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Abstract. Traditional session types prescribe bidirectional communication protocols for
concurrent computations, where well-typed programs are guaranteed to adhere to the
protocols. However, simple session types cannot capture properties beyond the basic
type of the exchanged messages. In response, recent work has extended session types
with refinements from linear arithmetic, capturing intrinsic attributes of processes and
data. These refinements then play a central role in describing sequential and parallel
complexity bounds on session-typed programs. The Rast language provides an open-source
implementation of session-typed concurrent programs extended with arithmetic refinements
as well as ergometric and temporal types to capture work and span of program execution.
To further support generic programming, Rast also enhances arithmetically refined session
types with recently developed nested parametric polymorphism. Type checking relies on
Cooper’s algorithm for quantifier elimination in Presburger arithmetic with a few significant
optimizations, and a heuristic extension to nonlinear constraints. Rast furthermore includes
a reconstruction engine so that most program constructs pertaining the layers of refinements
and resources are inserted automatically. We provide a variety of examples to demonstrate
the expressivity of the language.

1. Introduction

Session types [Hon93, HVK98, Vas12] provide a structured way of statically prescribing
communication protocols in message-passing programs. In this paper, we introduce the
Rast programming language and implementation which is based on binary session types
governing the interaction of two processes along a single channel, rather than multiparty
session types [HYC08] which take a more global view of computation. Nevertheless, during
the execution of a Rast program, complex networks of interacting processes arise. Recent
work has placed binary session types without general recursion on a strong logical foundation
by exhibiting a Curry-Howard isomorphism with linear logic [CP10, Wad12, CPT16]. Due
to this correspondence, the cut reduction properties of linear logic entail type safety of
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session typed processes and guarantee freedom from deadlocks (global progress) and session
fidelity (type preservation) ensuring adherence to the communication protocols at runtime.

The Rast programming language is based on session types derived from intuitionistic
linear logic, extended with equirecursive types and recursive process definitions. Rast also
supports full parametric polymorphism enabling definition of polymorphic data structures.
It furthermore supports arithmetic type refinements as well as ergometric and temporal
types to measure the total work and span of Rast programs. The theory underlying Rast
has been developed in several papers, including the Curry-Howard interpretation of linear
logic as session-typed processes [CP10, CPT16], the treatment of general equirecursive
types and type equality [GH05], asynchronous communication [GV10, DCPT12], ergometric
types [DHP18b], temporal types [DHP18a], indexed types [GG13, DP20c], indexed type
equality [DP20b], and nested polymorphism [DDMP21].

We focus on key aspects of language design and implementation, not the underlying
theory which can be found in the cited papers. A notable exception is subtyping for the full
language, including nested polymorphic types, whose properties are the subject of ongoing
research. We present Rast in layers, using typing rules, an operational semantics, and
examples to explain and illustrate increasingly advanced features via their type structure.
All language layers satisfy the properties of preservation (session fidelity) and progress
(deadlock-freedom), with slightly different statements depending on the semantic properties
under consideration. For example, in the presence of ergometric types the sum of potential
and total work expended remains constant. This paper is a significantly revised and
extended version of a system description [DP20a], including the formal definition of typing
and computation, nested parametric polymorphism, subtyping, and additional examples.

We begin with motivation and a brief overview of the main features of the language
using a concurrent queue data structure as a running example. The following type specifies
the interface to a polymorphic queue server in the system of basic recursive session types
storing elements of type A and supporting the operations of insert and delete.

queue[A] = N{ins : A( queue[A],
del : ⊕{none : 1,

some : A⊗ queue[A]}}
The external choice operator N dictates that the process providing this data structure

accepts either one of two messages: the labels ins or del. In the case of ins, it receives an
element of type A denoted by the ( operator, and then the type recurses back to queue[A].
On receiving a del request, the process can respond with one of two labels (none or some),
indicated by the internal choice operator ⊕. If the queue is empty, it responds with none
and then terminates (indicated by 1). If the queue is nonempty, it responds with some
followed by the element of type A (expressed with the ⊗ operator) and recurses. The type
queue[A] denotes the type name queue instantiated with the session type A.

However, the simple session type does not express the conditions under which the none
and some branches must be chosen, which requires tracking the length of the queue. Rast
extends session types with arithmetic refinements [DP20b, DP20c] which can be used to
express the length of a queue. The more precise type

queue[A]{n} = N{ins : A( queue[A]{n+ 1},
del : ⊕{none : ?{n = 0}.1,

some : ?{n > 0}. A⊗ queue[A]{n− 1}}}
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uses the index refinement n to indicate the number of elements in the queue. In addition,
the type constraint ?{φ}. A read as “there exists a proof of φ” is analogous to the assertion
of φ in imperative languages. Conceptually, the process providing the queue must provide a
proof of n = 0 after sending none, and a proof of n > 0 after sending some respectively. It
is therefore constrained in its choice between the two branches based on the value of the
index n. Since the constraint domain is decidable and the actual form of a proof is irrelevant
to the outcome of a computation, in the implementation no proof is actually sent.

As is standard in session types, the dual constraint to ?{φ}. A is !{φ}. A (for all proofs
of φ, analogous to the assumption of φ). We also add explicit quantifiers ∃n.A and ∀n.A
that send and receive natural numbers, respectively.

Arithmetic refinements are instrumental in expressing sequential and parallel complexity
bounds. These are captured with ergometric [DHP18b, DBH+21] and temporal session types
[DHP18a]. They rely on index refinements to express, for example, the size of lists, stacks,
and queue data structures, or the height of trees and express work and time bounds as a
function of these refinements.

Ergometric session types [DHP18b] capture the sequential complexity of programs, often
called the work. Revisiting the queue example, consider an implementation where each
element in the queue corresponds to a process. Then insertion acts like a bucket brigade,
passing the new element one by one to the end of the queue. Among multiple cost models
provided by Rast is one where each send operation requires 1 unit of work (erg). In this
cost model, such a bucket brigade requires 2n ergs because each process has to send ins
and then the new element. On the other hand, responding to the del request requires only
2 ergs: the provider responds with none and closes the channel, or some followed by the
element. This gives us the following type

queue[A]{n} = N{ins : /2n(A( queue[A]{n+ 1}),
del : /2 ⊕ {none : ?{n = 0}.1,

some : ?{n > 0}. A⊗ queue[A]{n− 1}}}
which expresses that the client has to send 2n ergs of potential to insert an element (/2n),
and 2 ergs to delete an element (/2). The ergometric type system (described in Section 6)
verifies this work bound using the potential operators as described in the type.

Temporal session types [DHP18a] capture the time complexity of programs assuming
maximal parallelism on unboundedly many processors, often called the span. How does this
work out in our example? We adopt a cost model where each send and receive action takes
one unit of time (tick). First, we note that a use of a queue is at the client’s discretion,
so should be available at any point in the future, expressed by the type constructor �.
Secondly, the queue does not interact at all with the elements it contains, so they have to
be of type �A for an arbitrary A. Since each interaction takes 1 tick, the next interaction
requires at least 1 tick to elapse, captured by the next-time operator ©. During insertion,
we need more time than this: a process needs 2 ticks to pass the element down the queue, so
it takes 3 ticks overall until it can receive the next insert or delete request after an insertion.
This reasoning yields the following temporal type:

queue[A]{n} = �N {ins : ©(�A( ©3queue[A]{n+ 1}),
del : ©⊕ {none : © ?{n = 0}.1,

some : © ?{n > 0}.�A⊗© queue[A]{n− 1}}}
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We see that even though the bucket brigade requires much work for every insertion
(linear in the length of the queue), it has a lot of parallelism because there are only a constant
number of required delays between consecutive insertions or deletions.

Rast follows the design principle that bases an explicit language directly on the cor-
respondence with the sequent calculus for the underlying logic (such as linear logic, or
temporal or ergometric linear logic), extended with recursively defined types and processes.
Programming in this fully explicit form tends to be unnecessarily verbose, so Rast also
provides an implicit language in which most constructs related to index refinements and
amortized work analysis are omitted. Explicit programs are then recovered by a proof-
theoretically motivated algorithm [DP20c] for reconstruction which is sound and complete
on valid implicit programs.

Rast is implemented in SML and available as an open-source repository [DDP19]. It
allows the user to choose explicit or implicit syntax and the exact cost models for work
and time analysis. The implementation consists of a lexer, parser, reconstruction engine,
arithmetic solver, type checker, and an interpreter, with particular attention to providing
precise error messages. The repository also contains a number of illustrative examples that
highlight various language features, some of which we briefly sketch in this paper.

To summarize, Rast makes the following contributions:

(1) A session-typed programming language with arithmetic refinements applied to ergometric
and temporal types for parallel complexity analysis.

(2) An extension with full parametric polymorphism to enable generic programming.
(3) A subtyping algorithm that works well in practice despite its theoretical undecidabil-

ity [DP20b] and uses Cooper’s algorithm [Coo72] with some small improvements to
decide constraints in Presburger arithmetic (and heuristics for nonlinear constraints).

(4) A type checking algorithm that is sound and complete relative to subtyping.
(5) A sound and complete reconstruction algorithm for a process language where most index

and ergometric constructs remain implicit.
(6) An interpreter for executing session-typed programs using the recently proposed shared

memory semantics [PP20].

2. Example: An Implementation of Queues

We use the implementation of queues as sketched in the introduction as a first example
program, starting with the indexed version. The concrete syntax of types is a straightforward
rendering of their abstract syntax (Table 6).

type queue[A]{n} = &{ins : A -o queue[A]{n+1},

del : +{none : ?{n = 0}. 1,

some : ?{n > 0}. A * queue[A]{n-1}}}

Each channel has exactly two endpoints: a provider and a client. Session fidelity ensures that
provider and client always agree on the type of the channel and carry out complementary
actions. The type of the channel evolves during communication, since it has to track where
the processes are in the protocol as they exchange messages.

