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Abstract

Session types denote message protocols between concurrent processes, allowing a type-safe for-
malization of inter-process communication. Although previous works demonstrate a well-defined
notion of subtyping where processes have different perceptions of the protocol, these formulations
were limited to linear session types where each channel of communication has a unique provider
and client. In our work, we extend these previous formulations into the shared session type setting
where channels can now have multiple clients instead of a single client. We demonstrate that this
allows shared sessions to be released at a different type, allowing the encoding of phases in a shared
protocol to be manifest in the session type.
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1 Introduction

Session types prescribe bidirectional communication protocols between concurrent processes [Hon93;
HVK98]. Variations of this type system were later given logical correspondences to intuitionistic [CP10]
and classical [Wad12] linear logic where proofs correspond to programs and cut reduction to communi-
cation.

The correspondence to linear logic mainly provided an interpretation of linear session types, which
denote sessions with exactly one client and one provider. A shared session type, with multiple clients and
one provider, was given a copying semantics interpretation from the exponential operator in linear logic,
where processes providing a shared channel effectively duplicated itself for every client. In particular,
under this interpretation, a server providing a shared channel to n clients would create a total of n
independent copies of itself that communicate with the n clients linearly.

Unfortunately, the copying semantics cannot model scenarios that demand sharing of resources since
clients receive their own unique provider. To model these scenarios, prior work [BP17] proposed a
sharing semantics by stratifying session types into shared and linear modalities and decomposing the
aforementioned exponential operator into modal shifts between the two modalities. Although we believe
that both copying and sharing semantics are compatible with each other in the sense that they can co-
exist in the same system, in this paper, we assume “shared” to refer to the sharing semantics approach
as opposed to copying semantics unless explicitly stated.

Communication adhering to shared session types follow an acquire-release discipline where a client
first acquires exclusive access to the provider, continues linearly, and then finally releases the exclusive
access, allowing the channel to be acquired by another client. One of the key requirements to guarantee
soundness in that system is that processes must be released1 at the same type that it was acquired since
there could be multiple clients waiting to acquire a particular shared channel. Prior work [BP17] demon-
strated that this requirement, or equi-synchronizing constraint can be formulated from the provider’s
viewpoint as a static constraint on the session type.

In a previous work [San19], we identified many practical scenarios, which we highlight in Section 4,
where clients using a shared channel often follow particular phases across successive acquire-release
cycles. However, we noted that this cannot be expressed directly in the type system since the equi-
synchronizing constraint requires that types remain consistent across acquire-release cycles.

1We also allow termination vacuously
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In this paper, we introduce a formulation of subtyping compatible with shared session types. In
this system, we statically relax the constraint that clients and providers must have the same view of a
channel’s type and instead allow clients to locally view a channel’s type as a supertype of the channel
type that is provided. We also generalize the equi-synchronizing constraint, taking into account the
subtle consequences that emerge due to the disagreement of the type of a shared channel between
clients and the provider. This gives us a rich session type system that allows manifestation of phases in
communication directly in the type system.

The main contributions of this paper include:

• a full formalization of a subtyping relation for shared session types and their meta theory

• the formulation of the safely synchronizing constraint, which is a relaxation of the equi-synchronizing
constraint that takes advantage of subtyping

• a detailed description of SILLS≤, which incorporates the subtyping that we propose, consist-
ing of its type system, synchronous operational semantics, and meta theory including the usual
preservation and progress proofs

The rest of the paper will proceed as follows:

• In Section 2 we give a brief introduction to both linear and shared session-typed message-passing
concurrency.

• In Section 3 we present our system along with the preservation and progress theorem statements.

• In Section 4 we provide examples of scenarios that take advantage of the new subtyping system.

• In Section 5 we outline related works and their connections to our paper.

• In Section 6 we conclude the main part of the paper with discussions of limitations, further
generalizations, and some conjectures.

• In the Appendix we provide a formal presentation of our system along with the technical proofs
of relevant theorems and lemmas, notably the preservation F and modified progress G theorems.

2 Background

2.1 Linear Session Types

The core observation behind the theory of session types is that the (intuitionistic) linear sequent

A1, A2, . . . , An ⊢ B
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can be viewed as a typing judgment for a process P by annotating the linear propositions with channel
names:

a1 : A1, a2 : A2, . . . , an : An ⊢ P :: b : B

Here we say that process P provides a session of type B across channel b while using channels a1, . . . , an
with session types A1, . . . , An respectively. We say that P provides b and is a client to a1, . . . , an.

Since the session type associated with a channel denotes a bidirectional protocol, each type connective
has two operational interpretations2 – one from the perspective of a provider and one from the client.
For example, a channel of type A⊗B requires that the provider send a channel of type A and proceed as
B while the client receive a channel of type A and proceed as A. As shown in Table 1, this operationally
dual interpretation culminates in a style where for any connective, either the client or provider will send
while the other will receive.

Type Operational interpretation from provider Operational interpretation from client

1 End of protocol – close channel Wait for the provider to close the channel

A⊗B Send channel of type A and proceed as B Receive channel of type A and proceed as B

A ⊸ B Receive channel of type A and proceed as B Send channel of type A and proceed as B

⊕{l : A} Send a label i ∈ l and proceed as Ai Receive and branch on i ∈ l and proceed as Ai

&{l : A} Receive and branch on i ∈ l and proceed as Ai Send a label i ∈ l and proceed as Ai

Table 1: A summary of the linear connectives and their operational interpretations

Another point we would like to emphasize is that all connectives follow a pattern where they send or
receive and then proceed as some type A. This type A is referred to as the continuation type.

Example Taking int as a primitive3, we can denote a session type for a simple server that performs
arithmetic operations and communicates back the result. The protocol should begin with the client
choosing an operation – add or sub, then for both branches, sending two ints, and then finally receiving
an int. This can be expressed as:

arith = &{add :int ⊸ int ⊸ int⊗ 1,

sub :int ⊸ int ⊸ int⊗ 1}

2This is due to the privileged position of the right side of the sequent in intuitionistic logic.
3It is important to note that int is a session type and therefore is encoded as a channel. For simplicity, we will treat it

as a channel carrying an integer.
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A process using a channel of this type must first send a label add or sub. After sending a label, the
client proceeds to use the channel which is now of type int ⊸ int ⊸ int ⊗ 1 (both labels lead to the
same continuation type). The client must then send a channel of type int and proceed as int ⊸ int⊗ 1.
Again, the client must send another channel of type int and proceed as int ⊗ 1. This time, the client
must receive an int and proceed as 1. At this point, the client must wait for the session to terminate.
The operational interpretation from the provider’s point of view is similar, with sending and receiving
flipped. For example, the provider must first receive a label, and so on.

To emphasize that the different branches from the external choice & can be different, we will add a
negation operation, which require the client to send one int (instead of two) and then receive the result:

arith = &{add :int ⊸ int ⊸ int⊗ 1,

sub :int ⊸ int ⊸ int⊗ 1,

neg :int ⊸ int⊗ 1}

Currently, we can only terminate a session through the unit type 1, but for this example, it might
make more sense for the process to recurse, allowing clients to perform as many operations as it desires.
We adopt an equi-recursive [CHP99] interpretation which require that recursive session types be con-
tractive [GH05], guaranteeing that there are no messages associated with the unfolding of a recursive
type. Adding recursion to our ongoing example, we have

arith = &{add :int ⊸ int ⊸ int⊗ arith,

sub :int ⊸ int ⊸ int⊗ arith,

neg :int ⊸ int⊗ arith}

Readers familiar with linear logic might notice that the linear session type arith will never terminate,
which means that any clients using the channel can also never terminate. For completeness sake, we
will provide one final modification to safely allow termination by adding an “exit” label to the external
choice.

arith = &{add :int ⊸ int ⊸ int⊗ arith,

sub :int ⊸ int ⊸ int⊗ arith,

neg :int ⊸ int⊗ arith,

exit :1}
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2.1.1 Type judgments

We say that a linear process term P offers a channel z of type C by using client channels
∆ = x1 : A1, . . . , xn : An. This is expressed as a judgment:

∆ ⊢ P :: (z : C)

These judgments have direct correspondence with the sequent calculus presentation of dual intuition-
istic linear logic, where process terms are given intuitive names following a C-like syntax.

