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Abstract

Refinement types allow many more properties of programs to be expressed and statically
checked than conventional type systems. We present a practical algorithm for refinement-type
checking in a λ-calculus enriched with refinement-type annotations. We prove that our basic
algorithm is sound and complete, and show that every term which has a refinement type can
be annotated as required by our algorithm.

Our positive experience with an implementation of an extension of this algorithm to the full
core language of Standard ML demonstrates that refinement types can be a practical program
development tool in a realistic programming language. The required refinement type definitions
and annotations are not much of a burden and serve as formal, machine-checked explanations
of code invariants which otherwise would remain implicit.

1 Introduction

The advantages of statically-typed programming languages are well known, and have been de-
scribed many times (e.g. see [Car97]). However, conventional type systems for realistic program-
ming languages do not capture all of the interesting properties of a program. For example, when
programming with lists, it is common to have the invariant that a particular result is not an empty
list, but generally there is no easy way to express this in the type system. Further, conventional
type systems generally only allow a single property to be expressed for any particular part of a
program, when sometimes there are many important properties. For example, a particular function
may have two important invariants: that the result is a non-empty list if the input is a non-empty
list, and that the result is an empty list if the input is an empty list.

When we want to capture more properties of a program to allow better code optimization,
the standard solution to this problem is to use some form of program analysis, of which there
are many different varieties. Some recent work has used automatic program analyses to obtain
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some of the benefits of static typing, namely catching errors and supporting code maintenance and
modularity, when the language is dynamically typed [FFK+96], or when the static type system of
the language cannot express the properties of interest [FA97]. Unfortunately, these analyses must
make approximations, since the underlying problems are undecidable, and often it is difficult for
the programmer to determine whether an apparent error found by the analysis is due to these
approximations or due to an actual error in their code.

In this paper we present results which indicate that another approach to this problem can be
used to build practical tools. This solution is to add a more detailed level of types called refinement
types to a statically typed language. Each ordinary type may then be refined by many different
refinement types, which we also call sorts in accordance with the use of this term in order-sorted
algebras [DG94]. Refinement types have been studied previously [FP91, Fre94, Pfe93], and allow
many more properties of programs to be expressed and checked than conventional type systems.
For example, empty and non-empty lists could be defined as refinements of the type list, in which
case we also have a sort for functions which map non-empty lists to non-empty lists, which is
a refinement of the type of functions from lists to lists. This allows more programming errors
to be caught at compile time, and extends all the advantages of static typing, including support
for modularity, code maintenance, and code optimization, to a much wider class of properties of
programs.

To allow more than one property to be expressed for a particular part of a program, sorts
include an intersection operator &, which allows a sort R&S to be formed from two sorts R and S
which refine the same type. Numerous variants of intersection types (also called conjunctive types)
have been studied in the literature [CDCV81]. In our setting, the presence of intersection allows
the construction of a principal sort for each expression, given only its type. Base sorts refining the
same base type are naturally ordered by inclusion, which is extended in a standard way to the full
type hierarchy. The character of the resulting system is quite different from record subtyping.

Previous work on sorts has demonstrated that they are a very useful addition to languages
as diverse as the functional programming language Standard ML [FP91, Fre94] and the logical
framework LF [Pfe93]. Part of that work considered algorithms for sort inference, but this turns
out to be problematic because common programs often satisfy many accidental properties which
must be reflected in the inferred sort. Further, there is a huge combinatorial explosion in the
number of refinements and the size of principal sorts as we move to more complicated (especially
higher-order) types. Experiments with refinement types systems have thus been limited to small
prototypes.

The main contribution of this paper is a practical solution to this problem, based on an algorithm
for sort checking instead of inference which requires some explicit sort annotations. We prove
that this algorithm is sound and complete with respect to a simple declarative system, and that
every well-sorted program can be annotated appropriately. Especially the latter turned out to be
technically more difficult than anticipated, although we cannot give many details in this summary.

To demonstrate that our algorithm is efficient and the annotations practical, we describe ex-
periments with an implementation based on this approach which performs sort checking for an
appropriate extension of the core language of Standard ML. The critical issue here turned out to
be the treatment of pattern matching, since the correctness of many programs relies on the fact
that patterns in a case expression are matched sequentially. Our extension of ML is conservative,
so our sort checker could be added to a compiler without causing problems with existing programs.
We expect that the basic approach could also be extended to allow sort checking of other languages,

2



for example the logic programming language Elf [Pfe91], which is based on LF.
For a motivating example of the use of sorts in ML, see Appendix A, which includes part of one

of our experiments. The full code for these experiments and various other examples of sorts in ML
are available electronically via http://www.cs.cmu.edu/~rowan/sorts.html, and other examples
have appeared in [FP91]. Unfortunately, space limitations do not allow us to provide enough
motivating examples in this summary, particularly since the need for sorts is not very convincing
in small examples.