In our example, we need two kinds of processes: an empty process at the end of the
queue, and an elem process that holds an element x. The empty process provides an empty
queue, that is, a service of type queue[A]{0} along a channel named q. It does not use any
channels (indicated by an empty context ‘.’), so its type is declared with
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type queue[A]{n} = &{ins : A -o queue[A]{n+1},

del : +{none : ?{n = 0}. 1,

some : ?{n > 0}. A * queue[A]{n-1}}}

decl empty[A] : . |- (q : queue[A]{0})

decl elem[A]{n} : (x : A) (t : queue[A]{n}) |- (q : queue{n+1})

proc q <- empty[A] =

case q ( % receive a label along q

ins => x <- recv q ; % if ‘ins’, receive a channel x along q

e <- empty[A] ; % spawn a new empty process (at type A)

q <- elem[A]{0} x e % continue as an elem holding x

| del => q.none ; % if ‘del’, respond with label ‘none’

assert q {0=0} ; % assert that (n = 0)[0/n]

close q ) % terminate by closing q

proc q <- elem[A]{n} x t =

case q ( % receive a label along q

ins => y <- recv q ; % if ‘ins’, receive a channel y along q

t.ins ; % send label ’ins’ along t

send t y ; % send the channel y along t

q <- elem[A]{n+1} x t % continue as elem at index n+1

| del => q.some ; % if ‘del’, respond with label ‘some’

assert q {n+1>0} ; % assert that (n > 0)[n+1/n]

send q x ; % send x along q

q <-> t ) % identify q with t and terminate

Listing 1: Declaration and definition of queue processes, file examples/list.rast

decl empty[A] : . |- (q : queue[A]{0})

Polymorphism is explicit in Rast, requiring the programmer to specify the free type variables.
The declaration empty[A] denotes that the type A may occur freely in its type and definition.

An elem process provides a service of type queue[A]{n+1} along a channel named q and
uses a queue of type queue[A]{n} along a channel named t. In addition, it holds (“owns”)
an element x of type A.

decl elem[A]{n} : (x : A) (t : queue[A]{n}) |- (q : queue[A]{n+1})

The turnstile ‘|-’ separates the channels used from the channel that is provided (which is
always exactly one, analogous to a value returned by a function). The notation elem[A]{n}

indicates that the type A and natural number n are parameters of this process.
Listing 1 shows the implementation of the two forms of processes in Rast. Comments,

starting with a % character and extending to the end of the line, provide a brief explanation
for the actions of each line of code. This code is in explicit form, both in its refinements
and polymorphism. Thus, the type and natural number parameters to a process need to be
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Type Cont. Process Term Cont. Description

c : ⊕{` : A`}`∈L c : Ak c.k ; P P send label k along c
case c (`⇒ Q`)`∈L Qk branch on received label along c

c : N{` : A`}`∈L c : Ak case c (`⇒ P`)`∈L Pk branch on received label along c
c.k ; Q Q send label k along c

c : A⊗B c : B send c w ; P P send channel w : A along c
y ← recv c ; Q Q[w/y] receive channel w : A along c

c : A( B c : B y ← recv c ; P P [w/y] receive channel w : A along c
send c w ; Q Q send channel w : A along c

c : 1 — close c — send close along c
wait c ; Q Q receive close along c

Table 1: Basic session types with operational description

specified explicitly (e.g., elem[A]{0} or elem[A]{n+1}). Moreover, the code contains two
instances of assert to match the constraints ?{n = 0} and ?{n > 0} in the two possible
responses to a delete request. Rast also provides the programmer with an option to write
code in implicit form where the two asserts would be omitted since they can be read off the
type at the corresponding place in the protocol. Of course, the type checker verifies that
the assertion is justified and fails with an error message if it is not, whether the construct
is explicit or implicit. However, even in the implicit form, parameters (both type and
natural numbers) to a process need to be provided to spawn a new instance of it. The full
implementation can be found in tests/queues-quant.rast in the repository.

3. Basic System of Session Types

The underlying system of session types is derived from a Curry-Howard interpretation [CP10,
CPT16] of intuitionistic linear logic [GL87]. The key idea is that an intuitionistic linear
sequent A1 A2 . . . An ` A is interpreted as the interface to a process P . We label each of
the antecedents with a channel name xi and the succedent with channel name z. The xi’s
are channels used by P and z is the channel provided by P .

(x1 : A1), (x2 : A2), . . . , (xn : An) ` P :: (z : C)

The resulting judgment formally states that process P provides a service of session type C
along channel z, while using the services of session types A1, . . . , An provided along channels
x1, . . . , xn respectively. All these channels must be distinct. We often abbreviate the linear
antecedent of the sequent by ∆. Thus, the formal typing judgment is written as

∆ `Σ P :: (x : A)

where ∆ represents the linear antecedents xi : Ai, P is the process expression and x : A is
the linear succedent. Additionally, Σ is a fixed valid signature containing type and process
definitions (explained later). Because it is fixed, we elide it from the presentation of the
typing rules. We will extend the typing judgment in the subsequent sections as we introduce
polymorphism (Section 4), refinements (Section 5), ergometric (Section 6), and temporal
session types (Section 7).



RAST 7

At runtime, a program is represented using a multiset of semantic objects denoting
processes and messages defined as a configuration.

S ::= · | S,S ′ | proc(c, P ) | msg(c,M)

We formalize the operational semantics as a system of multiset rewriting rules [CS09]. We
introduce semantic objects proc(c, P ) and msg(c,M) which mean that process P or message
M provide along channel c. A process configuration is a multiset of such objects, where any
two provided channels are distinct.

In this section, we briefly review the structural type formers that constitute the base
fragment of Rast. The type grammar is defined as

Types A,B,C ::= ⊕{` : A}`∈L | N{` : A}`∈L | A⊗B | A( B | 1 | V
Table 1 overviews the types, their associated process terms, their continuation (both in types
and terms) and operational description. For each type, the first row describes the provider’s
viewpoint, while the second row describes the client’s matching but dual viewpoint.

Choice Operators. The internal choice type constructor ⊕{` : A`}`∈L is an n-ary labeled
generalization of the additive disjunction A⊕B. Operationally, it requires the provider of
x : ⊕{` : A`}`∈L to send a label label k ∈ L on channel x and continue to provide type Ak.
The corresponding process term is written as (x.k ; P ) where the continuation P provides
type x : Ak. Dually, the client must branch based on the label received on x using the
process term case x (`⇒ Q`)`∈L where Q` is the continuation in the `-th branch.

(k ∈ L) ∆ ` P :: (x : Ak)

∆ ` (x.k ; P ) :: (x : ⊕{` : A`}`∈L)
⊕R

(∀` ∈ L) ∆, (x : A`) ` Q` :: (z : C)

∆, (x : ⊕{` : A`}`∈L) ` case x (`⇒ Q`)`∈L :: (z : C)
⊕L

Communication is asynchronous, so that the provider (c.k ; P ) sends a message k
along c and continues as P without waiting for it to be received. As a technical device to
ensure that consecutive messages on a channel arrive in order, the sender also creates a fresh
continuation channel c′ so that the message k is actually represented as (c.k ; c↔ c′) (read:
send k along c and continue along c′). This formulation has the advantage that a message is
just a special form of process (see the discussion of forwarding below). When the message k
is received along c, we select branch k and also substitute the continuation channel c′ for
c. Rules ⊕S and ⊕C below describe the operational behavior of the provider and client
respectively.

(⊕S) : proc(c, c.k ; P ) 7→ proc(c′, P [c′/c]), msg(c, c.k ; c↔ c′) (c′ fresh)

(⊕C) : msg(c, c.k ; c↔ c′), proc(d, case c (`⇒ Q`)`∈L) 7→ proc(d,Qk[c′/c])

The external choice constructor N{` : A`}`∈L generalizes additive conjunction and is
the dual of internal choice reversing the role of the provider and client. Thus, the provider
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branches on the label k ∈ L sent by the client. The typing rules are as follows

(∀` ∈ L) ∆ ` P` :: (x : A`)

∆ ` case x (`⇒ P`)`∈L :: (x : N{` : A`}`∈L)
NR

(k ∈ L) ∆, (x : Ak) ` Q :: (z : C)

∆, (x : N{` : A`}`∈L) ` (x.k ; Q) :: (z : C)
NL

Semantics rules NS and NC express the operational behavior at runtime.

(NS) : proc(d, c.k ; Q) 7→ msg(c′, c.k ; c′ ↔ c), proc(d,Q[c′/c]) (c′ fresh)

(NC) : proc(c, case c (`⇒ Q`)`∈L), msg(c′, c.k ; c′ ↔ c) 7→ proc(c′, Qk[c′/c])

Channel Passing . The tensor operator A⊗B prescribes that the provider of x : A⊗B
sends a channel, say w of type A, and continues to provide type B. The corresponding
process term is (send x w ; P ) where P is the continuation. Correspondingly, its client
must receive a channel on x using the term (y ← recv x ; Q), binding it to variable y and
continuing to execute Q.

∆ ` P :: (x : B)

∆, (y : A) ` (send x y ; P ) :: (x : A⊗B)
⊗R

∆, (y : A), (x : B) ` Q :: (z : C)

∆, (x : A⊗B) ` (y ← recv x ; Q) :: (z : C)
⊗L

Operationally, the provider (send c d ; P ) sends the channel d and the continuation channel
c′ along c as a message and continues with executing P . The client receives the channel d
and continuation channel c′ and substitutes d for x and c′ for c.

(⊗S) : proc(c, send c d ; P ) 7→ proc(c′, P [c′/c]), msg(c, send c d ; c↔ c′) (c′ fresh)

(⊗C) : msg(c, send c d ; c↔ c′), proc(e, x← recv c ; Q) 7→ proc(e,Q[c′, d/c, x])

The dual operator A( B allows the provider (y ← recv x ; P ) to receive a channel of
type A and continue to provide type B with process term P . The client of A( B, on the
other hand, sends channel w of type A and continues to use B using term (send x w ; Q).

∆, (y : A) ` P :: (x : B)

∆ ` (y ← recv x ; P ) :: (x : A( B)
(R

∆, (x : B) ` Q :: (z : C)

∆, (x : A( B), (y : A) ` (send x y ; Q) :: (z : C)
(L

The semantics rules are the exact dual to ⊗.

((S) : proc(e, send c d ; Q) 7→ msg(c′, send c d ; c′ ↔ c), proc(e, [c′/c]Q) (c′ fresh)

((C) : proc(c, x← recv c ; P ), msg(c′, send c d ; c′ ↔ c) 7→ proc(c′, [c′, d/c, x]P )
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Termination . The type 1 indicates termination requiring that the provider of x : 1 send
a close message, formally written as (close x) followed by terminating the communication.
Correspondingly, the client of x : 1 uses the term (wait x ; Q) to wait for the close message
before continuing with executing Q. Linearity enforces that the provider does not use any
channels, as indicated by the empty context in 1R.

· ` (close x) :: (x : 1)
1R

∆ ` Q :: (z : C)

∆, (x : 1) ` (wait x ; Q) :: (z : C)
1L

Operationally, the provider waits for the closing message, which has no continuation channel
since the provider terminates.