∆ ⊢ P :: (z : C)

∆, x : 1 ⊢ wait x;P :: (z : C)
1L

· ⊢ close x :: (x : 1)
1R

∆, x : B, y : A ⊢ P :: (z : C)

∆, x : A⊗ B ⊢ y ← recv x;P :: (z : C)
⊗L

∆ ⊢ P :: (x : B)

∆, y : A ⊢ send x y;P :: (x : A⊗ B)
⊗R

where for example the process term in 1L, wait x;P denotes a process that waits for channel x to
terminate and then continue executing the remaining statement P .

One important point is that contraction and weakening are rejected. In particular, this means that
linear channels that a process is using cannot be duplicated and must be fully consumed before termi-
nating as shown in 1R. We give a more complete presentation of the type judgments in Section 2.2.1
after introducing shared session types.

2.1.2 Configuration

Since process calculi consist of many concurrent processes that interact with each other, we reason
about not just one process calculi term but a collection of terms by introducing a process configuration,
or a collection of linear process terms. For the purely linear setting, a configuration can be viewed as a
forest where the parent are clients to its children.

Figure 1 demonstrates a simple configuration for linear process terms. In the paper, we represent the
configuration as a list of processes with an ordering constraint that processes using channels provided
by other processes must appear before those processes – for example, the configuration matching the
one in the figure can be written as a list P1, Q1, Q2, P2. There are many valid permutations to this list,
since the only constraint we have is that P1 appear before Q1 and Q2 because P1 uses channels provided
by Q1 and Q2 (a1 and a2 respectively). We will later expand on this in Section 2.2.2.
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P1

Q1

a1

Q2

a2

b1

P2

b2

Figure 1: A visualization of a linear configuration consisting of four process terms. The top level
configuration processes P1 and P2 collectively provide channels b1 and b2 (represented by an edge to an
absent root node), while the channels a1 and a2 provided by Q1 and Q2 respectively are used by P1.
Thus, we say that P1 is a client to a1 and a2.

A configuration is well-typed if each process is well-typed according to the previously introduced type
judgments. For this particular example, we require that

· ⊢ Q1 :: (a1 : A1)

· ⊢ Q2 :: (a2 : A2)

a1 : A1, a2 : A2 ⊢ P1 :: (b1 : B1)

· ⊢ P2 :: (b2 : B2)

for some linear session types A1, A2, B1, and B2.

2.2 Shared Session Types

Although linear session types and their corresponding process calculi provide strong guarantees such as
session fidelity (preservation) and deadlock freedom (progress), they are not expressive enough to model
systems with shared resources. Following prior work [BP17], we extend the system to support shared
channels, which connect a single provider with multiple clients, and stratify session types into shared
and linear types. In the remaining sections, we will make this distinction explicit by marking channel
names and session type meta-variables with the subscripts S and L respectively where appropriate. For
example, a linear channel is marked aL, while a shared channel is marked bS.

We next introduce modal shift operators that allow session types to transition from linear to shared
(↑SL) and from shared to linear (↓SL). In summary, we have:

AS ::= ↑SLAL

AL, BL ::= ↓SLAS | 1 | AL ⊗BL | AL ⊸ BL | &{l:AL} | ⊕ {l:AL}

9



where we point out that the previously defined (linear) type operators such as ⊗ remain only at the
linear layer – a shared session type can only be constructed by a modal upshift ↑SL of some linear session
type AL.

What remains are the operational interpretations of the modal shifts ↑SL and ↓SL. From the client’s
perspective, encountering a channel of type ↑SLAL means that they must acquire exclusive access of the
channel and then continue the session as specified by AL. From the provider’s perspective, ↑SLAL means
that it must accept an acquire request by a client and then transition to a linear process, now offering
a linear channel AL. On the other hand, when encountering ↓SLAS, the client must release the exclusive
access it had and then continue the session as AS whereas the provider must detach from its linear state
and transition back to a shared process. This is summarized in Table 2.

Type Operational interpretation from provider Operational interpretation from client

1 End of protocol – close channel Wait for the provider to close the channel

AL ⊗ BL Send channel of type AL and proceed as BL Receive channel of type AL and proceed as BL

AL ⊸ BL Receive channel of type AL and proceed as BL Send channel of type AL and proceed as BL

⊕{l:AL} Send a label i ∈ l and proceed as AiL Receive and branch on i ∈ l and proceed as AiL

&{l:AL} Receive and branch on i ∈ l and proceed as AiL Send a label i ∈ l and proceed as AiL

↓SLAS Detach from a linear session and proceed as AS Release exclusive access and proceed as AS

↑SLAL Accept an acquire request and proceed as AL Acquire and proceed as AL

Table 2: An extension to Table 1, adding in the new modality distinctions and two new type operators
↑SL and ↓SL

One of the key observations with this addition is that clients of shared channels generally follow an
acquire-release pattern – they must first acquire exclusive access to the channel, then proceed linearly,
and then finally release the exclusive access that they had, allowing other clients of the same shared
channel to potentially acquire exclusive access.

There remains one obstacle to session fidelity with shared session types as we have formulated thus
far; consider for example a shared session type such as AS = ↑SL&{a : ↓SLAS, b : ↓

S
LBS} for some unrelated

BS. Suppose there are two clients M and N to some aS:AS, where M is blocked waiting to acquire aS

while N successfully acquires aS. Since N transitions linearly according to the protocol, it must send
one of two labels a or b due to the external choice. If N sends the label b, then it must release aS to
some unrelated type BS. Now M , who thinks it is trying to acquire aS:AS will instead acquire aS:BS,
violating session fidelity.

10



Previous work [BP17] addresses this problem by adding an additional constraint that if a channel was
acquired at some type CS, all possible future releases (by looking at the continuation types) must release
at CS. This is formulated as an equi-synchronizing constraint on session types directly. For example,
CS = ↑SL&{a : ↓SLCS, b : 1⊗ ↓

S
LCS} would be an equi-synchronizing type because it releases at CS in all

possible continuations whereas the previously defined AS would not because not all continuations (the
b branch) lead to releasing at AS.

2.2.1 Type judgments

Type judgments of a process are now of form:

Γ;∆ ⊢ P :: (zL:CL)

Γ ⊢ Q :: (zS:CS)

The former is read as “linear process term P offers a (linear) channel zL of type CL using shared
channels Γ and linear channels ∆.” The latter is read as “shared process term Q offers a (shared) channel
zS of type CS using shared channels Γ,” where there must be no dependency on any linear channels due
to the independence principle [BP17].

Global signature In the following sections, we will implicitly assume a global signature Σ, which is
a set of process definitions that can be thought as the process calculi analogue to a signature consisting
of function definitions. A process definition consists of the offering channel name and its type, the client
channel names and their types, and the process term:

xL:AL ← XL ← yL:BL, wS:ES = P

zS:CS ← ZL ← vS:DS = Q

The former denotes a linear process definition of a process named XL that offers a channel xL:AL

while using linear channels y1L:B1L
, . . . , ynL

:BnL
and shared channels w1S

:E1S
, . . . , wmS

:EmS
for some n

and m, where P consists of its implementation. Similarly, the latter denotes a shared process definition
of a process named ZS that offers a channel zS:CS while using shared channels v1S:D1S, . . . , vnS

:DnS
for

some n, where Q consists of its implementation. Again, it is important that shared process definitions
do not depend on linear channels due to the independence principle.

We complete the type judgments for the purely linear operators that we introduced previously.