2 Basic Refinement-Type Checking

In this section we present a simply-typed λ-calculus with let, and give declarative sorting rules
for it. We include let-terms here so that later we can annotate them with the sort of the bound
variable, even though operationally they are equivalent to β-redices. We also include the fix
construct for expressing recursion to demonstrate that this does not essentially complicate sort
checking, in contrast to sort inference where it is a major bottleneck. We use explicitly typed (but
not explicitly sorted) λ and fix forms, because we assume that type inference has been completed
before sort checking is attempted. Much of the basic presentation of sorts here is based on previous
work [FP91], and so we omit some details from this technical summary for the sake of brevity.

2.1 Syntax and Typing

We assume that there are some base types, denoted by a, b and that each base type is refined by
a finite number of base sorts, denoted by ra, sb.

Types A ::= a | A1 → A2

Sorts R ::= ra | R1 → R2 | R1 & R2

Terms M ::= x | λx:A. M |M1M2

| let x = M1 in M2 | fix x:A. M
Type Contexts Γ ::= · | Γ, x:A
Sort Contexts ∆ ::= · | ∆, x.R

We use A,B for types, a, b for base types, R, S for sorts and M,N for terms. We assume that
a variable x can be declared at most once in a context. Bound variables may be renamed tacitly.
We omit leading ·’s from contexts, and write Γ,Γ′ for the result of appending two contexts. We
write [M ′/x]M for the result of substituting M ′ for x in M , renaming bound variables as necessary
to avoid the capture of free variables in M ′. We use the notation D :: J to indicate that D is a
derivation of judgement J.

The typing judgement for this calculus has the form

Γ `M : A Term M has type A in context Γ.

The typing rules are all completely standard. A direct consequence of these rules is that
any well-typed term has a unique type and typing derivation. This language does not include
polymorphism, which we discuss informally in Section 3.2.
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2.2 Refinement

The refinement judgement has the form

R :: A Sort R refines type A.

rf base
ra :: a

R :: A S :: B
rf arrow

R→ S :: A→ B

R :: A S :: A
rf conj

R & S :: A

A direct consequence of this definition is that every sort refines at most one type. We extend
the refinement notation pointwise to ∆ :: Γ for contexts ∆ and Γ which bind the same variables.
Note that the refinement relation is not a subtyping (or subsorting) relation and is therefore neither
co- nor contra-variant in the usual sense. Subsorting is introduced in the next section.

We say that a sort R is well-formed if it refines some type A. In what follows, we will only
interested in well-formed sorts, and so when we use the term “sort” we implicitly mean “well-formed
sort”. We say that two sorts are compatible if they refine the same type. We say that a sort S is a
conjunct of sort R if S = R, or (inductively) if R = R1 & R2 and S is a conjunct of either R1 or
R2. We write cnjs R for the set of conjuncts of R which are not intersection sorts.

2.3 Subsorting

We assume that subsorting between base sorts is defined by the relation ρa � ra, where ρa is a
set of base sorts, indicating their intersection. In practice this relation will be defined in terms
of whatever method is used to introduce base sorts, which here we choose to keep abstract. Our
sort checker for SML provides a concrete instance of this: we allow datasort refinements of simple
SML datatype definitions by regular tree grammars, with the relation ρa � ra holding exactly
when the the elements of ρa define sets of values whose intersection is contained in the set defined
by ra. For the moment, we allow any base subsorting relation which satisfies the some appropriate
consistency conditions.

The subsorting judgement has the form:

R ≤ S Sort R is a sub-sort of S, where R and S must be compatible.

The subsorting rules present a minor variation for other systems with intersection types such
as [Rey91].

cnjs R � sa

sub base
R ≤ sa

sub reflex
R ≤ R

R1 ≤ R2 R2 ≤ R3
sub trans

R1 ≤ R3

sub conjL1
R & S ≤ R

sub conjL2
R & S ≤ S

R ≤ S R ≤ S ′
sub conjR

R ≤ S & S ′

R′ ≤ R S ≤ S ′
sub arrow

R→ S ≤ R′ → S ′
sub dist

(R→ S) & (R→ S ′) ≤ R→ (S & S ′)

If R ≤ S and S ≤ R then we say R and S are equivalent sorts. Our main motivation for
introducing this definition is that there are only a finite number of refinements of each type modulo
sort equivalence, which can be proved by induction on types.
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2.4 Sorting

The sorting assignment judgement has the form:

∆ `M . R Term M has sort R in context ∆.