(1S) : proc(c, close c) 7→ msg(c, close c)

(1C) : msg(c, close c), proc(d,wait c ; Q) 7→ proc(d,Q)

Forwarding . A forwarding process (x ↔ y) identifies the channels x and y so that any
further communication along either x or y will be along the unified channel. Its typing rule
corresponds to the logical rule of identity.

y : A ` (x↔ y) :: (x : A)
id

Operationally, a process c↔ d forwards any message M that arrives on d to c and vice-versa.
Since channels are used linearly, the forwarding process can then terminate, ensuring proper
renaming, as exemplified in the rules below.

(id+C) : msg(d,M), proc(c, c↔ d) 7→ msg(c,M [c/d])
(id−C) : proc(c, c↔ d), msg(e,M(c)) 7→ msg(e,M(c)[d/c])

M(c) indicates that c occurs in message M ensuring that M is the sole client of c.

Process Definitions. Process definitions have the form ∆ ` f = P :: (x : A) where f is
the name of the process and P its definition, with ∆ being the channels used by f and x : A
being the provided channel. All definitions are collected in a fixed global signature Σ. For
a valid signature, we require that ∆ ` P :: (x : A) for every definition, thereby allowing
definitions to be mutually recursive. A new instance of a defined process f can be spawned
with the expression x← f y ; Q where y is a sequence of channels matching the antecedents
∆. The newly spawned process will use all variables in y and provide x to the continuation
Q. The following def rule describes the typing of a spawn.

y′ : B′ ` f = Pf :: (x′ : B) ∈ Σ ∆′ = (y : B′) ∆, (x : B) ` Q :: (z : C)

∆,∆′ `Σ (x← f y ; Q) :: (z : C)
def

The declaration of f is looked up in the signature Σ (first premise), and the channel types in
∆ are matched to the signature B′ (second premise). Similarly, the freshly created channel
x has type B from the signature. The corresponding semantics rule defC also performs a
similar substitution.

(defC) : proc(c, x← f d ; Q) 7→ proc(a, Pf [a, d/x′, y′]), proc(c,Q[a/x]) (a fresh)

where y′ : B′ ` f = Pf :: (x′ : B) ∈ Σ.
Sometimes a process invocation is a tail call, written without a continuation as x← f y.

This is a short-hand for x′ ← f y ; x↔ x′ for a fresh variable x′, that is, we create a fresh
channel and immediately identify it with x.
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Type Definitions. Session types can be defined recursively, departing from a strict Curry-
Howard interpretation of linear logic, analogous to the way pure ML or Haskell depart from a
pure interpretation of intuitionistic logic. A type definition for a type name V is of the form
V = A, where A is a type expression. The signature Σ contains all type definitions, that are
possibly mutually recursive. For a well-formed signature, we require A to be contractive, i.e.,
A itself must not be a type name. Our type definitions are equirecursive so we can silently
replace type names V by A during type checking, and no explicit rules for recursive types
are needed.

4. Polymorphic Session Types

In this section, we describe the modifications to the Rast language required to realize
nested polymorphism [DDMP21] to support general-purpose programming. First, due to
the presence of type variables, the formal typing judgment is extended with v and written as

v ; ∆ `Σ P :: (x : A)

where v stores the type variables (which we denote by α). We presuppose and maintain that
all free type variables in ∆, P , and A are contained in v. The signature Σ is still fixed but
the process and type definitions are now (possibly) parameterized by type variables.

To support polymorphism, we need to two primary additions. First, we need to update
the form of process and type definitions. Secondly, we add explicit quantifiers to allow
exchange of types at runtime. Thus, the extended type grammar is

Types A ::= . . . | α | V [A] | ∃α.A | ∀α.A

Type Definitions. A type name V is now defined according to a definition V [α] = A that
is parameterized by a sequence of distinct type variables α that its definition A can refer
to. We can use type names in a type expression using V [B]. Type expressions can also
refer to parameter α available in scope. The free variables in type A refer to the set of type
variables that occur freely in A. Since types are equirecursive, the type V [B] is considered
equivalent to its unfolding A[B/α]. All type names V occurring in a valid signature must be
defined, and all type variables defined in a valid definition must be distinct. Furthermore,
for a valid definition V [α] = A, the free variables occurring in A must be contained in α.

Process Definitions. Process definitions now have the form ∆ ` f [α] = P :: (x : A) where
f is the name of the process and P its definition, with ∆ being the channels used by f and
x : A being the offered channel. In addition, α is a sequence of type variables that ∆, P and
A can refer to. These type variables are implicitly universally quantified at the outermost
level. The spawn expression (x← f [A] y ; Q) now takes a sequence of types A matching
the type variables α, making the polymorphism explicit. The def rule is updated to reflect
this modification.

y′ : B′ ` f [α] = Pf :: (x′ : B) ∈ Σ

∆′ = (y : B′)[A/α] v ; ∆, (x : B[A/α]) ` Q :: (z : C)

v ; ∆,∆′ ` (x← f [A] y ; Q) :: (z : C)
def

Note that A is substituted for α while matching the types in ∆′ and y (second premise).
Similarly, the provided channel x has type B from the signature with A substituted for α.



RAST 11

Type Cont. Process Term Cont. Description

c : ∃α.A c : A[B/α] send c [B] ; P P provider sends type B along c
[α]← recv c ; Qα Qα[B/α] client receives type B along c

c : ∀α.A c : A[B/α] [α]← recv c ; Pα Pα[B/α] provider receives type B along c
send c [B] ; Q Q client sends type B along c

Table 2: Explicitly quantified session types with operational description

Explicit Quantifiers. To support full parametric polymorphism, Rast also provides two
dual type constructors, ∃α.A and ∀α.A to exchange types between processes. Table 2
describes these types along with their operational behavior. The existential type ∃α.A
requires the provider to send a valid type B and continue to provide A[B/α]. The term
used to send a type is (send x [B] ; P ) where P is the continuation. Dually, the client
receives a type using the expression ([α] ← recv x ; Q), binds it to variable α, and then
continues to execute Q using the session type A which possibly contains the free variable α.
We introduce an auxiliary judgment v ` B valid to define that B is a well-formed type, and
all free variables of B are contained in v. The corresponding typing rules are

v ` B valid v ; ∆ ` P :: (x : A[B/α])

v ; ∆ ` (send x [B] ; P ) :: (x : ∃α.A)
∃R

v, α ; ∆, (x : A) ` Q :: (z : C)

v ; ∆, (x : ∃α.A) ` ([α]← recv x ; Q) :: (z : C)
∃L

The provider checks whether type B is valid and continues to provide type A[B/α]. The
client receives a type, binding it to α which is ensured by adding α to v.

Operationally, the provider (send x [B] ; P ) sends the type B and the continuation
channel c′ along c and continues executing P . The client receives the type B and continuation
channel c′ and substitutes B for α and c′ for c in Q.

(∃S) : proc(c, send c [B] ; P ) 7→ proc(c′, P [c′/c]), msg(c, send c [B] ; c↔ c′) (c′ fresh)

(∃C) : msg(c, send c [B] ; c↔ c′), proc(e, [α]← recv c ; Q) 7→ proc(e,Q[c′, B/c, α])

Dually, a provider with a universal typed session ∀α.A receives an arbitrary type, binds
it to α, and proceeds to provide session prescribed by type A, possibly referring α. On the
other hand, the client sends a valid type B and continues with session A[B/α]. The formal
rules for ∀α.A are

v ; ∆ ` P :: (x : A)

v ; ∆ ` ([α]← recv x ; P ) :: (x : ∀α.A)
∀R

v ` B valid v ; ∆, (x : A[B/α]) ` Q :: (z : C)

v ; ∆, (x : ∀α.A) ` (send x [B] ; Q) :: (z : C)
∀L

(∀S) : proc(d, send c [B] ; P ) 7→ msg(c′, send c [B] ; c′ ↔ c), proc(d, P [c′/c]) (c′ fresh)

(∀C) : proc(c, [α]← recv c ; Q), msg(c′, send c [B] ; c′ ↔ c) 7→ proc(c′, Q[c′, B/c, α])

Since polymorphism is parametric, it is possible to avoid explicitly sending types at
runtime if this optimization is desired and does not interfere with other lower-level aspects
of an implementation such as dynamic monitoring.
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Example: Context-Free Languages . Recursive session types capture the class of regular
languages [TV16]. However, in practice, many useful languages are beyond regular. As an
illustration, suppose we would like to express a balanced parentheses language, also known as
the Dyck language [Dyc82] with the end-marker $. We use L to denote an opening symbol,
and R to denote a closing symbol (in a session-typed mindset, L can represent client request
and R is server response). We need to enforce that each L has a corresponding closing R
and they are properly nested. To express this, we need to track the number of L’s in the
output with the session type. However, this notion of memory is beyond the expressive
power of regular languages, so mere recursive session types will not suffice.

We utilize the expressive power of nested types to express this behavior.

type T[x] = +{L : T[T[x]], R : x}

type D = +{L : T[D], $ : 1}

The nested type T[T[x]] takes x as a type parameter and either outputs L and continues
with T[T[x]], or outputs R and continues with x. The type D either outputs L and continues
with T[D], or outputs $ and terminates. The type D expresses a Dyck word [KH66].

The key idea here is that the number of T’s in the type of a word tracks the number
of unmatched L’s in it. Whenever the type T[x] outputs L, it recurses with T[T[x]]

incrementing the number of T’s in the type by 1. Dually, whenever the type outputs R, it
recurses with x decrementing the number of T’s in the type by 1. The type D denotes a
balanced word with no unmatched L’s. Moreover, since we can only output $ (or L) at the
type D and not R, we obtain the invariant that any word of type D must be balanced. If
we imagine the parameter x as the symbol stack, outputting an L pushes T on the stack,
while outputting R pops T from the stack. The definition of D ensures that once an L is
outputted, the symbol stack is initialized with T[D] indicating one unmatched L. The file
polytests/dyck.rast in the repository contains the complete code.

5. Refinement Session Types

In this section, we index types with arithmetic refinements that describe intrinsic attributes
of corresponding channels. In addition to the type constructors arising from the connectives
of intuitionistic linear logic (⊕, N, ⊗, 1, () and type variables arising from polymorphism,
we index type names by a sequence of arithmetic expressions V [A]{e}, existential and
universal quantification over natural numbers (∃n.A, ∀n.A) and existential and universal
constraints (?{φ}. A, !{φ}. A). The type grammar is extended as follows (we write i for
constant and n for variable natural numbers).