Γ; yL:AL ⊢ fwd xL yL :: (xL:AL)
IDL

11



wS:ES ∈ Γ
(

x′
L
:AL ← XL ← y′

L
:BL, w′S:ES = P

)

∈ Σ Γ;∆, xL:AL ⊢ Q :: (zL:CL)

Γ;∆, yL:BL ⊢ xL ← XL ← yL, wS;Q :: (zL:CL)
SPLL

Γ;∆ ⊢ P :: (zL:CL)

Γ;∆, xL:1 ⊢ wait xL;P :: (zL:CL)
1L

Γ; · ⊢ close xL :: (xL:1)
1R

Γ;∆, xL:BL, yL:AL ⊢ P :: (zL:CL)

Γ;∆, xL:AL ⊗BL ⊢ yL ← recv xL;P :: (zL:CL)
⊗L

Γ;∆ ⊢ P :: (xL:BL)

Γ;∆, yL:AL ⊢ send xL yL;P :: (xL:AL ⊗ BL)
⊗R

Γ;∆, xL:B ⊢ P :: (zL:CL)

Γ;∆, xL:AL ⊸ BL, yL:AL ⊢ send xL yL;P :: (zL:CL)
⊸L

Γ;∆, yL:AL ⊢ P :: (xL:BL)

Γ;∆ ⊢ yL ← recv xL;P :: (xL:AL ⊸ BL)
⊸R

∀i ∈ l Γ;∆, xL:AiL ⊢ Pi :: (cL:ZL)

Γ;∆, xL:⊕ {l:AL} ⊢ case xL of {l ⇒ P} :: (cL:ZL)
⊕L

i ∈ l Γ;∆ ⊢ P :: (xL:AiL)

Γ;∆ ⊢ x.i;P :: (xL:⊕ {l:AL})
⊕R

i ∈ l Γ;∆, xL:AiL ⊢ P :: (zL:CL)

Γ;∆, xL:&{l:AL} ⊢ x.i;P :: (zL:CL)
&L

∀i ∈ l Γ;∆ ⊢ Pi :: (xL:AiL)

Γ;∆ ⊢ case xL of {l ⇒ P} :: (xL:&{l:AL})
&R

where structural rules, consisting of exchange, contraction, and weakening of Γ and exchange of ∆ are
taken to be implicit.

Adopting the modalities give rise to seven additional typing rules; an ID for shared processes, spawn-
ing a shared channel from a linear process, spawning a shared channel from a shared process, and four
judgments for the two new shift operators with their left and right rules:

Γ, ySB ⊢ fwd xS yS :: (xS:AS)
IDS

yS:BS ∈ Γ
(

x′
S
:AS ← XS ← y′

S
:BS = P

)

∈ Σ Γ, xS:AS; ∆ ⊢ Q :: (zL:CL)

Γ;∆ ⊢ xS ← XS ← yS;Q :: (zL:CL)
SPLS

ySB ∈ Γ
(

x′
S
:AS ← XS ← y′

S
:B′

S
= P

)

∈ Σ Γ, xS:AS ⊢ Q :: (zS:CS)

Γ ⊢ xS ← XS ← yS;Q :: (zS:CS)
SPSS

Γ, xSA; ∆, xL:AL ⊢ P :: (zL:CL)

Γ, xSA; ∆ ⊢ xL ← acq
S
xS;P :: (zL:CL)

↑SLL
Γ; · ⊢ P :: (xL:AL)

Γ ⊢ xL ← accS xS;P :: (xS:↑
S
LAL)

↑SLR
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Γ, xS:AS; ∆ ⊢ P :: (zL:CL)

Γ;∆, xL:↓
S
LAS ⊢ xS ← relS xS;P :: (zL:CL)

↓SLL
Γ ⊢ P :: (xS:AS)

Γ; · ⊢ xS ← detS xS;P :: (xL:↓
S
LAS)

↓SLR

We will later modify this system to take into account the safely synchronizing constraint and the extended
type system in Section 3.

2.2.2 Configuration

We similarly stratify the configuration Ω into a shared fragment Λ and a linear fragment Θ. A shared
configuration consists of a collection of shared processes proc(aS, P ) and placeholders for unavailable
channels (for example, due to it currently being acquired and in the linear state) unavail(aS). Following
this pattern, we also update our previous formulation of the linear configuration Θ to a list of linear
processes proc(aL, P ). The first argument in the proc terms denotes the channel name that the process
is providing. For visualization purposes, it is helpful to think of the shared configuration to be free
graphs and the linear configuration to be forests.

As demonstrated in Figure 2, the linear fragment of the configuration still maintains the linearity
constraint – there is only one arrow to a given linear process with a strict forest-ordering. However, the
shared fragment of the configuration loosely allow any dependencies – as showcased, multiple processes
can be clients to S1, and a shared process can even be a client to itself as shown in S2

4. If P1 successfully
acquires dS, then proc(dS, S1) transitions to unavail(dS) and a proc(dL,−) with the appropriate process
term will appear as a child to P1.

3 Subtyping

3.1 Linear Session Types

Taking nat to be a primitive compatible with int5, we consider a (linear) session type nat ⊗ AL.
According to this protocol, the provider must first send a channel of type nat, which we informally take
to be primitive for the sake of this example. In previous works, the client must act according to the
same protocol; they must receive a channel of type nat. However, it seems reasonable for a client to
instead act according to a slightly different protocol. Instead of receiving a channel of type nat, they
can receive a channel of type int, which we again take as a primitive, since anything of type nat can be
interpreted as an int. Thus, the client can safely interpret this channel’s protocol to be a session of form
int⊗ AL.

4Although there is nothing computationally interesting about it – S2 will deadlock if it tries to acquire itself
5For example, let nat = ⊕{pos : num}, int = ⊕{pos : num, neg : num}, and num = ⊕{s : num, z : 1}
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proc(aL, P1)

proc(bL, P2) proc(cL, P3)

proc(dS, S1) proc(eS, S2)

Figure 2: A visualization of a configuration consisting of linear processes P1, P2, and P3, represented as
circles, and shared processes S1 and S2, represented as rectangles. The direction of the arrow indicate
that the destination is the provider; for example, P1 uses channels provided by P2, P3, and S1. The
arrow to P1 indicates that P1 is a top level process term.

On the other hand, consider a session type int ⊸ AL. The provider must receive a channel of type int
while the client must send a channel of type int. In this example, the client can instead send a channel
of type nat. Therefore, the client can safely interpret the session to be of type nat ⊸ AL.

Now consider a session type &{a : AL, b : BL}. Since the provider is waiting for one of two choices,
a or b, the client can take the type to be a subset of the available choices, for example, &{b : BL}.
Similarly, for ⊕{a : AL, b : BL}, since the provider makes a decision between a and b, a client can wait
on additional choices, for example, ⊕{a : AL, b : BL, c : CL, d : DL}.
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In general, if A ≤ B, then a provider viewing its offering channel as A can safely communicate with
a client viewing the channel as B. The following subtyping rules, interpreted coinductively, generalize
the examples noted above.

1 ≤ 1
≤1

AL ≤ A′
L

BL ≤ B′
L

AL ⊗ BL ≤ A′
L
⊗B′

L

≤⊗
A′

L
≤ AL BL ≤ B′

L

AL ⊸ BL ≤ A′
L
⊸ B′

L

≤
⊸

∀i ∈ l AiL ≤ A′iL

⊕{l:AL} ≤ ⊕{l:A′L, m:BL}
≤&

∀i ∈ l AiL ≤ A′iL

&{l:AL, m:BL} ≤ &{l:A′
L
}
≤&

One key observation is that subtyping of session types are covariant in their continuations.

Example Since priority queues can be used to sort a list of n objects by repeatedly inserting all n
objects first and then popping as in heapsort, we can use subtyping to make this behavior explicit. We
begin by sketching the session type of a (priority) queue of some linear type AL:

queue = &{insert :AL ⊸ queue,

pop :⊕ {some : AL ⊗ queue, none : 1}}

The session type begins with an external choice, forcing the client to choose between an insert, which
requires the client to further send a channel of type AL and continue as a queue, and a pop, which allows
the provider to send a channel of type AL and continue as a queue or terminate if the queue is already
empty. At the current stage, clients using these queues can arbitrarily choose a sequence of insert/pop
commands, such as inserting twice, popping once, inserting three times, and so on. To enforce the
aforementioned behavior of inserting everything first and then only popping, we define two phases of
communication for the client. In the first phase, it can insert as many times as the client wants until
the client chooses to pop. Upon the first pop, the client transitions to the second phase where it can
only pop and never insert.

queue one = &{insert :AL ⊸ queue one,

pop :⊕ {some : AL ⊗ queue two, none : 1}}

queue two = &{pop :⊕ {some : AL ⊗ queue two, none : 1}}

Where the client begins in the first phase, or queue one, and we can indeed verify that queue ≤
queue one. A client with this view can begin by inserting as many times as it wants. However, once it
pops once, it must commit to popping because the session type switches to queue two which only allows
pop, allowing us to encode the two phases of communication.
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However, it is important to note that in this particular situation, the provider can also adopt queue one
as its view on the session type. This does not however make subtyping on purely linear types useless; a
provider implementing a generic priority queue can be reused to implement a heapsort using subtyping,
which a system without subtyping cannot do without re-implementing the provider with queue one.
Once shared channels come to play however, the idea that the provider simply adopts the client’s view
cannot apply since there can be multiple clients each with different views of the type of a shared channel.