The sorting rules are very similar to those for a system with general intersection types (e.g.,
see [Rey91]). Here each abstraction and fixed point includes the type assigned to the variable
during type inference, so the choice of the sort for the variable is restricted to refinements of this
type.

x.R in ∆
srt var

∆ ` x . R
∆, x.R `M . S R :: A

srt lam
∆ ` λx:A. M . R→ S

∆ `M . R→ S ∆ ` N . R
srt app

∆ `MN . S

∆ `M . R ∆, x.R ` N . S
srt let

∆ ` let x = M in N . S

∆, x.R `M . R R :: A
srt fix

∆ ` fix x:A. M . R

∆ `M . R ∆ `M . S
srt conj

∆ `M . R & S

∆ `M . R R ≤ S
srt subs

∆ `M . S

Theorem 1 (Refinement) If ∆ `M . R, R :: A and ∆ :: Γ then Γ `M : A.

Proof: By induction over the structure of the sorting derivation.

Theorem 2 (Principal sorts) If ∆ ` M . R then there exists S such that ∆ ` M . S and for
all R′ such that ∆ `M . R′ we have S ≤ R′.

Proof: Choose S to be the intersection of all sorts S ′ (up to equivalence) such that ∆ `M . S ′.
Clearly S is unique up to sort equivalence, and we call S the principal sort of M with respect to
∆.

Our calculus satisfies the usual substitution lemmas, subject reduction and sort preservation
theorems with respect to β-reduction, δ-reduction (for let) and µ-reduction (unrolling of fix).
Details are omitted here due to space constraints.

2.5 Algorithmic subsorting

The sorting and subsorting rules given above are quite intuitive, but they do not specify a strategy
for checking a term. We address the more difficult issue of algorithmic sort checking later. Due to
space limitations, we omit the details of algorithmic subsorting judgment R�S, since variations of
it have been considered previously [Fre94] and we do not consider it a major contribution of this
paper.
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2.6 Annotation

Designing an algorithmic form of the sort assignment judgement is harder than for the subsorting
judgement. In particular, there is no obvious way to choose R in the srt lam and srt let rules.
Freeman [Fre94] has described and implemented one approach to this problem, based on techniques
from abstract interpretation. Unfortunately, the resulting algorithms are not always efficient enough
to be practical, particularly in the case of higher-order functions and when features like recursion
are included to the language. Here we take an alternative approach, namely letting the programmer
provide the required information. Our experience indicates that this approach leads to algorithms
which are efficient, simple and predictable, without placing too much burden on the programmer.

To guarantee that enough information has been given by the programmer, we define a language
with sort annotations on occurrences of fix, no β-redices, and sort annotations on all occurrences
of let for which the principal sort of the corresponding subterm can not be easily synthesized. In
the case of fixed-point expressions the sort annotation must be precise enough for all occurrences
of the recursion variable in the body. In particular it is sometimes not enough to simply use the
sort intended to express the externally visible properties of a function; one needs to generalize
first. This is similar to the case where an induction hypothesis in a correctness proof needs to be
strengthened.

The syntax for annotated terms is as follows:

Checkable terms C ::= I | λx:A. C | let x = I in C | let x.R = C1 in C2

Inference terms I ::= x | I C | fix x.R. C

Our experience with sort checking existing Standard ML programs indicates that in practice a
restricted language like this is very reasonable, and in fact the only modifications we had to make
to these programs was to add the required sorts wherever a function was defined. However, to our
initial surprise this is not true in general: sometimes well-sorted programs need to be rewritten
slightly to generate an equivalent annotated program which can be sort-checked.