Types A,B,C ::= . . . | V [A]{e} | ?{φ}. A | !{φ}. A | ∃n.A | ∀n.A

Arith. Exps. e ::= i | e+ e | e− e | i× e | n

Arith. Props. φ ::= e = e | e > e | > | ⊥ | φ ∧ φ
| φ ∨ φ | ¬φ | ∃n. φ | ∀n. φ

To account for refinements, the typing judgment is further extended and has the form

V ; C ; v ; ∆ `Σ P :: (x : A)

where V are arithmetic variables n, C are constraints over these variables expressed as a
single proposition, ∆ are the linear antecedents xi : Ai, P is a process expression, and x : A
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Type Cont. Process Term Cont. Description

c : ∃n.A c : A[i/n] send c {e} ; P P provider sends value i of e along c
{n} ← recv c ; Q Q[i/n] client receives number i along c

c : ∀n.A c : A[i/n] {n} ← recv c ; P P [i/n] provider receives number i along c
send c {e} ; Q Q client sends value i of e along c

c : ?{φ}. A c : A assert c {φ} ; P P provider asserts φ on channel c
assume c {φ} ; Q Q client assumes φ on c

c : !{φ}. A c : A assume c {φ} ; P P provider assumes φ on channel c
assert c {φ} ; Q Q client asserts φ on c

Table 3: Refined session types with operational description

is the linear succedent. We presuppose and maintain that all free index variables in C, ∆, P ,
and A are contained among V. As described in Section 4, the process and type definitions
in signature Σ are now also parameterized by arithmetic variables. In addition we write
V ; C � φ for semantic entailment (proving φ assuming C) in the constraint domain where V
contains all arithmetic variables in C and φ.

We now describe quantifiers (∃n.A, ∀n.A) and constraints (?{φ}. A, !{φ}. A). An
overview of the types, process expressions, their continuation, and operational meaning can
be found in Table 3.

Quantification . The provider of (c : ∃n.A) should send a witness i along channel c and
then continue as A[i/n]. The witness is specified by an arithmetic expression e which, since
it must be closed at runtime, can be evaluated to a number i (following standard evaluation
rules of arithmetic). From the typing perspective, we just need to check that the expression
e denotes a natural number, using only the permitted variables in V. This is represented
with the auxiliary judgment V ; C ` e : nat (implicitly proving e ≥ 0 under constraint C).

V ; C ` e : nat V ; C ; v ; ∆ ` P :: (x : A[e/n])

V ; C ; v ; ∆ ` send x {e} ; P :: (x : ∃n.A)
∃R

V, n ; C ; v ; ∆, (x : A) ` Q :: (z : C)

V ; C ; v ; ∆, (x : ∃n.A) ` {n} ← recv x ; Q :: (z : C)
∃L

Statically, the client adds n to V ensuring that continuations Q and A can refer to variables
in V, n. Operationally, the provider sends the arithmetic expression with the continuation
channel as a message that the client receives and appropriately substitutes.

(∃S) : proc(c, send c {e} ; P ) 7→ proc(c′, P [c′/c]), msg(c, send c {e} ; c↔ c′) (c′ fresh)

(∃C) : msg(c, send c {e} ; c↔ c′), proc(d, {n} ← recv c ; Q) 7→ proc(d,Q[e/n][c′/c])

The dual type ∀n.A reverses the role of the provider and client. The client sends (the
value of) an arithmetic expression e which the provider receives and binds to n.
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V, n ; C ; v ; ∆ ` Pn :: (x : A)

V ; C ; v ; ∆ ` {n} ← recv x ; Pn :: (x : ∀n.A)
∀R

V ; C ` e : nat V ; C ; v ; ∆, (x : A[e/n]) ` Q :: (z : C)

V ; C ; v ; ∆, (x : ∀n.A) ` send x {e} ; Q :: (z : C)
∀L

(∀S) : proc(d, send c {e} ; P ) 7→ msg(c′, send c {e} ; c′ ↔ c), proc(d, [c′/c]P ) (c′ fresh)

(∀C) : proc(d, {n} ← recv c ; Q), msg(c′, send c {e} ; c′ ↔ c) 7→ proc(d, [e/n][c′/c]Q)

Constraints. Refined session types also allow constraints over index variables. As we
have already seen in the examples, these critically govern permissible messages. From the
message-passing perspective, the provider of (c : ?{φ}. A) should send a proof of φ along c
and the client should receive such a proof. However, since the index domain is decidable
and future computation cannot depend on the form of the proof (what is known in type
theory as proof irrelevance) such messages are not actually exchanged. Instead, it is the
provider’s responsibility to ensure that φ holds, while the client is permitted to assume that
φ is true. Therefore, and in an analogy with imperative languages, we write assert c {φ} ; P
for a process that asserts φ for channel c and continues with P , while assume c {φ} ; Q
assumes φ and continues with Q.

Thus, the typing rules for this new type constructor are

V ; C � φ V ; C ; v ; ∆ ` P :: (x : A)

V ; C ; v ; ∆ ` assert x {φ} ; P :: (x : ?{φ}. A)
?R

V ; C ∧ φ ; v ; ∆, (x : A) ` Q :: (z : C)

V ; C ; v ; ∆, (x : ?{φ}. A) ` assume x {φ} ; Q :: (z : C)
?L

Notice how the provider must verify the truth of φ given the currently known constraints C
(the premise V ; C � φ), while the client assumes φ by adding it to C.

Operationally, the provider creates a message containing the constraint (which simply
evaluates to >) that is received by the client. Since the constraints exchanged at runtime
are always trivial, we can skip the communication entirely for constraints. However, in the
formal semantics we still require communication for uniformity with other type constructors.

(?S) : proc(c, assert c {φ} ; P ) 7→ proc(c′, [c′/c]P ), msg(c, assert c {φ} ; c↔ c′) (c′ fresh)

(?C) : msg(c, assert c {φ} ; c↔ c′), proc(d, assume c {φ′} ; Q) 7→ proc(d, [c′/c]Q)

In well-typed configurations (which arise from executing well-typed processes) the constraint
φ in these rules will always be closed and true so there is no need to check this explicitly.

The dual operator !{φ}. A reverses the role of provider and client. The provider of
x : !{φ}. A may assume the truth of φ, while the client must verify it. The dual rules are

V ; C ∧ φ ; v ; ∆ ` P :: (x : A)

V ; C ; v ; ∆ ` assume x {φ} ; P :: (x : !{φ}. A)
!R

V ; C � φ V ; C ; v ; ∆, (x : A) ` Q :: (z : C)

V ; C ; v ; ∆, (x : !{φ}. A) ` assert x {φ} ; Q :: (z : C)
!L

(!S) : proc(d, assert c {φ} ; P ) 7→ msg(c′, assert c {φ} ; c′ ↔ c), proc(d, [c′/c]P ) (c′ fresh)

(!C) proc(d,w, assume c {φ′} ; Q), msg(c′, assert c {φ} ; c′ ↔ c) 7→ proc(d, [c′/c]Q)
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The remaining issue is how to type-check a branch that is impossible due to unsatisfiable
constraints. For example, if a client sends a del request to a provider along c : queue[A]{0},
the type then becomes

c : ⊕{none : ?{0 = 0}.1, some : ?{0 = 0}. A⊗ queue[A]{0− 1}}
The client would have to branch on the label received and then assume the constraint
asserted by the provider

case c (none⇒ assume c {0 = 0} ; P1

| some⇒ assume c {0 > 0} ; P2)

but what could we write for P2 in the some branch? Intuitively, computation should never
get there because the provider can not assert 0 > 0. Formally, we use the process expression
‘impossible’ to indicate that computation can never reach this spot:

case c (none⇒ assume c {0 = 0} ; P1

| some⇒ assume c {0 > 0} ; impossible)

In implicit syntax, we can omit the some branch altogether and it would be reconstructed in
the form shown above. Abstracting away from this example, the typing rule for impossibility
simply checks that the constraints are indeed unsatisfiable

V ; C � ⊥
V ; C ; ∆ ` impossible :: (x : A)

unsat

There is no operational rule for this scenario since in well-typed configurations the process
expression ‘impossible’ is dead code and can never be reached.

Example: Binary Numbers. As another example, consider natural numbers in binary
representation. The idea is that, for example, the number 13 in binary (1101)2 form is
represented as a sequence of labels (b1,b0,b1,b1, e, close) sent or received on a given
channel with the least significant bit first. Here e represents 0 (the empty sequence of bits),
while b0 and b1 represent bits 0 and 1, respectively.

type bin = +{ b0 : bin, b1 : bin, e : 1 }

We can then index binary numbers with their value. Because (linear) arithmetic contains
no division operator, we express the type bin{n} of binary numbers with value n using
existential quantification, with the concrete syntax ?k. A for ∃k.A.

type bin{n} = +{ b0 : ?{n > 0}. ?k. ?{n = 2*k}. bin{k},

b1 : ?{n > 0}. ?k. ?{n = 2*k+1}. bin{k},

e : ?{n = 0}. 1 }

The constraint that n > 0 in the case of b0 ensures the representation is unique and there are
no leading zeros; the same constraint for b1 is in fact redundant. The examples/arith.rast
contains several examples of processes over binary numbers like addition, multiplication,
predecessor, equality and conversion to and from numbers in unary form.
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Type Cont. Process Term Cont. Description

c : .rA c : A pay c {r} ; P P provider pays r potential units on channel c
get c {r} ; Q Q client gets r potential units on c

c : /rA c : A get c {r} ; P P provider gets r potential units on channel c
pay c {r} ; Q Q client pays r potential units on c

Table 4: Ergometric session types with operational description

6. Ergometric Session Types

An important application of refinement types is complexity analysis. Prior work on resource-
aware session types [DHP18b, DHP18a, DBH+21] crucially rely on arithmetic refinements
to express work and time bounds. The design principle we followed is that they should be
conservative over the basic and indexed session types, so that previously defined programs
and type-checking rules do not change. In this section, we review the ergometric type system
that computes work intuitively defined as the total operations executed by the system.

The key idea is that processes store potential and messages carry potential. This potential
can either be consumed to perform work or exchanged using special messages. The type
system provides the programmer with the flexibility to specify what constitutes work. Thus,
the programmer can choose to count the resource they are interested in, and the type system
provides the corresponding upper bound. Our current examples assign unit cost to message
sending operations (exempting those for index objects or potentials themselves) effectively
counting the total number of “real” messages exchanged during a computation.