3.2 Subtyping of Modal Shifts

We will begin this section with a motivating example and develop the theory. Consider a shared
process that implements a binary choice voting machine. A potential session type to represent this
communication begins with an upshift followed by an external choice with three options:

voting = ↑SL&{vote1 :↓SLvoting,

vote2 :↓SLvoting,

result :nat⊗ nat⊗ ↓SLvoting}

where the first two labels encode a particular vote and the final result label makes the provider respond
with the voting counts of the two voting choices.

We can immediately observe that if a process was given a channel of this type, it can vote as many
times as it likes, which is not the intention of the voting machine – we would like to enforce that clients
only vote once (but can view the result as many times as they like). Thus, from the client’s perspective,
there are two phases to the protocol. The first phase allows the client to see results as many times as
it wants and make a vote. Once the client makes a vote, it transitions to the second phase where it
can no longer vote but can still view results as many times as it likes. There are two obvious subtyping
relations using the shifts that follow our pattern of subtyping so far that we can try to take advantage
of:

AL ≤ BL

↑SLAL ≤ ↑
S
LBL

≤↑S
L

AS ≤ BS

↓SLAS ≤ ↓
S
LBS

≤↓S
L

Using these rules, we first attempt to follow the previous queue example and limit the labels that
the client can send. For example, we can construct a candidate supertype of voting, voting one that
aims to capture the “each client can only vote once” constraint:

voting one = ↑SL&{vote1 :↓SLvoting two,

vote2 :↓SLvoting two,

result :nat⊗ nat⊗ ↓SLvoting one}

voting two = ↑SL&{result :nat⊗ nat⊗ ↓SLvoting two}
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This type seems plausible, since after committing to a particular vote, the client will release to a type
voting two which only allows viewing of the result. However, there is another critical issue. Since shared
channels can be duplicated or aliased via contraction, a malicious client can still vote as many times
as it wants by ignoring the released shared channel of type voting two and instead repeatedly using
multiple aliases of the initial channel of type voting one. In general, the strategy of encoding phases
in communication through a bigger shared session type allows malicious clients to interact from any
previous phases at will. What we really need is a way to relate a shared type and a linear type since
linear channels cannot be duplicated, avoiding this issue altogether.

It turns out that the heart of this work is the discovery of a subtyping relation between shared types
and linear types – other differences and extensions that we later introduce are naturally derived from
this initial step. We first add two new linear connectives ↑LL and ↓LL that are operationally equivalent to
↑SL and ↓SL, respectively, from a protocol perspective. Thus, the protocol denoted by ↑LLAL requires the
client to acquire as in the shared case. If the provider happens to implement the same ↑LLAL, then there
is no merit to this connective since a linear channel already enforces exclusive access between the client
and provider. The more interesting case is when the provider is actually providing a shared channel,
some ↑SLAL, a client should be able to view that the session type is ↑LLAL without any trouble. This idea
formalizes the following subtyping relations:

AL ≤ BL

↑SLAL ≤ ↑
L
LBL

≤↑S
L
↑L
L

AS ≤ BL

↓SLAS ≤ ↓
L
LBL

≤↓S
L
↓L
L

AL ≤ BL

↑LLAL ≤ ↑
L
LBL

≤↑L
L

AL ≤ BL

↓LLAL ≤ ↓
L
LBL

≤↓L
L

Using the new connectives, we can finish our voting machine example; a client must actually view the
voting machine as a linear channel!

voting one = ↑LL&{vote1 :↓LLvoting two,

vote2 :↓LLvoting two,

result :nat⊗ nat⊗ ↓LLvoting one}

voting two = ↑LL&{result :nat⊗ nat⊗ ↓LLvoting two}

Therefore, the addition of the “trivial” purely linear shift operators ↑LL and ↓LL allows us to relate
shared session types and linear session types. Although these operators are not useful by themselves
because the acquire-release paradigm for purely linear session types provide no practical value, they
serve a relevant role in a system with subtyping.
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3.3 Safely Synchronizing

With the adoption of manifest sharing, shared session types are required to adhere to an equi-
synchronizing constraint as formulated in [BP17] with the intention that we must release a chan-
nel to the same state at which it was acquired. For example, a shared session type such as AS =
↑SL&{a : ↓SLAS, b : ↓

S
LBS} for some unrelated BS would not be equi-synchronizing since there is a release

point BS that does not return AS to its initial type before the acquire.

The adoption of subtyping to our system allows us to relax the constraint that the channel must
return to its original type; this is equivalent to the formulation of sub-synchronizing types [San20;
Das+21] (see Section 5) except we take a provider-centric judgment as opposed to the client-centric
judgment. Consider some provider that provides a channel xS of type AS and n clients of xS each with
their own perception of the type of x: A1, A2, . . . , An such that for all i ≤ n, AS ≤ Ai. Then it seems
perfectly reasonable to allow future release points of AS to be a smaller type BS, since by transitivity,
BS ≤ Ai for all i ≤ n. Therefore, we modify the equi-synchronizing constraint to allow types to be
released at a smaller type. More generally, we extend shared types Â ::= ⊥ | AS | ⊤ with ⊥ ≤ AS ≤ ⊤
for any AS. Intuitively, ⊤ indicates a channel that has never been acquired (no constraints on a future
release), AS indicates the previous presentation of shared channels, and ⊥ indicates a channel that will
never be available (hence, any client attempting to acquire from this channel will never succeed and be
blocked).

With the introduction of subtyping, it is now important to further refine the notion of equi-synchronizing
types to take into account the possibility that a provider and client of a channel have different views
of its session type, where the provider’s view is a subtype of the client’s view. Recall the example
AS = ↑SL&{a : ↓SLAS, b : ↓

S
LBS} where BS is unrelated to AS which we claimed is not equi-synchronizing.

However, suppose a provider offering a channel xS:AS only has one client which views xS as A′
S
where

A′
S
= ↑SL&{a : ↓SLAS} (we can verify that AS ≤ A′

S
). In this case, we are aware that the label b will

never be sent by the client, and therefore, the provider will never receive a label b. To take advantage of
these scenarios where the provider and client do not view a channel as the same type, the synchronizing
constraint is no longer a restriction on a session type but instead a restriction on a pair of session types
C and D such that C ≤ D where we interpret a provider to provide a channel of type C and a client to
locally view the channel as type D.

We are now ready to present the safely synchronizing judgment, interpreted coinductively, which is
of form ⊢ (A,B, D̂) dfsync for some A and B such that A ≤ B, which asserts that a provider providing
a channel of type A and a client using that channel with type B is safely synchronizing with respect to
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some constraint D̂:

⊢ (1, 1, D̂) dfsync
D1

⊢ (BL, B
′
L
, D̂) dfsync

⊢ (AL ⊗BL, A
′
L
⊗B′

L
, D̂) dfsync

D⊗
⊢ (BL, B

′
L
, D̂) dfsync

⊢ (AL ⊸ BL, A
′
L
⊸ B′

L
, D̂) dfsync

D⊸

∀i ∈ l ⊢ (AiL, A
′
iL, D̂) dfsync

⊢ (⊕{l:AL},⊕{l:A′L, m:BL}, D̂) dfsync
D⊕

∀i ∈ l ⊢ (AiL, A
′
iL, D̂) dfsync

⊢ (&{l:AL, m:BL},&{l:A′L}, D̂) dfsync
D&

⊢ (AL, A
′
L
, D̂) dfsync

⊢ (↑LLAL, ↑
L
LA
′
L
, D̂) dfsync

D↑LL
⊢ (AL, A

′
L
, D̂) dfsync

⊢ (↓LLAL, ↓
L
LA
′
L
, D̂) dfsync

D↓LL

⊢ (AL, A
′
L
, ↑SLAL) dfsync

⊢ (↑SLAL, ↑
S
LA
′
L
,⊤) dfsync

D↑SL
⊢ (AS, A

′
S
,⊤) dfsync ↓SLAS ≤ D̂

⊢ (↓SLAS, ↓
S
LA
′
S
, D̂) dfsync

D↓SL

⊢ (AL, A
′
L
, ↑SLAL) dfsync

⊢ (↑SLAL, ↑
L
LA
′
L
,⊤) dfsync

D↑SL↑
L
L

⊢ (AS, A
′
L
,⊤) dfsync ↓SLAS ≤ D̂

⊢ (↓SLAS, ↓
L
LA
′
L
, D̂) dfsync

D↓SL↓
L
L

where the general intuition is that when encountering internal and external choices, we take the inter-
section of the choices – after all, the branches that the two types do not have in common will never
occur during communication.