The annotation procedure is based on the following observations. Firstly, we notice that we
can easily remove β-redices, by introducing a let so that the function is bound to a local variable.
Then we expect that we can make use of the sorting derivation to generate the required sorts for
let-definitions. This can not always be done by simply adding a sort to each let. Intuitively,
this is because the body of a function may need to be sort-checked several times, once for each
possible argument sort. If a let-binding occurs in the body of a function, it might thus be assigned
different sorts each time the function body is checked and we cannot assign it a single sort. Using
an intersection for the sort of the let-bound variable also does not work in general, since this would
require the defined term to have all sorts independently of the different assignments of sorts to the
term’s free variables. For example, consider the following term (for some base type a):

λx:a. let f = (λy:a. x) in f x

There is an obvious derivation which shows this term has sort (ra → ra) & (sa → sa) for base
sorts ra and sa, though there is no single sort annotation that we can add to the let, since the
corresponding sub-derivations are of the judgements:

x.ra ` λy:a. x . ra → ra and x.sa ` λy:a. x . sa → sa
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A similar problem was solved by Reynolds [Rey88] in a type system with general intersection
types by introducing a type annotation including many alternative types. This was extended by
Pierce [Pie93] to a special form binding a type variable to one of a set of alternative types.

Here we take a different approach which we find more intuitive, and avoid this problem without
introducing new language features. We do this by using some β-expansions and δ-expansions during
annotation, and a simple observational equivalence for functional programs in the case of fix. This
turns each problematic term into a closed function, thus allowing the required sorts for its originally
free variables to be included in the sort for the function. For the sake of simplifying what follows,
we actually close over all free variables rather than just those which have different bindings in
different branches of an instance of the srt conj rule. For the example above, expanding and adding
sorts yields:

λx:a. let f ′.(ra → ra → ra)&(sa → sa → sa) = (λx:a. λy:a. x) in let f = f ′ x in f x

The following function on well-typed terms performs the required expansions, including replace-
ment of β-redices. Note that this does not yet introduce sort annotations; it only prepares the term
so that annotations are always possible.

|x|Γ = x

|λx:A. M |Γ = λx:A. |M |Γ,x:A

|M N |Γ = |M |Γ |N |Γ (M 6= λx:A. M ′)
|(λx:A. M) N |Γ = let f = abs(freeΓ M )(λx :A. |M |Γ ,x :A)

in (app(freeΓ M )f ) |N |Γ (f not free in N )
|let x = M in N |Γ = let f = abs(freeΓ M )(|M |Γ ) in

let x = app(freeΓ M )f
in |N |Γ,x:A (where Γ `M : A and f not free in N )

|fix x:A. M |Γ = let f = fix f ′:arr (freeΓ M )A.

abs(freeΓ M )(let x = app(freeΓ M )f
′ in M )

in app(freeΓ M )f (f, f ′ not free in M)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

free(·)M = ·
free(Γ ,x :A)M = (freeΓM ), x :A (if x free in M)

free(Γ ,x :A)M = freeΓM (if x not free in M)

arr (·)A = A

arr (Γ,x:B)A = B → (arrΓA)

abs(·)M = M

abs(Γ ,x :A)M = λx:A. (absΓ M )
app(·)M = M

app(Γ ,x :A)M = (appΓ M ) x

Theorem 3 (Expansion reduction) If Γ ` M : A then |M |Γ is observationally equivalent to
M .

Proof: By induction on the definition of | · |.

If M does not contain any occurrences of fix, then we have the slightly stronger result that
|M |Γ reduces to M using only value reductions.

Theorem 4 (Expansion sorting) If ∆ `M . R and ∆ :: Γ then ∆ ` |M |Γ . R.
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Proof: By induction on the definition of | · |. The proof is constructive, and defines a corresponding
function | · | on sorting derivations.

We can now use the sorting derivation constructed in the proof of the expansion-sorting theorem
to complete the annotation process by adding sorts to let and fix terms as required. From the
definition of | · |, we see that any term in its range contains only occurrences of fix x:A. M when
M is closed, and only occurrences of let which bind a variable to a term which is either closed or
inferable, i.e., of the form I after annotation. To generate the required sorts for the closed terms,
we conjoin the corresponding sorts in each branch of the sorting derivation. This process defines a
function ann(M,D) where D :: ∆ ` M . R, and the result of the function is a checkable term C.
Due to space limitations, we omit a formal presentation of this function. We have proved that the
resulting term has the required sort with respect to the appropriate declarative sorting rules for
annotated terms, though this result is not an essential part of the development in this summary.

2.7 Algorithmic sort checking

We now give our algorithm for sort checking annotated terms, presented as a judgement with
algorithmic rules, and with two ancillary judgements, one of which synthesizes the principal sort
of a term of the form I , and one of which projects a function sort on an argument term. We also
need the negation of the projection judgement. The idea of these judgements is that the sort of
each variable in the context is always known, and to check whether a term has an intersection sort
we simply check that it has each of the conjuncts. There is some small flexibility here as to exactly
when intersections are broken down, and in practice we break them down as late as possible. We
have omitted the typing rules for annotated terms, though they are completely standard, with the
additional requirements that the sort annotations are required to refine the corresponding types.

