions in
two phases: first those which can be defined entirely within Pure LEAP and hence constitute
only conservative, syntactic extensions, and then the nonconservative, semantic extensions
to Pure LEAP which still preserve reflexivity.

6.1 Syntactic Extensions

We begin with a brief description of the syntactic extensions.

6.1.1 Partial type inference

Explicit polymorphism makes Pure LEAP impractically verbose; a type inference system
for the language is essential. Partial type inference allows the types of bound variables and
the type arguments to terms to be omitted, but type abstractions and placeholders for type
arguments (denoted by []) must be supplied. For example, self-application may be written
as Az . (z[]| z), but not as Az . (zz). Partial type inference would type-check the former,
but not the latter.

In [14], Pfenning shows that the partial type inference problem for F,, (and hence LEAP)
is undecidable, but also gives a complete semi-decision procedure based on higher-order
unification. More extensive experiments are necessary in order to gauge the practicality of
this algorithm. Our current prototype uses a AProlog [10] implementation of this algorithm,

with very encouraging preliminary results.

*

6.1.2 Generic polymorphism and the * syntax

In the A-calculus, the construction let £ = N in M is taken as an abbreviation for (Az .
M)N. The enhanced legibility of the shorthand is due to the lexical proximity of the z and
N. In this form, the let construct can be carried over into LEAP in unadulterated form.

However, in ML the let construct is a convenient and critically important device for

establishing generic polymorphism.

Thus, for example,
let f = Az .z in (f 1, f true)

in ML is type-correct, since Az . z has principle type o = « for a type variable @ and this
type variable may be instantiated differently at different occurrences of f in the scope of the
binding on f (and is thus called generic). Hence let cannot be treated merely as syntactic

sugar, since the expanded version of the example above,

(Af . (f1,f true)) (Az .)

is not type-correct.

This genericity reduces reflexivity since it seems to be impossible for type-checking with
generic type variables to be inherited. We are left, then, with the problem of recovering the

programming convenience of ML’s let without destroying the reflexivity of the language.

LEAP 13

The solution we propose introduces additional verbosity over ML, which fortunately can be

“sweetened” with some syntactic sugar.

We would rewrite the example above in LEAP as follows:
let f+ = Aa.Az:a.zin (f 1, f true)

Here the “starred” identifier, f*, is defined in the body of the let term. The single star
is a purely syntactic, macro-like feature which in this case specifies that occurrences of the

variable f (without the star) are to be macro-expanded into the term fx[].

We adopt this as a general syntactic feature of LEAP so that whenever z=* ... * is defined,
in-scope occurrences of x appearing without a type argument are automatically expanded
to z*...*[|...[|, where the number of #’s matches the number of [|’s. This essentially
“syntactifies” generic polymorphism without giving up much expressive convenience (and
still preserving reflexivity). The additional verbosity over ML occurs at the place where a
polymorphic function is defined, since type abstractions must be made explicit. However,
functions are typically used much more often than defined, and so this overhead does not
seem an undue burden.

Taking the example of eval and the n-constructors from the previous section, we can
replace eval with eval*, rep with rep#, lam with lam**, and so on, in order to make eval

and the w-constructors to appear “generically” polymorphic.

6.1.3 Primitive recursion and inductively-defined data types

In [15], Reynolds gives several examples of encodings of inductively-defined data types in
the second-order polymorphic A-calculus. Among the examples are integers, lists, and trees.
Nonrecursive data types such as the unit type, pairs, and disjoint sums can also be encoded
in a similar manner as special cases of the general encoding. These encodings require only
the second order, and can be transferred directly into Pure LEAP. Our encoding of the the
type of program representations, 7, is an example of such an encoding that seems to require

functions from types to types, #.e., the third-order polymorphic A-calculus.

For a practical language, such encodings are much too unwieldy. Hence, we make a
syntactic extension to Pure LEAP which provides a sublanguage for inductively-defined type
specifications. An example of such a specification appears in Section 5.1, where we define
the type 7« using this syntactic extension. A full discussion of the definition of primitive

recursion and inductively-defined data types in Pure LEAP is given in another paper [13].

6.2 Semantic Extensions

Several features found in languages such as Standard ML can not be defined simply through
syntactic extension of Pure LEAP. These include general recursion, polymorphic assignable

references, and polymorphic exceptions (or call/cc).

In all three cases, it appears to be possible to incorporate these features into the language

by adding new constants which embody the desired semantics. Having chosen the constants,

REFERENCES 14

it remains for us only to verify that reflexivity is not violated by the extensions. For
polymorphic references and exceptions, we have found that the explicit polymorphism in
Pure LEAP with suitable restrictions which can be easily checked, provide an extra degree
of control which eliminates the need for “weak” [7] or “imperative” [21] type variables.

7 Conclusions

As we stated in the introduction, our original goal was to design an practical, statically-
typed language suitable for use as a metalanguage for manipulating programs, proofs, and
other similar symbolic data. What we have attained is Pure LEAP, a statically-typed
language core which admits the definition of a metacircular interpreter for a large language
fragment in a natural and direct way. This language is based on the w-order polymorphic
A-calculus of Girard, extended by global definitions and some syntactic sugar. In what ways
does Pure LEAP satisfy our original goal? In other words, how well does Pure LEAP serve
as a metalanguage?