3.4 System

Finally, we can present our system SILLS≤. For economic reasons, we will only present some interesting
rules – the full system along with the technical details of the relevant meta theory are presented in the
Appendix: Appendix A for the subtyping rules including extended types, Appendix C for the safely
synchronizing judgments, Appendix D for the type judgments, Appendix E for the operational semantics,
and Appendix B for the configuration judgments.

3.4.1 Configuration

A configuration consists of a list of shared processes Λ and a list of linear processes Θ. The order of
shared processes have no structure, but the order of linear processes can be seen to form a tree structure;
a linear process can use channels offered by processes to its right, and due to linearity, if it is using a
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channel, it must be the unique process doing so.

Ω ::= Λ;Θ

Λ ::= · | Λ1,Λ2 | proc(aS, P ) | unavail(aS)

Θ ::= · | proc(aL, P ),Θ′ | connect(aL, bS),Θ
′

The connect term is a new addition compared to SILLS [BP17] and is used as a primitive to make
subtyping between linear channels and shared channels explicit.

We also introduce the meta variable Ψ as a shorthand to represent a linear process:

Ψa ::= proc(aL, P ) | connect(aL, bS)

Ψ is parametrized by a subscript, such as a in Ψa, to make explicit the offering channel name aL. Uses
of Ψ without a subscript generally means the name of the offering channel is not relevant in the context
and therefore can be considered a shorthand for “Ψa for some a”.

A (well-formed6) configuration Ω ::= Λ;Θ is typed by its shared and linear fragments.

Γ |= Λ :: (Γ) Γ |= Θ :: (∆)

Γ |= Λ;Θ :: (Γ;∆)
Ω

3.4.2 Shared Fragment Λ

Γ |= · :: (·)
Λ1

Γ |= Λ1 :: (Γ1) Γ |= Λ2 :: (Γ2)

Γ |= Λ1,Λ2 :: (Γ1,Γ2)
Λ2

⊢ (A′
S
, AS,⊤) dfsync Γ ⊢ P :: (aS:A

′
S
)

Γ |= proc(aS, P ) :: (aS:AS)
Λ3

Γ |= unavail(aS) :: (aS:Â)
Λ4

6see Appendix B
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3.4.3 Linear Fragment Θ

Γ |= · :: (·)
Θ1

bS:B̂ ∈ Γ bS ≤ AL Γ |= Θ′ :: (∆′)

Γ |= connect(aL, bS),Θ
′ :: (a : AL,∆

′)
Θ2

aS:Â ∈ Γ ⊢ (A′
L
, AL, Â) dfsync Γ;∆a ⊢ P :: (aL:A

′
L
) Γ |= Θ′ :: (∆a,∆

′)

Γ |= proc(aL, P ),Θ′ :: (a : AL,∆
′)

Θ3

Some notable rules are Λ3 and Θ3, where in both cases, the process typing judgment in the premise
offers a channel type A′ that is different from the one offered in the configuration A. The subtyping
relation of A′ ≤ A is implicit through the safely synchronizing constraint ⊢ (A′, A, Â) dfsync. Another
notable rule is Θ2, which formalizes the role of the connect term as a “middleman” between a linear
channel and a shared channel.

3.4.4 Type judgments

Many of the rules are very similar to the ones defined in Section 2.2.1. We present some cases that differ
due to our subtyping system. First, we relax the two identity rules to allow forwarding with a smaller
type. We also allow a linear process to forward using a shared channel if the appropriate subtyping
relation holds.

BL ≤ AL

Γ; yL:BL ⊢ fwd xL yL :: (xL:AL)
IDL

B̂ ≤ AS

Γ, yS:B̂ ⊢ fwd xS yS :: (xS:AS)
IDS

B̂ ≤ AL

Γ, yS:B̂; · ⊢ fwd xL yS :: (xL:AL)
IDLS

Shared channels in the context may now have an extended type, needed to express the subtle constraints
imposed by safe synchronization. For the most part, there is not much loss in the high level details if
one were to interpret these constraints as just shared session types AS.

A linear to linear spawn (a named cut) now divides the channel substitutions to three parts: linear
to linear substitutions, shared to linear substitutions, and shared to shared substitutions. The shared
to linear substitution in particular occurs when a process definition expects a linear channel (or some
type ↑LL . . .) and is instead given a smaller shared channel, and is in fact the key to the expressiveness
of our system.

vS :D̂∈Γ

wS :Ê∈Γ

BL≤B
′

L

D̂≤D′

L

Ê≤E′

S

(

x′
L
:(AL ≤ A′

L
)← XL ← y′

L
:B′

L
, v′

L
:D′

L
, w′

S
:E′

S
= P

)

∈ Σ Γ;∆, xL:A
′
L
⊢ Q :: (zL:CL)

Γ;∆, yL:BL ⊢ xL ← XL ← yL, vS, wS;Q :: (zL:CL)
SPLL
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Note the offering channel of the process XL in the signature being defined by a pair of types
x′

L
:(AL ≤ A′

L
). This makes explicit the perspective that from the provider’s perspective (XL), the chan-

nel is viewed as type AL and from the client’s perspective, the channel is viewed as type A′
L
where

AL ≤ A′
L
.

We also allow sending of channels with smaller types:

Γ;∆, xL:BL, yL:AL ⊢ P :: (zL:CL)

Γ;∆, xL:AL ⊗BL ⊢ yL ← recv xL;P :: (zL:CL)
⊗L

A′
L
≤ AL Γ;∆ ⊢ P :: (xL:BL)

Γ;∆, yL:A
′
L
⊢ send xL yL;P :: (xL:AL ⊗ BL)

⊗R

Similar to the rules presented before, there is also a version where we can send a shared channel as long
as its type is smaller than the expected (linear) type.

Remark Since typing judgments are purely local to a process, most of the subtyping occurs as special
cases of certain connectives; the configuration keeps track of persisting any subtyping that arises.

3.4.5 Dynamics

We adopt a synchronous communication pattern in our system. As noted in [PG15], asynchronous
communication can be easily adopted in this system aside from the acquire step. Following Cervesato
and Scedrov [CS09] and prior work [BP17], we formalize the operational semantics as multiset rewriting
rules, which is of the form

S1, . . . , Sn → T1, . . . , Tm

and denote a computational step from the left terms to the right terms. In our paper, the terms
S and T correspond to terms in the configuration, namely proc(aS, P ), unavail(aS), proc(aL, P ), and
connect(aL, bS). We present some interesting operational semantics rules in this section; the complete
listing of the rules are available in Appendix E.

If a linear process is waiting on some channel bL to close and another linear process offering bL is
attempting to close the channel, then the process offering bL can safely terminate:

proc(aL,wait bL;P ), proc(bL, close bL)→ proc(aL, P ) (D-1)
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Similarly, if a linear process is waiting to receive a channel from bL and a process offering bL is sending
a channel through bL, the channel is sent from one process to another:

proc(aL, yL ← recv bL;P ), proc(bL, send bL cL;Q),Ψc (D-⊗)

→ proc(aL, [cL/yL]P ), proc(bL, Q),Ψc

proc(aL, yL ← recv bL;P ), proc(bL, send bL cS;Q) (D-⊗2)

→ proc(aL, [dL/yL]P ), proc(bL, Q), connect(dL, cS), unavail(dS) (d fresh)

The second rule handles the case when a shared channel is sent in place of a linear channel – in that
case, a connect term appears and connects a fresh channel dL to the sent channel cS. In general, connect
terms appear whenever shared channels are interpreted as linear channels due to subtyping.