∆ ` C ↓ R Term C is determined to have sort R in context ∆,
where ∆ :: Γ, R :: A, Γ ` C : A.

∆ ` I ↑ R Term I has principal sort R in context ∆,
where ∆ :: Γ, R :: A and Γ ` C : A.

∆ ` R @ C � S Sort R when projected on term C yields result sort S,
where ∆ :: Γ, R :: A1 → A2, Γ ` C : A1 and S2 :: A2.

∆ ` R @/ C Sort R can not be projected on term C,
where ∆ :: Γ, R :: A1 → A2 and Γ ` C : A1.

∆ ` C ↓ R ∆ ` C ↓ S
dn conj

∆ ` C ↓ R & S

∆, x.R ` C ↓ S R :: A
dn lam

∆ ` λx:A. C ↓ R→ S

∆ ` I ↑ R ∆, x.R ` C ↓ S
dn letA

∆ ` let x = I in C ↓ S
∆ ` C1 ↓ R ∆, x.R ` C2 ↓ S

dn letR
∆ ` let x.R = C1 in C2 ↓ S

∆ ` I ↑ R R� S
dn atom

∆ ` I ↓ S
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x.R in ∆ up var
∆ ` x ↑ R

∆ ` I ↑ R ∆ ` R @ C � S
up app

∆ ` I C ↑ S
∆, x.R ` C ↓ R

up fix
∆ ` fix x.R. C ↑ R

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆ ` C ↓ R1
aptm arrow

∆ ` R1 → R2 @ C � R2

∆ ` R @ C � S2 ∆ ` R′ @ C � S ′2
aptm conj

∆ ` R & R′ @ C � S2 & S ′2

∆ ` R @ C � S2 ∆ ` R′ @/ C
aptm conj1

∆ ` R & R′ @ C � S2

∆ ` R @/ C ∆ ` R′ @ C � S ′2
aptm conj2

∆ ` R & R′ @ C � S ′2

The following theorem shows that our algorithm is sound, by relating sort checking for an
annotated term with the sorts of the term obtained by erasing the sort annotations (and replacing
them with types for occurrences of fix). This erasure process defines a function erase(·), which is
a left inverse of the annotation function.

Theorem 5 (Algorithmic sort-checking soundness)

1. if ∆ ` C ↓ R then ∆ ` erase(C) . R.

2. if ∆ ` I ↑ R then ∆ ` erase(I) . R.

3. if ∆ ` R @ C � S2 then ∆ ` erase(C) . S1 with R ≤ S1 → S2.

Proof: By induction on the corresponding derivations, making use of inversion on the algorithmic
form of subsorting.

Theorem 6 (Algorithmic sort-checking completeness)

1. if D :: ∆ `M . R and ann(M,D) = C then ∆ ` C ↓ R.

2. if D :: ∆ `M . S and ann(M,D) = I then ∆ ` I ↑ R with R� S.

3. if D :: ∆ ` M . S1 and R ≤ S1 → S2 and ann(M,D) = C then ∆ ` R @ C � S ′2 with
S ′2 � S2.

Proof: By induction on the corresponding derivations, making use of the appropriate replacement
lemma, and a lemma validating subsumption.

We have also proved a slightly stronger completeness theorem, stating that our sort-checking
algorithm is complete with respect to the appropriate declarative sorting rules for annotated terms,
though we omit the details here for space reasons.
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3 Sort Checking for Standard ML

We now describe an implementation based on the algorithm given in the previous section, which
performs sort checking for an appropriate extension of the core language of Standard ML. We then
present our experience with this implementation.

Space does not permit us to formally describe all the interesting details of the extension of
the sort checking algorithm. A formal presentation of sorts for a fragment of ML was given by
Freeman [Fre94], though he did not address pattern matching and did not consider sort checking
algorithms. Most of this can be adapted quite easily to build on the sort checking framework given
in the previous section. Here we will informally describe our sort checker and the extensions to
Standard ML required to support it. We will describe our method for handling pattern matching
in some detail, since this is one of the key features that make our sort checker a practical tool, and
this aspect has not been considered elsewhere.

3.1 Defining refinements

We allow sorts to be defined using datasort declarations, which are similar to ML datatype

declarations, except that each value constructor may appear many times within a single definition.
See the extended example in Appendix A for examples of datasort declarations.