Of course, without a serious implementation we can only speculate on this question, but
almost any argument that might be made for ML as a metalanguage can also be made for
LEAP. In addition, Pure LEAP is able to represent and manipulate data (e.g., programs
in object languages) with richer type structures than is possible in ML. How useful this
added power is in practice will require much further investigation and experience with the
language.

Other issues to be studied further include the exact extent of the language, in particular
with respect to additions such as references, exceptions, recursion, and so on. We have
done some preliminary work along these lines, and have some evidence that such extensions
will not destroy the reflexivity of the language. Another issue is the efficient implemen-
tation of LEAP. Work here is presently underway, with a simple implementation based on
AProlog currently operational. One of the main challenges appears to be devising efficient
implementation strategies for inductively-defined data types.

We hope to have more to report as the design and implementation of a full language

around Pure LEAP proceeds.

Acknowledgements

The authors would like to thank Christine Paulin-Mohring for pointing out a problem in
a purported “proof” of Conjecture 6, and also Ken Cline, Scott Dietzen, Spiro Michaylov,
and Benjamin Pierce for many helpful discussions about Pure LEAP.

References
[1] Corrado Bohm and Alessandro Berarducci. Automatic synthesis of typed A-programs on term
algebras. Theoretical Computer Science, 39:135-154, 1985.

[2] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, Princeton,
New Jersey, 1941.

REFERENCES 15

3]

[4]

[5]

[6]

[7]

8]
[9]

[10]
(1]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

Mitchell D. Wand and Daniel P. Friedman. The mystery of the tower revealed: a non-reflective
description of the reflective tower. In Proceedings of the 1986 ACM Conference on Lisp and
Functional Programming, Cambridge, pages 198-307, ACM, August 1986.

Daniel P. Friedman and Mitchell Wand. Reification: reflection without metaphysics. In Pro-
ceedings of the 1984 ACM Symposium on Lisp and Functional Programmang, pages 348-355,
ACM Press, August 1984.

Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordere supérieur. PhD thesis, Université Paris VII, 1972.

Jean-Yves Girard. Une extension de l’interpretation de Godel a ’analyse, et son application a
Pelimination des coupures dans ’analyse et la theorie des types. In J. E. Fenstad, editor, Pro-
ceedings of the Second Scandinavian Logic Sympostum, pages 63—92, North-Holland Publishing
Co., Amsterdam, London, 1971.

David B. MacQueen. References and weak polymorphism. 1988. Standard ML of New Jersey
compiler release notes.

John McCarthy. History of LISP. ACM SIGPLAN Notices, 13(8):217-223, August 1978.

John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and Michael I.
Levin. LISP 1.5 Programmer’s Manual. MIT Press, Cambridge, 1962.

Dale A. Miller and Gopalan Nadathur. Higher-order logic programming. In Proceedings of the
Third International Conference on Logic Programmaing, Springer Verlag, July 1986.

Robin Milner. The Standard ML core language. Polymorphism, II(2), October 1985. Also
Technical Report ECS-LFCS-86-2, University of Edinburgh, Edinburgh, Scotland, March 1986.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348-375, August 1978.

Frank Pfenning. Inductiely Defined Types in the Calculus of Constructions. Ergo Report 88—
069, Carnegie Mellon University, Pittsburgh, Pennsylvania, November 1988.

Frank Pfenning. Partial polymorphic type inference and higher-order unification. In Proceedings
of the 1988 ACM Conference on Lisp and Functional Programming, ACM Press, July 1988.

John Reynolds. Three approaches to type structure. In Hartmut Ehrig, Christiane Floyd, Mau-
rice Nivat, and James Thatcher, editors, Mathematical Foundations of Software Development,
pages 97-138, Springer-Verlag LNCS 185, March 1985.

John Reynolds. Towards a theory of type structure. In Proc. Collogue sur la Programmation,
pages 408-425, Springer-Verlag LNCS 19, New York, 1974.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In Pro-
ceedings of the 25th ACM National Conference, pages 717-740, ACM, New York, 1972.

Brian Cantwell Smith. Reflection and Semantics in a Procedural Language. Technical Re-
port MIT-LCS-TR-272, Massachusetts Institute of Technology, Cambridge, Massachusetts, Jan-
uary 1982.

Brian Cantwell Smith. Reflection and semantics in Lisp. In Proceedings of the Eleventh Annual
ACM Symposium on Principles of Programming Languages, Salt Lake City, pages 23-35, ACM,
January 1984.

Guy Steele and G. Sussman. The Art of the Interpreter, or, The Modularity Complez (Parts
Zero, One, and Two). Artificial Intelligence Laboratory Memo AIM-453, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts, 1978.

Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, Department
of Computer Science, Edinburgh University, 1987.

Mitchell D. Wand and Daniel P. Friedman. The mystery of the tower revealed: a nonreflective
description of the reflective tower. Lisp and Symbolic Computation, 1(1):11-38, June 1988.

	leap.pdf