If a linear process is trying to acquire a channel bS while a shared process is accepting, then the shared
process transitions to its linear form while an unavail(bS) is left behind to signify that the bS cannot be
acquired by another client in the meantime. The second rule consumes the connect – if similar to the
first case, a client is trying to (linearly) acquire a channel bL that is being connected to some cS by a
connect(bL, cS) term, similar results to the first rule occur.

proc(aL, xL ← acq
S
bS;P ), proc(bS, xL ← accS bS;Q) (D-↑SL)

→ proc(aL, [bL/xL]P ), proc(bL, [bL/xL]Q), unavail(bS)

proc(aL, xL ← acq
L
bL;P ), connect(bL, cS), proc(cS, xL ← accS cS;Q) (D-↑SL2)

→ proc(aL, [cL/xL]P ), proc(cL, [cL/xL]Q), unavail(cS)

3.4.6 Theorems

We begin with the preservation theorem, which guarantees session fidelity: a process communicating
along a channel will follow the protocol as denoted by the channel.

Theorem 1. If Γ |= Λ;Θ :: (Γ;∆) and Λ;Θ→ Λ′; Θ′, then Γ′ |= Λ′; Θ′ :: (Γ′; ∆) for some Λ′,Θ′, and Γ′

such that Γ′ � Γ.

Proof. See Appendix F.

The Γ′ � Γ captures the idea that the configuration can gain additional shared processes and that
the types of shared channels can become smaller (see Appendix A). For example, if a process spawns
an additional shared process, then the configuration will gain an additional channel in Γ and if a shared
channel is released to a smaller type, the type of the shared channel in Γ can become smaller. Note
that although it is indeed true that linear processes can be spawned, it will never appear in ∆ since the
linear channel that the newly spawned process offers must be consumed by another process for it to be
spawned.
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To state the progress theorem, we need to introduce two additional concepts: poised processes [PG15]
and blocked processes [BP17].

Definition 1. A shared and linear process term proc(a, P ) is poised if P is currently communicating
along its providing channel a. Poised process terms in SILLS≤ are shown in the table below.

Receiving Sending

proc(aL, close aL)

proc(aL, xL ← recv aL;P ) proc(aL, send aL cL;P )

proc(aL, xS ← recv aL;P ) proc(aL, send aL cS;P )

proc(aL, case aL of {l⇒ P}) proc(aL, a.i;P )

proc(aL, xL ← accL aL;P ) proc(aL, xL ← detL aL;P )

proc(aS, xL ← accS aS;P ) proc(aS, xL ← detS aS;P )

In particular, we say that a configuration is poised if all of its proc(−,−) members are poised.

Definition 2. A linear process is blocked along aS if it is attempting to acquire access to aS which is
currently provided by an unavail(aS) term. Formally, proc(cL,−) is blocked along aS if the configuration
is of form:

1. proc(cL, xL ← acq
S
aS), unavail(aS) or

2. proc(cL, xL ← acq
L
bL), connect(bL, aS), unavail(aS)

The first form captures the case when proc(cL,−) is directly trying to acquire aS, while the second form
captures the case when proc(cL,−) is indirectly trying to acquire aS through a connect term.

Now we are ready to state the progress theorem, which states that the only way the configuration can
be stuck is through a blocked process (for example, a deadlock).

Theorem 2. If Γ |= Λ;Θ :: (Γ;∆) then either:

1. Λ→ Λ′ for some Λ′ or

2. Λ poised and one of:

(a) Λ;Θ→ Λ′; Θ′ for some Λ′ and Θ′ or

(b) Θ poised or

(c) some linear process Ψ ∈ Θ is blocked

Proof. See Appendix G
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4 Examples

4.1 Deadlock Detection

We base this example from a previous work [San19; WPP17] of a centralized form of Mitchell and Mer-
ritt’s distributed deadlock detection algorithm [MM84]. The algorithm assumes a distributed system
with shared resources and linear nodes, where the intended behavior is that the linear nodes, encoded as
linear processes, acquire particular resources, encoded as shared processes, perform appropriate compu-
tations, and then release unneeded resources as in typical distributed systems. Both nodes and resources
are identified by a unique identification of type pid (process id) and rid (resource id) respectively, which
as in previous examples, we take as primitives. In this system, a deadlock in the usual sense is detected
when there is a cycle in the dependency graph generated by the algorithm. The centralized deadlock
detection algorithm consists of a shared process that acts as an overseer that all nodes report to.

The type of this global deadlock detection overseer is given as

dd = ↑SL&{tryacq :pid ⊸ rid ⊸ ↓SLdd,

didacq :pid ⊸ rid ⊸ ↓SLdd,

willrel :pid ⊸ rid ⊸ ↓SLdd}

where the intention is that clients are expected to inform the overseer before attempting to acquire
a resource (tryacq), after successfully acquiring a resource (didacq), and before releasing a resource
(willrel).

As discussed in a previous work [San19], there are two phases of the protocol across successive acquire-
release cycles. Using subtyping, we can represent this constraint statically:

dd one = ↑LL&{tryacq :pid ⊸ rid ⊸ ↓LLdd two,

willrel :pid ⊸ rid ⊸ ↓LLdd one}

dd two = ↑LL&{didacq :pid ⊸ rid ⊸ ↓LLdd one}

where dd ≤ dd one. This session type enforces that the message following tryacq must be didacq
and that didacq cannot be sent before a tryacq. It is important to note that we are not enforcing
other desirable constraints such as whether the resource id sent by the client matches in a sequence of
tryacq → didacq (it is nonsensical for a client to attempt to acquire resource r and after claim that
it successfully acquired a different resource r′). We believe that those additional constraints can be
naturally expressed by extending refinement types [DP20] to be compatible with this system.
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A linear node is a process that uses a channel of type dd one; since we allow subtyping across modal-
ities, we can spawn such a node by passing a reference to the global overseer offering a shared channel
of type dd, which the node can safely view to be dd one since dd ≤ dd one.

Since the overseer is locally seen as a linear channel for the nodes, the linearity condition along with
dd one being infinite means that the nodes can never terminate, which is a difference from standard
implementations without subtyping where nodes can terminate freely since in that setting, the clients
hold shared references to the overseer. To resolve this, we can attempt to expand the protocol to
introduce explicit join and exit messages:

dd = ↑SL&{tryacq :pid ⊸ rid ⊸ ↓SLdd,

didacq :pid ⊸ rid ⊸ ↓SLdd,

willrel :pid ⊸ rid ⊸ ↓SLdd,

join :pid ⊸ ↓SLdd,

exit :pid ⊸ ↓SLdd}

From the client’s perspective, we have:

dd entry = ↑SL&{join :pid ⊸ ↓LLdd one}

dd one = ↑LL&{tryacq :pid ⊸ rid ⊸ ↓LLdd two,

willrel :pid ⊸ rid ⊸ ↓LLdd one,

exit :pid ⊸ ↓SLdd entry}

dd two = ↑LL&{didacq :pid ⊸ rid ⊸ ↓LLdd one}

where dd ≤ dd entry. Nodes now begin with a channel of type dd entry, a shared type. The key
change is that in dd one, clients can now send exit, which brings back a shared type, allowing nodes to
terminate.