Two dual type constructors .rA and /rA are used to exchange potential. Table 4
contains a description of these types and their operational behavior. The provider of x : .rA
must pay r units of potential along x using process term (pay x {r} ; P ), and continue to
provide A by executing P . These r units are deducted from the potential stored inside the
sender. Dually, the client must receive the r units of potential using the term (getx {r} ; Q)
and add this to its internal stored potential. Finally, since processes are allowed to store
potential, the typing judgment records the potential available to a process above the turnstile

V ; C ; v ; ∆ `
q

Σ P :: (x : A). We allow potential q to refer to index variables in V to capture
variable potential. The typing rules for .rA are

V ; C � q ≥ r1 = r2 V ; C ; v ; ∆ `q−r1 P :: (x : A)

V ; C ; v ; ∆ `q pay x {r1} ; P :: (x : .r2A)
.R

V ; C � r1 = r2 V ; C ; v ; ∆, (x : A) `q+r1
Q :: (z : C)

V ; C ; v ; ∆, (x : .r2A) `q getx {r1} ; Q :: (z : C)
.L

In both cases, we check that the exchanged potential in the expression and type matches
(r1 = r2), and while paying, we ensure that the sender has sufficient potential to pay. On
the other hand, the receiver adds the r units to its process potential.

We extend the semantic objects with work counters: proc(c, w, P ) (resp. msg(c, w, P ))
denotes a process (resp. message) providing channel c, executing P (resp. M) and having
performed work w so far. The semantics rules for . are expressed as follows.

(.S) : proc(c, w, pay c {r} ; P ) 7→ proc(c′, w, P [c′/c]), msg(c, 0, pay c {r} ; c↔ c′) (c′ fresh)
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(.C) : msg(c, w′, pay c {r} ; c↔ c′), proc(d,w, get c {r} ; Q) 7→ proc(d,w + w′, Q[c′/c])

The freshly created message in rule .S has not performed any work so far, therefore has
w = 0. In the .C rule, the work performed by the message is absorbed by the receiving
process. Thus, the total work done is conserved, and no work is dropped by the system. We
follow the same approach for all the rules of operational semantics so far.

The dual type /rA enables the provider to receive potential that is sent by its client.
Its rules are the exact inverse of ..

v ; C � r1 = r2 v ; C ; ∆ `q+r1
P :: (x : A)

v ; C ; ∆ `q getx {r1} ; P :: (x : /r2A)
/R

v ; C � q ≥ r1=r2 v ; C ; ∆, (x : A) `q−r1 Q :: (z : C)

v ; C ; ∆, (x : /r2A) `q pay x {r1} ; Q :: (z : C)
/L

(/S) : proc(d,w, pay c {r} ; P ) 7→ msg(c′, 0, pay c {r} ; c′ ↔ c), proc(d,w, [c′/c]P ) (c′ fresh)

(/C) : proc(c, w, get c {r} ; Q), msg(c′, w′, pay c {r} ; c′ ↔ c) 7→ proc(c′, w + w′, [c′/c]Q)

Since the sent or received potential must match the one prescribed by the type, our
reconstruction algorithm can insert the pay and get actions in a sound and complete way
(get as soon as possible and pay as late as possible).

We use a special expression work {r} ; P to perform work. Usually, work actions are
inserted by the Rast compiler based on a cost model selected by the programmer, such as
paying one erg just before every send operation. The programmer can also select a model
where all operations are free and manually insert calls to work {r}. An example of this is given
in the file examples/linlam-reds.rast that counts the number of reductions necessary for
the evaluation of an expression in the linear λ-calculus (described in Section 10).

V ; C � q ≥ r V ; C ; ∆ `q−r P :: (x : A)

V ; C ; ∆ `q work {r} ; P :: (x : A)
work

At runtime, executing the work {r} construct increments the work counter by r.

(wC) : proc(c, w,work {r} ; P ) 7→ proc(c, w + r, P )

Work is precise, that is, before terminating a process must have 0 potential, which can
be achieved by explicitly consuming any remaining potential.

Example: Ergometric Queue . We have already seen the ergometric types of queues as a
bucket brigade in the introduction. We show it now in concrete syntax, where <{p}| receives
potential p.

type queue[A]{n} = &{ins : <{2*n}| A -o queue[A]{n+1},

del : <{2}| +{none : ?{n = 0}. 1,

some : ?{n > 0}. A * queue[A]{n-1}}}

decl empty[A] : . |- (q : queue[A]{0})

decl elem[A]{n} : (x : A) (r : queue[A]{n}) |- (q : queue[A]{n+1})

Interestingly, the exact code of Listing 1 will check against this more informative type (see
file examples/list-work.rast). The cost model will insert the appropriate work {r} action
and reconstruction will insert the actions to pay and get potential.
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For a queue implemented internally as two stacks we can perform an amortized analysis.
Briefly, the queue process maintains two lists: one (in) to store messages when they are
enqueued, and a reversed list (out) from which they are dequeued. When the client wishes
to dequeue an element and the out list is empty, the provider reverses the in list to serve as
the new out list. A careful analysis shows that if this data structure is used linearly, both
insert and delete have constant amortized time. More specifically we obtain the type

type queue[A]{n} = &{enq : <{6}| A -o queue[A]{n+1},

deq : <{4}| +{none : ?{n = 0}. 1,

some : ?{n > 0}. A * queue[A]{n-1}}}

The program can be found in the file examples/list-work.rast in the repository.

7. Temporal Session Types

Rast also supports temporal modalities next (©A), always (�A), and eventually (♦A),
interpreted over a linear model of time. To model computation time, we use the syntactic
form delay which advances time by one tick. A particular cost semantics is specified by
taking an ordinary, non-temporal program and adding delays capturing the intended cost.
For example, if only the blocking operations should cost one unit of time, a delay is added
before the continuation of every receiving construct. For type checking, the delay construct
subtracts one © operator from every channel it refers to. We denote consuming t units on the
left of the context using [A]−tL , and on the right by [A]−tR . Briefly, [©tA]−tL = [©tA]−tR = A.

V ; C � t ≥ 0 V ; C ; v ; [∆]−tL `
q
Q :: (x : [A]−tR )

V ; C ; v ; ∆ `q delay (t) ; P :: (x : A)
©LR

To express the semantics, we now use proc(c, w, t, P ) to denote a process P at local
clock t. This local clock advances by r as the process executes a delay (r).

(©C) : proc(c, w, t, delay (r) ; P ) 7→ proc(c, w, t+ r, P )

Always A. A process providing x : �A promises to be available at any time in the future,
including now. When the client would like to use this provider it (conceptually) sends a
message now! along x and then continues to interact according to type A.

A process P providing x : �A must be able to wait indefinitely. But this is only possible
if all the channels that P uses can also wait indefinitely. This is enforced in the rule by the
condition ∆ delayed� which requires each antecedent to have the form yi : ©ni �Bi.

∆ delayed� ∆ ` P :: (x : A)

∆ ` (when? (x) ; P ) :: (x : �A)
�R

∆, x : A ` Q :: (z : C)

∆, x : �A ` (now! (x) ; Q) :: (z : C)
�L

The corresponding semantics rules are

(�S) : proc(d,w, t, now! (c) ; P ) 7→ msg(c′, 0, t, now! (c) ; c′ ↔ c), proc(d,w, t, [c′/c]P )

(�C) : proc(c, w, s,when? (c) ; Q),msg(c′, w′, t, now! (c) ; c′ ↔ c) 7→
proc(c′, w + w′, t, [c′/c]Q) (s ≤ t)
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Type Cont. Process Term Cont. Description

c : ♦A c : A now! (c) ; P P provider sends now! on channel c
when? (c) ; Q Q client waits for now! on c

c : �A c : A when? (c) ; P P provider waits for now! on channel c
now! (c) ; Q Q client sends now! on c

c : ©rA c : A delay (r) ; P P provider delays for r time units

Table 5: Temporal session types with operational description

Eventually A. The dual of �A is ♦A. A process providing ♦A promises to provide A
eventually. When a process offering x : ♦A is ready, it will send a now! message along x and
then continue at type A. Conversely, the client of x : ♦A will have to be ready and waiting
for the now! message to arrive along x and then continue at type A. We use (when? (c) ; Q)
for the corresponding client. The typing rules for now! and when? are somewhat subtle.

∆ ` P :: (x : A)

∆ ` (now! (x) ; P ) :: (x : ♦A)
♦R

∆ delayed� ∆, x : A ` Q :: (z : C) A delayed♦

∆, x:♦A ` (when? (x) ; Q) :: (z : C)
♦L

The predicate C delayed♦ describes that C must have the form ©∗♦C ′ to require that C may
be delayed a fixed finite number of time steps and then must be allowed to communicate at
an arbitrary time in the future. The semantics rules for ♦ are exact inverse of �.

(♦S) : proc(c, w, t, now! (c) ; P ) 7→ proc(c′, w, t, [c′/c]P ), msg(c, 0, t, now! (c) ; c↔ c′)

(♦C) : msg(c, 0, t, now! (c) ; c↔ c′), proc(d,w, s,when? (c) ; P ) 7→
proc(d,w + w′, t, [c′/c]P ) (s ≤ t)

Table 5 provides a formal description of the temporal types. More details can be found
in prior work [DHP18a].

Since all temporal operators ultimately model time, they interact with each other and
the temporal displacement operator used in ©LR rule becomes more complicated. We define
[A]0 = A and [A]−(t+1) = [[A]−1]−t. Below S denotes a non-temporal type. When the
displacement is undefined, the ©LR rule cannot be applied.

[©A]−1
L = A [©A]−1

R = A [x : A]−1
L = x : [A]−1

L

[�A]−1
L = �A [�A]−1

R = undefined [x : A]−1
R = x : [A]−1

R

[♦A]−1
L = undefined [♦A]−1

R = ♦A [·]−1
L = ·

[S]−1
L = undefined [S]−1

R = undefined [∆,∆′]−1
L = [∆]−1

L , [∆′]−1
L

Example: Temporal Queue . We have already foreshadowed the temporal type of a queue,
implemented as a bucket brigade. We show it now in concrete syntax, where () is the ©

modality and [] represents �. We also show the types of the empty and elem processes (see
file examples/time.rast).

type queue[A]{n} = [] {enq : () A -o ()()()queue[A]{n+1},

deq : ()+{none: () ?{n = 0}. 1,

some: () ?{n > 0}. A * ()queue[A]{n-1}}}

decl empty[A] : . |- (q : ()()queue[A]{0})

decl elem[A]{n} : (x : A) (r : ()()queue[A]{n}) |- (q : queue[A]{n+1})
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Because Rast currently does not have reconstruction for time we have to update the
program with the five temporal actions presented in this section (two instances of delay, two
of when, and one of now). A key observation here is that in the case of elem the process r
does not need to be ready instantaneously, but can be ready after a delay of 2 ticks, because
that is how long it takes to receive the ins label and the element along q. This slack is also
reflected in the type of empty because it becomes then back of a new element when the end
of the queue is reached.