We have the restriction that all value constructors in each definition of a sort constructor
are associated with the type constructor which is being refined. Further, the arguments of these
value constructors must refine the arguments in the definition of the type constructor. Also, for
simplicity, in mutually recursive sort definitions the recursive references must have exactly the same
parameters as the sort definition in which they appear, which does not appear to be too restrictive
in practice.

For convenience, we automatically define a sort constructor for each type constructor in a
datatype declaration, which has the same name as the type constructor and is obtained by es-
sentially reading the datatype declaration as a datasort declaration. Similarly, we have built-in
refinements of the built-in types which have the same name as the type they refine. We have not
yet investigated mechanisms for defining other refinements of built-in types.

Our implementation analyzes the datasort declarations, and determines the subsorting rela-
tions ρa � ra which hold between the defined sort constructors and their intersections, as well as
the principal sorts of the value constructors, captured by the relation c . R. This process is much
more complicated than it may appear at first, and the algorithms used are based on algorithms for
regular tree grammars. A formal analysis of such algorithms is the subject of a Master’s Thesis by
Skalka [Ska97].

There are many obvious limitations of datasort declarations, in particular they cannot be
used to define non-regular refinements, such as lists whose length is prime. They also only allow
parametric refinements of parametric types, so for example we cannot define a refinement for
ordinary lists of booleans whose head is true, although we can define a specialized type for lists of
booleans and then refine this type.

3.2 Polymorphism

Following Freeman [Fre94], we allow refinements of ML polymorphic types, with the restriction
that there is only a single sort variable refining each type variable. For convenience, this sort vari-
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able has the same name as the type variable. We omit the details of sort checking in the presence
of polymorphism, since we basically follow the same approach as Freeman. One important issue
that we mention here is that we have principal sorts only with respect to a particular ML typing
derivation which entails some loss of generality when compared to atomic subtyping [FM90]. This
means that sometimes several instances of a generic polymorphic function need to be sort-checked
separately. This shortcoming might be addressed in future work at the level of ML modules (as-
cribing several signatures to a structure) or by combining recent ideas from polymorphic subtyping
inference [Reh97] with refinement types.

3.3 Pattern matching

There are few interesting choices to be made when extending the sorting rules to core Standard
ML, the most difficult problems being presented by general pattern matching. A simple approach
would be to ignore the sequential operational behavior of matching, and simply compare the sort
of the subject of the match with the pattern of each case to obtain sorts for the bound variables,
which can then be used to check the body of the case. Unfortunately, most real programs depend
on the sequential nature of pattern matching, so many of the interesting properties of programs
could not be checked using sorts if we adopted this approach. However, it is not clear how to
capture the sequential nature of pattern matching using sorts in a way that is accurate, intuitive,
and has an efficient implementation. Freeman [Fre94] avoided this issue by only considering a
simple elimination form for constructed types, and arguing that pattern matching can be expanded
into nested eliminations. Unfortunately, this expansion is not very practical, since it makes it hard
for the programmer to understand the sorts associated with their program, and it is not always
feasible since it may generate a huge number of cases.

Here we describe a direct approach to sorting pattern matching which accurately and intuitively
captures the sequential nature of patterns. The basic idea of our approach is to generate a set of
possible variable contexts for each pattern, and a description of the residual values which do not
match the pattern. The body of each case must be checked under all possible contexts, and the
residual of each case is the input set of the next case, with the residual of the final case empty.
This approach may lead to a combinatorial explosion in the number of possible contexts. Even
though it is not difficult to create pathological cases, we did not observe this explosion in our
experiments. This may be due to a programmer’s natural inclination to keep pattern matches as
small and manageable as possible in order to remain convinced of their correctness.

According to this approach, sort checking should fail when the patterns do not cover the sort
of the subject of a match. In order to obtain a conservative extension of Standard ML, we actually
only issue a warning in this case. However, this warning should perhaps be taken more seriously
than in ordinary Standard ML, since the use of sorts should allow the possible values for the subject
of a match to be determined more accurately.

3.4 Sort constraints

In the Section 2 we used let-terms annotated with sorts to allow the programmer to specify the
information needed during sort checking. In the implementation we instead allow sort constraints
to appear anywhere that a type constraint could. We also include a special form withsort so
that a sort constraint can be given for a fun declaration. We cannot always individually give sort
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constraints for the arguments and the result of a function, as is sometimes done with types, since
the desired sort may be an intersection.