Unfortunately, although forcing the client to view the channel’s type as dd entry seems to give a
complete solution to the exiting dilemma, this creates a vulnerability in the system. For example,
malicious clients can join twice since the initial dd entry is a shared channel and therefore can be
duplicated. Although there is still value in this extension if we assume innocent clients, we believe that
a full general solution requires incorporating affine modality to our system which we leave for future
work (see Section 6.1).
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4.2 Auction

Next we consider a variation of the auction protocol described by Das et al. [Das+21], where an auction
consists of a shared provider acting as the auctioneer and its multiple clients acting as bidders. The
auction transitions between the betting phase where clients are allowed to place bets and the collecting
phase where a winner is given the auctioned item while all the losers are refunded their respective bids.
Taking the linear types id, money, and item as primitives, we have:

auction = ↑SL&{bid :⊕ {ok : id ⊸ money ⊸ ↓SLauction,

collecting : ↓SLauction},

collect :⊕ {prize : id ⊸ item⊗ ↓SLauction,

refund : id ⊸ money⊗ ↓SLauction,

bidding : ↓SLauction}}

From the perspective of the client, it must first acquire, then either choose between bid or collect. If
it chooses bid, the auctioneer will either respond with an ok, indicating that the auction is currently in
the bidding phase, allowing the client to send its id, money, and then release back to the auction type,
or a collecting, indicating that the auction is in the collect phase, making the client release back to the
auction type. If the client chooses collect, then the auctioneer will respond with one of prize, refund,
or bidding. The prize branch covers the case where the client won the previous bid, the refund branch
covers the case where the client lost the bid, and the bidding branch informs the client that the auction
is currently in the bidding phase.

Like in previous examples, the auction protocol has distinct phases of communication, in particular
the bidding phase and the collecting phase. Following previous examples, we can construct a supertype
of the auction type, auction bidding to make these phases more explicit for the client:

auction bidding = ↑LL&{bid :⊕ {ok : id ⊸ money ⊸ ↓LLauction bidding,

collecting : ↓LLauction collecting}}

auction collecting = ↑LL&{collect :⊕ {prize : id ⊸ item⊗ ↓LLauction bidding,

refund : id ⊸ money⊗ ↓LLauction bidding,

bidding : ↓LLauction bidding}}

where auction ≤ auction bidding.

Aside from making the phases in the protocol more explicit, the adoption of auction bidding guar-
antees that clients take into account the collecting and bidding responses of the provider and allows
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the programming pattern of the provider “choosing” the subsequent phase to be manifest in the type
itself. Furthermore, this particular presentation of the auction protocol paves way for future extensions
involving refinement types [DP20] that can allow static verification of more intricate properties of the
protocol for example a property such as if a participant puts in n units of money in the bidding phase
and does not win, it will be refunded exactly n units of money. Although we face a similar exit problem
as in the previous example, similar strategies can be taken to allow clients to terminate.

5 Related Work

Our work serves as an extension to SILLS defined in [BP17] by introducing a notion of subtyping to the
system which allows us to statically relax the equi-synchronizing constraint present in SILLS. Early
glimpses of subtyping can be seen in the previous system with the introduction of ⊥ and ⊤ as the
minimal and maximal constraints, which happened to coincide with the minimal and maximal shared
types ⊥ and ⊤ in our much more expansive subtyping relation.

More generally, our work is based on many past works on session types, with a proposal for a type
system for the π-calculus [Hon93; HVK98], and amongst many works that further develop this theory, a
subtyping extension to the system [GH05]. Variations of the earlier type system was later given a corre-
spondence with intuitionistic linear logic [CP10; Ton15] and classical linear logic [Wad12]. The sharing
semantics that we investigate in this paper was introduced in [BP17] by decomposing the exponential
modality, which was previously known to provide a copying semantics through association with the ex-
ponential operator in linear logic. The type system arising from the correspondence with intuitionistic
linear logic was later given a subtyping extension [AP16], which covered all linear connectives along with
union and intersect types (still linear) that we omitted in our work. One stylistic difference between
the two is that our subtyping is present directly in the type system, whereas the subtyping in [AP16] is
implicitly present through a subsumption rule (and corresponding meta theory to prove its safety).

Sub-synchronizing types [San20; Das+21] is another relaxation of the equi-synchronizing constraint
that allows types to be released at a smaller type as initiated by the client. This is captured precisely
by the subtyping aspect of our safely synchronizing constraint where the main difference between the
two approaches is that our approach incorporates full subtyping, which fixes the provider’s type. We
therefore take a provider-centric view of the synchronization constraint, which we point is equivalent
to the client-centric approach that sub-synchronizing types take had we removed full subtyping in our
system since both providers and clients see the equivalent session types. In particular, if AS is sub-
synchronizing, then ⊢ (AS, AS,⊤) dfsync in our system. A drawback to sub-synchronizing types is that
shared session types can only get smaller, meaning cyclic phases cannot be expressed. In our system,
we avoid this issue by fixing the provider type and only maintaining the invariant that the client’s view
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of the type is bigger, we allow the client to release at not only smaller types but also bigger types and
even unrelated types.

There have also been many recent developments in subtyping in the context of multiparty session types
[CDCY14; Che+17; Ghi+19; Ghi+20], which are a different class of type systems that describe protocols
between an arbitrary number of participants from a neutral global point of view. Understanding the
relation of our work to these systems is an interesting item for future work.

6 Discussion and Future Work

We have demonstrated a subtyping extension to a subset of SILLS and showed many examples highlight-
ing the expressiveness that this new system provides. Because we worked on a relatively minimalistic
system to isolate and demonstrate the principal ideas behind subtyping, there is more work to be done
to adopt the notion of subtyping that we proposed to some of the recent discoveries and proposals
with session typed process calculi. Although we believe that our notion of subtyping is consistent with
other extensions (to linear logic based typed process calculi), a verification that our proposed form of
subtyping is indeed compatible with different extensions such as asynchronous communication [PG15],
refinement types [DP20], etc. would set this subtyping relation onto a firmer ground.

One of the biggest technical contributions that we have made in this work is the careful relaxation
of the previously formulated equi-synchronizing constraint, now formulated as the safely synchronizing
constraint, which we find is a key step in making the sharing semantics of shared channels practical for
programming languages that support message passing concurrency such as Rust [KN19]. It is not clear
whether more relaxations can be made at static level, but a more focused investigation on the topic may
reveal more natural extensions. Another technical discovery we have made is that the extended shared
session types Â form a lattice. We have found use of the meet operation in our proofs due to the need
to find lower bounds of two shared session types when working with the preservation theorem, but we
have not yet found a use for the join operation nor a satisfying interpretation for it.

We have demonstrated the need of the trivial shift ↑LL and ↓LL to reason about subtyping of modal
shifts, which we find is the most insightful discovery in this paper from a foundational perspective. In
particular, we have not yet considered in detail the meaning of subtyping in other disciplines that are
identified with session types, such as linear logic and modalities from a proof theory perspective and
symmetric monoidal closed categories and adjoints from a category theory perspective. In particular,
we believe that we can immediately extend our subtyping discipline to adjoint logic [PP19]; we expand
on this in the following section.
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6.1 Affine Mode

In many of our examples, shared to linear subtyping made it such that clients can never terminate,
requiring us to add explicit exit branches in the external choice. We believe we can include an affine
mode F that lies between the shared mode S and the linear mode L which rejects contraction but
permits weakening. We can stratify the affine mode and add appropriate shifts ↑FL and ↓FL ; we omit S
to F , F to S, and F to F shifts for this presentation for economic reasons, with the following subtyping
relations:

AL ≤ BL

↑SLAL ≤ ↑
F
LBL

≤↑S
L
↑F
L

AL ≤ BL

↑FLAL ≤ ↑
L
LBL

≤↑F
L
↑L
L

AS ≤ BF

↓SLAS ≤ ↓
F
LBF

≤↓S
L
↓F
L

AF ≤ BL

↓FLAF ≤ ↓
L
LBL

≤↓F
L
↓L
L

We can follow the pattern to define the subtyping relation for the remaining shifts ↑SF , ↑
F
F , ↓

S
F , and ↓

F
F ,

although they are not required for this particular example.

We now use these new shifts to fix the termination issue with the voting example in Section 3.2. The
provider’s view is unchanged:

voting = ↑SL&{vote1 :↓SLvoting,

vote2 :↓SLvoting,

result :nat⊗ nat⊗ ↓SLvoting}

However, the client’s view now uses affine modality:

voting one = ↑FL&{vote1 :↓FLvoting two,

vote2 :↓FLvoting two,

result :nat⊗ nat⊗ ↓FLvoting one}

voting two = ↑FL&{result :nat⊗ nat⊗ ↓FLvoting two}

where the client views the type of the channel as voting one, which is affine. Since contraction is rejected
in the affine mode, we do not have to worry about the issue with shared modes where clients can ignore
the freshly released channels and repeatedly use the initial channel. However, since weakening is allowed
in the affine mode, (linear) clients can freely terminate while holding a reference to the affine channel.