8. Subtyping

A late addition to Rast was the introduction of subtyping as a generalization of type equality.
Declaratively, in the system of basic session types (Section 3), we have just two rules for
typing

∆ ` P :: (x : A) A ≤ A′

∆ ` P :: (x : A′)
subR

∆, (x : A′) ` P :: (z : C) A ≤ A′

∆, (x : A) ` P :: (z : C)
subL

plus the rules for for subtyping A ≤ B. The latter follow Gay and Hole [GH05] by defining
it coinductively as the largest type simulation. This includes the standard notion of depth
and width subtyping for internal and external choice, except that our relation happens to
be exactly reversed from theirs due to our intuitionistic framework. We introduce fresh
internal definitions for all intermediate type subexpressions, which allows us a practically
efficient implementation of their algorithm that incrementally constructs this simulation.
For type-checking purposes, we can restrict the uses of subtyping to forwarding (rule id),
spawn (rule def), and channel passing (rules ⊗R and (L). Our implementation of the
linear λ-calculus in Section 10 exploits subtyping by observing that all values (type val) are
also expressions (type exp), that is, val ≤ exp. This means we can pass a channel of type
val to a process expecting a channel of type exp, which is used in the implementation of
β-reduction.

The algorithms for subtyping become increasingly more complicated with the addition
of indexed types [DP20b] (which is in fact undecidable) and nested polymorphic types (the
subject of ongoing research, generalizing type equality [DDMP21]). Nevertheless, the basic
structure of incrementally constructing a simulation remains intact, just recognizing that
a new pair is already in the partial simulation becomes more difficult. Our example suite
shows that even in the undecidable cases, type checking (including subtyping) does not
become a significant bottleneck.

9. Implementation

We have implemented a prototype for Rast in Standard ML (8100 lines of code). This
implementation contains a lexer and parser (1200 lines), reconstruction engine (900 lines),
an arithmetic solver (1200 lines), a type checker (2500 lines), pretty printer (400 lines),
and an interpreter (200 lines). The source code is well-documented and available open-
source [DDP19].
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Abstract Types Concrete Types Abstract Syntax Concrete Syntax

⊕{l : A, . . .} +{l : A, ...} x.k x.k

N{l : A, . . .} &{l : A, ...} case x (`⇒ P )`∈L case x (l => P | ...)

A⊗B A * B send x w send x w

A( B A -o B y ← recv x y <- recv x

1 1 close x close x

wait x wait x

∃a.A ?[a]. A send x [B] send x [B]

∀a.A ![a]. A [a]← recv x [a] <- recv x

∃n.A ?n. A send x {e} send x {e}

∀n.A !n. A {n} ← recv x {n} <- recv x

?{φ}. A ?{phi}. A assert x {φ} assert x {phi}

!{φ}. A !{phi}. A assume x {φ} assume x {phi}

.rA |{r}> A pay x {r} pay x {r}

/rA <{r}| A getx {r} get x {r}
©tA ({t}) A delay (t) delay {t}

�A [] A when? (x) when x

♦A <> A now! (x) now x

V [A]{e} V[A]...{e}...

x↔ y x <-> y

x← f x1 . . . xn x <- f x1 ... xn

Table 6: Abstract and Corresponding Concrete Syntax for Types and Expressions

Syntax . Table 6 describes the syntax for Rast programs. Each row presents the abstract
and concrete representation of a session type, and its corresponding providing expression. A
program contains a series of mutually recursive type and process declarations and definitions.

type v[a]...{n}... = A

decl f[a]...{n}... : (x1 : A1) ... (xn : An) |- (x : A)

proc x <- f [a]...{n}... x1 ... xn = P

Listing 2: Top-Level Declarations

The first line is a type definition, where v is the name with type parameters a and index
variables n and A is its definition. The second line is a process declaration, where f is the
process name, (x1 : A1) . . . (xn : An) are the used channels and corresponding types, while
the provided channel is x of type A. Finally, the last line is a process definition for the same
process f defined using the process expression P . In addition, f can be parameterized by
type variables a and index variables n. We use a hand-written lexer and shift-reduce parser
to read an input file and generate the corresponding abstract syntax tree of the program.
The reason to use a hand-written parser instead of a parser generator is to anticipate the
most common syntax errors that programmers make and respond with the best possible
error messages.

Validity Checking . Once the program is parsed and its abstract syntax tree is extracted,
we perform a validity check on it. We check that all index refinements, potentials, and delay
operators are non-negative. We also check that all index expressions are closed with respect
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to the the index variables in scope, and similarly for type expressions. To simplify and
improve the efficiency of the subtyping algorithm, we also assign internal names to type
subexpressions [DP20c, DDMP21] parameterized over their free type and index variables.
These internal names are not visible to the programmer.

Cost Model . The cost model defines the execution cost of each construct. Since our type
system is parametric in the cost model, we allow programmers to specify the cost model
they want to use. Although programmers can create their own cost model (by inserting
work or delay expressions in the process expressions), we provide three custom cost models:
send, recv, and recvsend. If we are analyzing work (resp. time), the send cost model inserts
a work{1} (resp. delay{1}) before (resp. after) each send operation. Similarly, recv model
assigns a cost of 1 to each receive operation. The recvsend cost model assigns a cost of 1 to
each send and receive operation.

Reconstruction and Type Checking . The programmer can use a flag in the program file
to indicate whether they are using explicit or implicit syntax. If the syntax is explicit, the
reconstruction engine performs no program transformation. However, if the syntax is implicit,
we use the implicit type system to approximately type-check the program. Once completed,
we use the forcing calculus, introduced in prior work [DP20c] to insert assert, assume, pay,
get and work constructs. The core idea here is simple: insert assume or get constructs
eagerly, i.e., as soon as available on a channel, and insert assert and pay lazily, i.e., just
before communicating on that channel. The forcing calculus proves that this reconstruction
technique is sound and complete in the absence of certain forms of quantifier alternations
(which are checked before reconstruction is performed). We only perform reconstruction for
proof constraints and ergometric types; reconstruction of type and index quantifiers and
temporal constructs is left to future work.

The implementation takes some care to provide constructive and precise error messages,
in particular as session types (not to mention arithmetic refinements, ergometric types, and
temporal types) are likely to be unfamiliar. One technique is staging: first check approximate
type correctness, ignoring index, ergometric, and temporal types, and only if that check
passes perform reconstruction and strict checking of type. Another particularly helpful
technique has been type compression. Whenever the type checker expands a type V [A]{e}
with V [α]{n} = B to B[A/α, e/n], we record a reverse mapping back to V [A]{e}. When
printing types for error messages this mapping is consulted, and complex types may be
compressed to much simpler forms, greatly aiding readability of error messages. This is
feasible in part because all intermediate subexpressions have an explicit (internal) definition,
simplifying the lookup. Finally, our implementation uses a bi-directional [DP20c, DDMP21]
type checking algorithm which reconstructs intermediate types for each channel. This helps
localize the source of the error message as the program point where reconstruction fails.
We designed the abstract syntax tree to also contain the relevant source code location
information which is utilized while generating the error message.

Subtyping . At the core of type checking lies subtyping, defined coinductively [GH05]. In
the presence of arithmetic refinements, subtyping and also type equality are undecidable,
but we have found what seems to be a practical approximation [DP20b, DDMP21], incre-
mentally constructing a simulation closed under reflexivity. The data structures are rather
straightforward, emphasizing simplicity over efficiency since subtyping tends to be fast in
practice. There are several places where the translation from the underlying theory to the
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implementation are not straightforward. After the file has been read and the validity of types
has been verified, we compute the variance of all type constructors in all type arguments
(covariant, contravariant, nonvariant, or bivariant) by a greatest fixed point computation,
starting from the assumption that all arguments are nonvariant. The variance information
is then used when determining if a new subtyping goal is implied by the partial simulation
constructed so far. The algorithm employs syntactic matching (allowing the type variables
in the simulation to be instantiated) without consulting the partial simulation again (which
could lead to nontermination). It also calls upon the constraint solver to determine if
the constrained pairs in the partial simulation contain enough information to entail the
constraints in the goal. The theory establishing soundness of this subtyping algorithm in
the presence of nested polymorphic types under their coinductive interpretation is currently
under development.

This algorithm always terminates because we impose a bound on how many distinct
inequalities V [A]{e} ≤ V ′[A′]{e′} we consider for any given pair V, V ′. Note that variables
also include the internal names created during elaboration. However, it may fail to establish
an inequality if the coinductive invariant is not general enough. Rast therefore allows the
programmer to assert an arbitrary number of additional type equalities or inequalities with
the constructs

eqtype V[A]...{e}... = V’[A’]...{e’}...

eqtype V[A]...{e}... <= V’[A’]...{e’}...

These are abstracted over their free variables, then checked one by one, assuming all other
asserted equalities and inequalities. The default construction of the simulation is currently
strong enough so that this feature has not been needed for any of our standard examples.

Arithmetic Solver . To determine the validity of arithmetic propositions that is used
by our refinement layer, we use a straightforward implementation of Cooper’s decision
procedure [Coo72] for Presburger arithmetic. We found a small number of optimizations
were necessary, but the resulting algorithm has been quite efficient and robust.

(1) We eliminate constraints of the form x = e (where x does not occur in e) by substituting
e for x in all other constraints to reduce the total number of variables.

(2) We exploit that we are working over natural numbers so all solutions have a natural
lower bound, i.e., 0.

We also extend our solver to handle non-linear constraints. Since non-linear arithmetic
is undecidable, in general, we use a normalizer which collects coefficients of each term in the
multinomial expression.

(1) To check e1 = e2, we normalize e1 − e2 and check that each coefficient of the normal
form is 0.

(2) To check e1 ≥ e2, we normalize e1 − e2 and check that each coefficient is non-negative.
(3) If we know that x ≥ c, we substitute y + c for x in the constraint that we are checking

with the knowledge that the fresh y ≥ 0.
(4) We try to find a quick counterexample to validity by plugging in 0 and 1 for the index

variables.

If the constraint does not fall in the above two categories, we print the constraint and trust
that it holds. A user can then view these constraints manually and confirm their validity.
At present, all of our examples pass without having to trust unsolvable constraints with our
set of heuristics beyond Presburger arithmetic.
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Interpreter . The current version of the interpreter pursues a sequential schedule following
a prior proposal [PP20]. We only execute programs that have no free type or index variables
and only one externally visible channel, namely the one provided. When the computation
finishes, the messages that were asynchronously sent along this distinguished channel are
shown, while running processes waiting for input are displayed simply as a dash ’-’.