We also automatically add default sort annotations when the program does not match the
grammar for annotated programs. These default sorts correspond to the types assigned during
type inference, and are certainly not the principal sorts. For example, if the type assigned to a
function is ’a dict -> ’a dict we add the sort annotation ’a dict -> ’a dict if we cannot
determine the intended sort otherwise. The automatic addition of these default sort annotations
avoids the need to annotate sections of code for which no interesting sort checking is required,
and makes our implementation of sort checking a conservative extension of Standard ML, i.e. sort
checking always succeeds for well-typed (unsorted) Standard ML programs.

3.5 Experiments

In addition to many small functions, we have conducted three medium-size experiments with our
sort checker. The absence of functors made it difficult to annotate larger code samples with sorts,
but since sort checking time increases linearly with the size of the program, we judged these
experiments to be representative of large-scale and pervasive use of refinement types in ML.

In the first experiment we added sorts to an existing implementation of red/black balanced
binary trees to check the critical invariant that no red node has a red child. In this code the invariant
is temporarily violated and then restored, and so the sort annotations had to use intersection sorts
to specify the behavior of some functions both when their arguments satisfy the invariant and in
when they slightly violate the invariant in certain ways. Part of the code from this experiment is
included in Appendix A.

In the second experiment we added sorts to the parser of a recent re-implementation of the
Elf logic programming language [Pfe91]. In this case we were able to check some complicated
invariants involving an intermediate stack of unresolved operations which is used to resolve prefix,
postfix and infix operations with precedence. Additionally, we were able to remove a lot of non-
exhaustive match warnings by defining a sort for for infinite streams as a refinement of the type of
streams.

In the third example, we added sorts to implementation of the LF logical framework which used
a more general datatype than necessary in order to avoid duplication of code for basic operations
such as substitution. The sorts properly separate the object, type family and kind levels, and
we were able to check that substitution and conversion to weak head normal form obeyed this
separation.

During these experiments we were generally happy with the efficiency of our implementation.
For the largest file, with around 400 lines of code, the time taken for sort checking was less than five
seconds. We expect that our implementation can be made much more efficient, since it is currently
rather simplistic in many places. Also the low level operations are based on the ML/Kit compiler,
which was built without much consideration for efficiency. Additionally, we expect that the time
taken to check a program will grow roughly linearly with its length, since each declaration in a
module can be sort checked independently, using only the sort information in the context.

The sort annotations that were required in these experiments seemed to be quite reasonable
in most cases, and now serve as mechanically checked documentation for this code. In fact, the
existing comments in the code attempted to explain the invariants, but in the second example
significant errors were found in these comments, and in the first example the comments were vague
enough that they were not much help in constructing the precise invariants, which we needed for
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sort checking. No errors were found in the code itself, but this is not surprising, since this code
had already been tested extensively and proven correct “by hand” in the case of red/black trees.
There were a few situations where it became tedious to add sort annotations that were obviously
satisfied, so in future work we intend to consider whether some small amount of sort inference can
be added to our sort checker.

With one exception, we did not need to alter our code in any way other than to add sort
annotations and remove module level code. The exception is that in the parsing code, the stack
of unresolved operations was represented as a list, which prevented the desired refinements from
being defined, since any refinement of lists must be parametric on the element sort. This problem
was solved by simply defining a specialized type for stacks.

4 Conclusion and Future Work

Our conclusion is that by focusing on sort checking rather than inference, we were able to build
a very practical tool around refinement types for a real language. The technical contributions of
this paper are the non-trivial soundness, completeness, and annotability results on a rich enough
language to exhibit most of the critical issues except pattern matching.

Additionally, we illustrated some of the key elements involved in scaling our approach to the core
language of Standard ML and presented the results of some experiments that involved programming
with refinement types in ML. These experiments indicate that sort checking is fast enough to be
practical, and that many interesting properties of programs can be specified and checked with only
a relatively small effort to provide the required sort annotations.

We briefly compare our results with those obtained by others [FFK+96] using a different ap-
proach, but with similar goals. This work uses set-based analysis [Hei94] as a programming tool,
and has demonstrated that this approach aids the construction of reliable programs in the context
of the dynamically-typed language Scheme. This work is mostly concerned with obtaining some of
the advantages of statically-typed languages, though in some cases the analysis determines more
accurate information than could be captured in by the static type system of a language like ML. For
example it may be determined that a variable will always be bound to a non-empty list. However,
generally the analysis will not produce as accurate results as can be obtained with sort checking
when the right datasort declarations and sort annotations are used, partially because the analysis
can not express many of the properties corresponding to sorts involving intersections. Further,
there is some evidence that this kind of analysis does not scale to very large programs [FF97],
which has prompted consideration of the possibility of a typed module language for Scheme. By
contrast, sort checking is very modular, and scales linearly to very large programs.