The interpreter is surprisingly fast. For example, using a linear prime sieve to compute
the status (prime or composite) or all number in the range [2, 257] takes 27.172 milliseconds
using MLton during our experiments (see machine specifications below).

10. Further Examples

We present several different kinds of examples from varying domains illustrating different
features of the type system and algorithms. Table 7 describes the results: iLOC describes the
lines of source code in implicit syntax, eLOC describes the lines of code after reconstruction
(which inserts implicit constructs), #Defs shows the number of process definitions, R (ms)
and T (ms) show the reconstruction and type-checking time in milliseconds respectively.
Note that reconstruction is faster than type-checking since reconstruction does not involve
solving any arithmetic propositions. The experiments were run on an Intel Core i5 2.7 GHz
processor with 16 GB 1867 MHz DDR3 memory.

(1) arithmetic: natural numbers in unary and binary representation indexed by their value
and processes implementing standard arithmetic operations.

(2) integers: an integer counter represented using two indices x and y with value x− y.
(3) linlam: expressions in the linear λ-calculus indexed by their size.
(4) list: lists indexed by their size, and some standard operations such as append, reverse,

map, fold, etc. Also provides and implementation of stacks and queues using lists.
(5) primes: the sieve of Eratosthenes to classify numbers as prime or composite.
(6) segments: type seg[n] = ∀k.list[k]( list[n+k] representing partial lists with a constant-

work append operation.
(7) ternary: natural numbers and integers represented in balanced ternary form with digits

0, 1,−1, indexed by their value, and a few standard operations on them. This example
is noteworthy since it is the only one stressing the arithmetic decision procedure.

(8) theorems: processes representing valid circular [DP19] proofs of simple theorems such
as n(k + 1) = nk + n, n+ 0 = n, n ∗ 0 = 0, etc.

(9) tries: a trie data structure to store multisets of binary numbers, with constant amortized
work insertion and deletion verified with ergometric types.

We highlight interesting examples from some case studies showcasing the invariants that can
be proved using arithmetic refinements and nested polymorphism.

Linear λ-Calculus. We implemented the linear λ-calculus with evaluation (weak head
normalization) of terms. We use higher-order abstract syntax, representing linear abstraction
in the object language by a process receiving a message corresponding to its argument.

type exp = +{ lam : exp -o exp,

app : exp * exp }

We would like evaluation to return a value (a λ-abstraction), so we take advantage of the
structural nature of types (allowing us to reuse the label lam) to define the value type.

type val = +{ lam : exp -o exp }



RAST 25

Module iLOC eLOC #Defs R (ms) T (ms)

arithmetic 395 619 29 0.959 5.732
integers 90 125 8 0.488 0.659
linlam 88 112 10 0.549 1.072
list 341 642 37 3.164 4.637
primes 118 164 11 0.289 4.580
segments 48 76 8 0.183 0.225
ternary 270 406 20 0.947 140.765
theorems 79 156 13 0.182 1.095
tries 243 520 13 2.122 6.408

Total 1672 2820 149 8.883 165.173

Table 7: Case Studies

Rast can infer that val is a subtype of exp. We can derive constructors apply for expressions
and lambda for values (we do not need the corresponding constructor for expressions).

decl apply : (e1 : exp) (e2 : exp) |- (e : exp)

proc e <- apply e1 e2 =

e.app ; send e e1 ; e <-> e2

decl lambda : (f : exp -o exp) |- (v : val)

proc v <- lambda f = v.lam ; v <-> f

As a simple example, we follow the representation of a combinator that swaps the arguments
to a function.

(* swap = \f. \x. \y. (f y) x *)

decl swap : . |- (e : exp)

proc e <- swap =

e.lam ; f <- recv e ;

e.lam ; x <- recv e ;

e.lam ; y <- recv e ;

fy <- apply f y ;

e <- apply fy x

Evaluation is now the following very simple process.

decl eval : (e : exp) |- (v : val)

proc v <- eval e =

case e ( lam => v <- lambda e

| app => e1 <- recv e ; % e = e2

v1 <- eval e1 ;

case v1 ( lam => send v1 e ;

v <- eval v1 ) )

If e sends a lam label, we just rebuild the expression as a value. If e sends an app label
then e represents a linear application e1 e2 and the continuation has type exp⊗ exp. This
means we receive a channel representing e1 and the continuation (still called e) behaves
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like e2. We note this with a comment in the source. We then evaluate e1 which exposes
a λ-expression along the channel v1. We send e along v1, carrying out the reduction via
communication. The result of this (still called v1) is evaluated to yield the final value v.
This program is available in the repository at examples/linlam.rast.

We would now like to prove that the value of a linear λ-expression is smaller than
or equal to the original expression. At the same time we would like to rule out a class
of so-called exotic terms in the representation, which are possible due to the presence of
recursion in the metalanguage. We achieve this by indexing the types exp and val with their
size. For an application, this is easy: the size is one more than the sum of the sizes of the
subterms.

type exp{n} = +{ lam : ...

app : ?n1. ?n2. ?{n = n1+n2+1}. exp{n1} * exp{n2} }

The size n2 + 1 of a λ-expression is one more than the size n2 of its body, but what is that
in our higher-order representation? The body is a linear function takes an expression of size
n1 and then behaves like an expression of size n1 + n2. Solving for n2 then gives use the
following type definitions and types for the constructor processes.

type exp{n} = +{lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1},

app : ?n1. ?n2. ?{n = n1+n2+1}. exp{n1} * exp{n2}}

type val{n} = +{ lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1} }

decl apply{n1}{n2} : (e1 : exp{n1}) (e2 : exp{n2}) |- (e : exp{n1+n2+1})

decl lambda{n2} : (f : !n1. exp{n1} -o exp{n1+n2}) |- (v : val{n2+1})

The universal quantification over n1 in the type of lam is important, because a linear
λ-expression may be applied to an argument of any size. We also cannot predict the size
of the result of evaluation, so we have to use existential quantification: The value of an
expression of size n will have size k for some k ≤ n.

decl eval{n} : (e : exp{n}) |- (v : ?k. ?{k <= n}. val{k})

Because witnesses for quantifiers are not reconstructed, the evaluation process has to send
and receive suitable sizes.

proc v <- eval{n} e =

case e ( lam => send v {n} ;

v <- lambda{n-1} e

| app => {n1} <- recv e ;

{n2} <- recv e ;

e1 <- recv e ;

v1 <- eval{n1} e1 ;

{k2} <- recv v1 ;

case v1 ( lam => send v1 {n2} ;

send v1 e ;

v2 <- eval{n2+k2-1} v1 ;

{l} <- recv v2 ;

send v {l} ; v <-> v2))
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Type-checking now verifies that if evaluation terminates, the resulting value is smaller than
the expression (or of equal size). The repository contains the implementation in the file
examples/linlam-size.rast.

Remarkably, ergometric session types can bound the number of reductions using an
amortized analysis of work! For this, we assign 1 erg (unit of potential) to each λ-expression.
Our cost model is that all operations are free, except the equivalent of a β-reduction which
costs 1 erg. Because transfer of potential is reconstructed, the program is very close to the
original, size-free program.

type exp = +{ lam : |> exp -o exp,

app : exp * exp }

type val = +{ lam : |> exp -o exp }

The |> in the lam branch denotes a unit potential associated with an λ-expression. The
definitions for apply and lambda are unchanged.

decl apply : (e1 : exp) (e2 : exp) |- (e : exp)

proc e <- apply e1 e2 =

e.app ; send e e1 ; e <-> e2

decl lambda : (f : exp -o exp) |{1}- (v : val)

proc v <- lambda f =

v.lam ; v <-> f

The |{1}- denotes a unit potential on the lambda process. This potential is consumed to
send 1 erg after sending the lam label. Note that reconstruction enables the programmer to
skip such work constructs.

decl eval : (e : exp) |- (v : val)

proc v <- eval e =

case e ( lam => v <- lambda e

| app => e1 <- recv e ; % e = e2

v1 <- eval e1 ;

case v1 ( lam => work ;

send v1 e ; % beta

v <- eval v1 ) )

Type-checking here verifies that the reduction of a given expression with n λ-abstractions to
a value performs at most k < n β-reductions, with a potential of n− k for further reductions
remaining in the value. This means that there are exactly n− k λ-abstractions remaining in
the result. The only change in the program is the work construct to realize the cost model of
only counting the reductions. Rast allows programmers to choose from one of the existing
cost models or provide their own custom cost model. Again, the remaining constructs (e.g.
paying and getting potential) are automatically inserted by the reconstruction engine. The
full code can be found in the file examples/linlam-reds.rast in the repository.
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Trie Data Structure . We now implement multisets of natural numbers (in binary form),
as introduced at the end of Section 5. One of the key questions is how to maintain linearity
in the design of the data structure and interface. For example, should we be able to delete
an element from the trie, not knowing a priori if it is even in the trie? To avoid exceedingly
complex types to account for these situations, the process maintaining a trie offers an
interface with two operations: insert (label ins) and delete (label del). We index the type
trie{n} with the number of elements in the trie, so inserting an element always increases n
by 1. If the element is already present, we just add 1 to its multiplicity. Deleting an element
actually removes all copies of it and returns its multiplicity m. If the element is not in the
trie, we just return a multiplicity of m = 0. In either case, the trie contains n−m elements
afterwards.

type trie{n} = &{ins : !k. bin{k} -o trie{n+1},

del : !k. bin{k} -o ?m. ?{m <= n}. bin{m} * trie{n-m}}

This type requires universal quantification over k, (written !k) which is the value of the
number inserted into or deleted from the trie on each interaction (which is arbitrary).

The basic idea of the implementation is that each bit in the number x : bin{k}

addresses a subtrie: if it is b0 we descend into the left subtrie, if it is b1 we descent into the
right subtrie. If it is e we have found (or constructed) the node corresponding to x and we
either increase its multiplicity (for insert), or respond with its multiplicity and set the new
multiplicity to zero (for delete). We have two forms of processes: a leaf with zero elements
and an interior node with n0 +m+n1 elements (where n0 and n1 and the number of elements
in the left and right subtries, and m is the multiplicity of the number corresponding to this
node in the trie).

decl leaf : . |- (t : trie{0})

decl node{n0}{m}{n1} :

(l : trie{n0}) (c : ctr{m}) (r : trie{n1}) |- (t : trie{n0+m+n1})

The code is somewhat repetitive, so we only show the code for inserting an element into an
interior node.

proc t <- node{n0}{m}{n1} l c r =

case t (

ins => {k} <- recv t ;

x <- recv t ;

case x ( b0 => {k’} <- recv x ;

l.ins ; send l {k’} ; send l x ;

t <- node{n0+1}{m}{n1} l c r

| b1 => {k’} <- recv x ;

r.ins ; send r {k’} ; send r x ;

t <- node{n0}{m}{n1+1} l c r

| e => wait x ;

c.inc ;

t <- node{n0}{m+1}{n1} l c r )

| del => ...)
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What does type-checking verify in this case? It shows that the number of elements in the
trie increases and decreases as expected for each insert and delete operation. On the other
hand, it does not verify that the correct multiplicities are incremented or decremented,
which is beyond the reach of the current type system. The source code is available at
examples/trie-work.rast.

Expression Server . Nested polymorphism in Rast can also be employed to ensure inter-
esting invariants. As an example, we adapt the example of an arithmetic expression from
prior work on context-free session types [TV16]. The type of the server is defined as

type bin = +{ b0 : bin, b1 : bin, e : 1 }

type tm[K] = +{ const : bin * K,

add : tm[tm[K]],

double : tm[K] }

The type bin represents a binary number as before, except we dropped the index in order
to focus on nested polymorphism.

An arithmetic term, parameterized by continuation type K can have one of three forms:
a constant, the sum of two terms, or the double of a term. Consequently, the type tm[K]

ensures that a process providing tm[K] is a well-formed term: it either sends the const

label followed by sending a constant binary number of type bin and continues with type K;
or it sends the add label and continues with tm[tm[K]], where the two terms denote the
two summands; or it sends the double label and continues with tm[K]. In particular, the
continuation type tm[tm[K]] in the add branch enforces that the process must send exactly
two summands for sums.

As a first illustration, consider two binary constants a and b, and suppose that we want
to create the expression a+ 2b. We can issue commands to the expression server in a prefix
notation to obtain a+ 2b, as shown in the following exp[K] process, which is parameterized
by a continuation type K.

decl exp[K] : (a : bin) (b : bin) (k : K) |- (e : tm[K])

proc e <- exp[K] a b k =

e.add ; % (a:bin) (b:bin) (k:K) |- (e : tm[tm[K]])

e.const ; send e a ; % (b:bin) (k:K) |- (e : tm[K])

e.double ; % (b:bin) (k:K) |- (e : tm[K])

e.const ; send e b ; % (k:K) |- (e : K)

e <-> k

In prefix notation, a+ 2b would be written + (a) (2 b), which is exactly the form followed
by the exp process: The process sends add, followed by const and the number a, followed
by double, const, and b. Finally, the process continues at type K by forwarding k to e.
To assist the reader, we describe the intermediate typing contexts on the right that are
automatically reconstructed by the Rast type checker.

The type tm[K] ensures that any process offering it must be a well-formed term. In
particular, the continuation type tm[tm[K]] in the add branch enforces that once the add

command is issued, the process must send exactly two summands. Similar properties hold
of the const and double branches.

To evaluate a term, we can define an eval process, parameterized by type K:

decl eval[K] : (t : tm[K]) |- (v : bin * K)
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The eval process uses channel t : tm[K] as argument, and offers v : bin * K. The process
evaluates term t and sends its binary value along v.

decl eval[K] : (t : tm[K]) |- (v : bin * K)

proc v <- eval[K] t =

case t (

const => % (t : bin * K) |- (v : bin * K)

n <- recv t ; % (n : bin) (t : K) |- (v : bin * K)

send v n ; v <-> t

| add => % (t : tm[tm[K]]) |- (v : bin * K)

v1 <- eval[tm[K]] t ; % (v1 : bin * tm[K]) |- (v : bin * K)

n1 <- recv v1 ; % (n1 : bin) (v1 : tm[K]) |- (v : bin * K)

v2 <- eval[K] v1 ; % (n1 : bin) (v2 : bin * K) |- (v : bin * K)

n2 <- recv v2 ; % (n1 : bin)(n2 : bin)(v2 : K) |- (v : bin * K)

n <- plus n1 n2 ; % (n : bin) (v2 : K) |- (v : bin * K)

send v n ; v <-> v2

| double => % (t : tm[K]) |- (v : bin * K)

v1 <- eval[K] t ; % (v1 : bin * K) |- (v : bin * K)

n1 <- recv v1 ; % (n1 : bin) (v1 : K) |- (v : bin * K)

n <- double n1 ; % (n : bin) (v1 : K) |- (v : bin * K)

send v n ; v <-> v1

)

Intuitively, the process evaluates term t and sends its binary value along v. If t is a constant,
then eval[K] receives the constant n, sends it along v and forwards.

The interesting case is the add branch. We evaluate the first summand by spawning
a new eval[K] process on t. Note that since the type of t (indicated on the right) is
tm[tm[K]] and hence, the recursive call to eval is at parameter tm[K]. We store the value of
the first summand at channel n1 : bin. Then, we continue to evaluate the second summand
by calling eval[K] on t again and storing its value in n2 : bin. Finally, we add n1 and n2

by calling the plus process (which has a straightforward definition), and send the result
bin along v. We follow a similar approach for the double branch.

11. Related Work

The literature on session types is by now vast, so we focus our review of related work on
binary session types (rather than multiparty session types) with implementations (rather
than theoretical foundations). Among them, we can distinguish those that offer a library
or embedding to a pre-existing language, and those that may be considered stand-alone
language designs.

Libraries. There are a number of libraries for session types. Such libraries tend to have
a very different flavor from Rast because they focus on practical usability in the context
of a general-purpose language. As such, the challenge usually is how to encode session
types so programs can be statically checked against them and how to achieve the expected
dynamic behavior. Among them we find libraries for Haskell [LM16a, OY16], Scala [SY16],
OCaml [Pad17], and Rust [JML15]. Noteworthy is the embedding of session types in
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ATS [XRWB16] because, unlike the others, ATS supports arithmetic indexing similar to
Rast. The most recent library for Rust [CB20] is perhaps the closest to Rast in that it
extends the exact basic system of session types from Section 3 with shared types [BP17].
While some of these libraries permit limited polymorphism, none of them support ergometric
or temporal types.

Languages . Designing complete languages like Rast frees the researcher from the limitations
and idiosyncrasies of the host language as they explore the design space. A relatively early
effort was the object-oriented language MOOL [Vas11] which distinguishes linear and
nonlinear channels.

A different style of language is SePi [BMV12, FV13] based on the π-calculus. It supports
linear refinements in terms of uninterpreted propositions (which may reference integers) in
addition to assert and assume primitives on them. They are not intended to capture internal
properties of data structures of processes; instead, they allow the programmer to express
some security properties.

The CO2 middleware language [BCPP15, BCM+15] supports binary timed session types.
The notion of time here is external. As such, it does not measure work or span based on
a cost model like Rast, but specifies interaction time windows for processes that can be
enforced dynamically via monitors.

Concurrent C0 [WPP16] is an implementation of linear and shared session types as an
extension of C0, a small type-safe and memory-safe subset of C. It integrates the basic
session types from Section 3 with shared session type [BP17] in the context of an imperative
language. Relatedly, the Nomos language [DBH+21] integrates linear and shared ergometric
session types with a functional language to aid smart contract programming. Although
Nomos does not support temporal types and polymorphism, it embeds a linear programming
solver to automatically infer the exact potential annotations.

Links [LM16b, LM17, FLMD19] is a language aimed at developing web applications.
While based on a different foundations, it is related to SILL [TCP13, Gri16] in that both
integrate traditional functional types with linear session types. As such, they can express
many (nonlinear) programs that Rast cannot, but they support neither arithmetic refinements
nor ergometric or temporal types.

Context-free session types [TV16, AMV20] generalize ordinary session types with se-
quential composition as well as permitting some polymorphism. The linear sublanguage of
context-free session types can be modeled in Rast with nested polymorphism [DDMP21].

12. Conclusion

This paper describes the Rast programming language. In particular, we focused on the
concrete syntax, type checking and subtyping, parametric polymorphism [DDMP21], the
refinement layer [DP20b, DP20c], and its applicability to work [DHP18b] and span anal-
ysis [DHP18a]. The refinements rely on an arithmetic solver based on Cooper’s algo-
rithm [Coo72]. The interpreter uses the shared memory semantics introduced in recent
work [PP20]. We concluded with several examples demonstrating the efficacy of the refined
type system in expressing and verifying properties about data structure sizes and values.
We also illustrated the work and span bounds for several examples, all of which have been
verified with our system, and are available in an open-source repository [DDP19].
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In the future, we plan to address some limitations of the Rast language. One goal of Rast
was to explore the boundaries of purely linear programming with general recursion. Often,
this imposes a certain programming discipline and can be inconvenient if we need to drop
or duplicate channels. Recent work on adjoint logic [PP19] uniformly integrates different
logical layers into a unified language by assigning modes to communication. We plan to
utilize this adjoint formulation to support shared [BP17] and unrestricted channels. Prior
work on the SILL [Gri16] and Nomos [DBH+21] have demonstrated such an integration is
helpful in general-purpose programming.

In the direction of parametric polymorphism, we plan to develop the theory of subtyping.
Our initial investigation suggests that subtyping is undecidable, and thus would like to
explore the boundaries of our current subtyping algorithm. Relatedly, we also plan to explore
if we can extend the ideas of reconstruction to explicit quantifiers.

With respect to refinements, we intend to pursue richer constraint domains such as
non-linear arithmetic, particularly SMT. We would also like to support reconstruction for
the temporal fragment of Rast. Unfortunately, the © operator affects all connected channels
at once and its proof-theoretic properties are not as uniform as those of polymorphism, proof
constraints, or ergometric types, posing a significant challenge.
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[CPT16] Lúıs Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Mathematical Structures in Computer Science, 726(3):367–423, 2016.

[CS09] Iliano Cervesato and Andre Scedrov. Relating state-based and process-based concurrency through
linear logic (full-version). Information and Computation, 207(10):1044 – 1077, 2009. Special issue:
13th Workshop on Logic, Language, Information and Computation (WoLLIC 2006).

[DBH+21] Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar. Resource-
Aware Session Types for Digital Contracts. In 34th IEEE Computer Security Foundations
Symposium, CSF, 2021. To appear.

http://www.cs.cmu.edu/~fp/papers/CMU-CS-17-106R.pdf


RAST 33
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