The main disadvantage of sort checking compared to program analyses is that the programmer
must provide additional information to the sort checker in order to allow interesting properties
to be checked. However, in some sense this is also one of the main advantages of our approach,
since the sort checker need only check the properties specified by the programmer, and in the case
that errors are found good feedback can be given to the programmer. The sort annotations which
are required generally correspond to interesting invariants of a program, which the programmer
should be aware of anyway, and the annotations also serve as mechanically checked documentation
for these invariants. Program analyses also have the disadvantage that they must sometimes fail
to prove correct properties, though it is generally hard to identify when this has happened. In
contrast, we have an intuitive specification, in the style of a type system, for the behavior of sort

13



checking.
In future work we intend to extend sort checking to include the modules language of Standard

ML. This extension would include the addition of sorts to signatures, and also requires some
mechanism for specifying subsorting relations which hold between refinements of abstract types.
We also intend to implement some compiler optimizations based on sort information. One simple
such optimization is to remove a test resulting from compiling pattern matching when the sort
information allows the result of the test to be determined. A more heavyweight optimization is to
use optimized representations and functions for different refinements of a type, though this may
lead to code explosion if not done carefully. We also intend to investigate whether some existing
program analyses can be profitably reformulated using refinement types, for example, analysis of
effects [LG88] or the exceptions analysis in [FA97] are good candidates.
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A Extended Example: Red/Black Trees

The following is part of the code for the red/black trees experiment, including all of the datasort

declarations, and the code for the function to insert an element in a tree. We check the critical
invariant that no red-node has a red child. See Section 3.5 for more details.
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type key = int

type ’a entry = key * ’a

datatype ’a dict = (* general dictionaries *)

Empty | Black of ’a entry * ’a dict * ’a dict (* Empty is considered black *)

| Red of ’a entry * ’a dict * ’a dict

datasort ’a rbt = Empty | Black of ’a entry * ’a rbt * ’a rbt (* red/black trees *)

| Red of ’a entry * ’a bt * ’a bt

and ’a bt = Empty | Black of ’a entry * ’a rbt * ’a rbt (* black root node *)

datasort ’a red = Red of ’a entry * ’a bt * ’a bt (* red root node *)

datasort ’a badRoot (* invariant possibly violated at the root *)

= Empty | Black of ’a entry * ’a rbt * ’a rbt | Red of ’a entry * ’a bt * ’a bt

| Red of ’a entry * ’a red * ’a bt | Red of ’a entry * ’a bt * ’a red

datasort ’a badLeft (* invariant possibly violated at the left child *)

= Empty | Black of ’a entry * ’a rbt * ’a rbt | Red of ’a entry * ’a bt * ’a bt

| Black of ’a entry * ’a badRoot * ’a rbt

datasort ’a badRight (* invariant possibly violated at the right child *)

= Empty | Black of ’a entry * ’a rbt * ’a rbt | Red of ’a entry * ’a bt * ’a bt

| Black of ’a entry * ’a rbt * ’a badRoot

fun restore_right ... = ... (* code omitted for brevity *)

withsort restore_right :> ’a badRight -> ’a rbt

fun restore_left ... = ... (* code omitted for brevity *)

withsort restore_left :> ’a badLeft -> ’a rbt

fun insert (dict, entry as (key,datum:’a)) =

let

fun ins (Empty) = Red(entry, Empty, Empty)

| ins (Red(entry1 as (key1, datum1), left, right)) =

(case compare(key,key1)

of EQUAL => Red(entry, left, right)

| LESS => Red(entry1, ins left, right)

| GREATER => Red(entry1, left, ins right))

| ins (Black(entry1 as (key1, datum1), left, right)) =

(case compare(key,key1)

of EQUAL => Black(entry, left, right)

| LESS => restore_left (Black(entry1, ins left, right))

| GREATER => restore_right (Black(entry1, left, ins right)))

withsort ins :> ’a rbt -> ’a badRoot & ’a bt -> ’a rbt

in (* the second conjuct is needed for the recursive cases *)

case ins dict

of Red (t as (_, Red _, _)) => Black t (* re-color *)

| Red (t as (_, _, Red _)) => Black t (* re-color *)

| dict => dict (* depend on sequential matching *)

end

withsort insert :> ’a rbt * ’a entry -> ’a rbt
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