More generally, we can work in adjoint logic which allows us to reason about arbitrary modalities
following a partial order that is monotonic in the set of substructural rules that it allows. For example,
in the affine extension we have described, the partial order of modalities go L ≤ F ≤ S, and we can
indeed verify that the set of substructural rules for each modality respects the partial order: {E} ⊆
{E,W} ⊆ {E,W,C} where E stands for exchange, W for weakening, and C for contraction.
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A Subtyping Relation

A.1 Subtyping of session types

As mentioned previously, the subtyping rules are defined coinductively.

1 ≤ 1
≤1

AL ≤ A′
L

BL ≤ B′
L

AL ⊗BL ≤ A′
L
⊗B′

L

≤⊗
A′

L
≤ AL BL ≤ B′

L

AL ⊸ BL ≤ A′
L
⊸ B′

L

≤
⊸

∀i ∈ l AiL ≤ A′iL

⊕{l:AL} ≤ ⊕{l:A′L,m:BL}
≤&

∀i ∈ l AiL ≤ A′iL

&{l:AL,m:BL} ≤ &{l:A′
L
}
≤&

AL ≤ BL

↑SLAL ≤ ↑
S
LBL

≤↑S
L

AL ≤ BL

↑LLAL ≤ ↑
L
LBL

≤↑L
L

AL ≤ BL

↑SLAL ≤ ↑
L
LBL

≤↑S
L
↑L
L

AS ≤ BS

↓SLAS ≤ ↓
S
LBS

≤↓S
L

AL ≤ BL

↓LLAL ≤ ↓
L
LBL

≤↓L
L

AS ≤ BL

↓SLAS ≤ ↓
L
LBL

≤↓S
L
↓L
L

A.2 Lemmas

For the following lemmas, we will switch to a set-based formulation of subtyping: A ≤ B is represented
as (A,B) ∈ st

Lemma 1. Subtyping is a partial order

Proof. We want to show that

1. Reflexivity: A ≤ A for any A

2. Anti-symmetricity: A ≤ B ∧ B ≤ A =⇒ A = B

3. Transitivity: A ≤ B ∧ B ≤ C =⇒ A ≤ C

All cases follow from coinduction on the subtyping rules.
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A.2.1 Extended Types

Recall in the safe synchronization formulation, we introduce the extended (shared) types

Â ::= ⊥ | ⊤ | AS

where ⊥ ≤ AS ≤ ⊤ for any AS. The constants ⊥ and ⊤ are compatible with our subtyping relation so far
except we emphasize that ⊥ and ⊤ must be taken to be the minimal and maximal shared session types
and not session types in general. For example, it is not the case that ⊥ ≤ 1 since 1 is a linear session
type. However, it is the case that ⊥ ≤ ↑LLAL by transitivity since ↑SLA

′
L
≤ ↑LLAL for some A′

L
≤ AL.

In any case, when we fix our elements to constraints, we can define a meet semilattice with the meet
operator ∧.

The meet operator ∧ is defined coinductively from the structure of its arguments. Note that there
are many cases where these rules do not apply – in that case the result of the meet is ⊥.

1 ∧ 1→ 1

AL ⊗A′
L
∧BL ⊗B′

L
→ (AL ∧BL)⊗ (A′

L
∧B′

L
)

AL ⊸ A′
L
∧BL ⊸ B′

L
→ (AL ∧BL) ⊸ (A′

L
∧B′

L
)

&{l:AL,m:BL} ∧&{l:A′
L
, n:CL} → &{l : (AL ∧A′

L
),m:BL, n:CL}

⊕{l:AL,m:BL} ∧ ⊕{l:A′L, n:CL} → ⊕{l : (AL ∧A′
L
)} (l not empty)

↑SLAL ∧ ↑
S
LBL → ↑

S
L(AL ∧BL)

↑SLAL ∧ ↑
L
LBL → ↑

S
L(AL ∧BS)

↑LLAL ∧ ↑
S
LBL → ↑

S
L(AS ∧BL)

↑LLAL ∧ ↑
L
LBL → ↑

L
L(AS ∧BS)

↓SLAS ∧ ↓
S
LBS → ↓

S
L(AS ∧BS)

↓SLAS ∧ ↓
L
LBL → ↓

S
L(AS ∧BL)

↓LLAL ∧ ↓
S
LBS → ↓

S
L(AL ∧BS)

↓LLAL ∧ ↓
L
LBL → ↓

L
L(AL ∧BL)

Intuitively, the idea with this construction is that on external choices, we take the union of the labels
on both sides whereas on internal choices, we take the intersection of the labels on both sides. Since
we do not allow the nullary internal choice ⊕{} in the language, we require that the meet between
two internal choices to be non-empty, that is, they must share at least one label. Otherwise, the meet
construction should fail and therefore produce a ⊥.
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Lemma 2. Â ∧ B̂ is the greatest lower bound between Â and B̂.

Proof. Commutativity, associativity, and idempotency follows from coinduction on the construction
rules.
We next want to show that for any Â and B̂,

1. Â ∧ B̂ ≤ Â

2. Â ∧ B̂ ≤ B̂

which again follows from coinduction. Intuitively, this is due to the the set of labels growing on external
choices (union) and shrinking on internal choices (intersect), which directly align with the subtyping
relation we desire.

The final condition is that for any Â and B̂, if there exists a Ĉ such that Ĉ ≤ Â and Ĉ ≤ B̂, then
Ĉ ≤ Â ∧ B̂.

Remark We believe that a join operation can be similarly defined except we switch the union and
intersects in the external and internal choices respectively while taking the smaller modal shifts instead
of the bigger ones with its maximal type being ⊤. As of this moment, it is not clear whether this
operator is immediately applicable, but we mention its existence to complete the lattice.

A.3 Subtyping of contexts

· ≤ ·
≤·

∆ ≤ ∆′ AL ≤ A′
L

∆, xL:AL ≤ ∆′, xL:A
′
L

≤∆

Γ � ·
�·

Γ � Γ′ Â ≤ Â′

Γ, xS:Â � Γ′, xS:Â′
�Γ

Lemma 3. Type judgments are stable under a smaller shared context.
Let Γ′ � Γ, then Γ;∆ ⊢ P :: (zL:CL)→ Γ′; ∆ ⊢ P :: (zL:CL).

Proof. We first prove the admissibility of the substitution of a shared channel by a smaller type in
a typing judgment. In particular, we will begin by showing that if Γ, xS:Â; ∆ ⊢ P :: (zL:CL), then
Γ, xS:B̂; ∆ ⊢ P :: (zL:CL) for some B̂ ≤ Â by induction on the derivation of Γ, xS:Â; ∆ ⊢ P :: (zL:CL).
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First, we begin by pointing out that rules that do not use aS (most of them) are trivial since we can
just appeal to the induction hypothesis on the premise(s) in the appropriate derivation. The rules that
can use aS are IDS, IDLS, SPLL, SPLS, SPSS, ↑

S
LL,⊸LS, and ⊗RS. For these cases, we can confirm that

the substitution is valid by using the induction hypothesis and using transitivity of ≤. We will present
one such case:

Case 1.
Â ≤ AL Γ, xS:Â; ∆ ⊢ P :: (yL:BL)

Γ, xS:Â; ∆ ⊢ send yL xS;P :: (yL:AL ⊗ BL)
⊗RS

Then by induction hypothesis, Γ, xS:B̂; ∆ ⊢ P :: (yL:BL). Furthermore, by transitivity, B̂ ≤ AL. There-
fore by ⊗RS, Γ, xS:Â; ∆ ⊢ send yL xS;P :: (yL:AL ⊗ BL)

After showing that substitution by a smaller type in the shared context Γ is admissible, we proceed
by induction on Γ′ � Γ.

Case 1.

Γ′ � ·
�·

Then we have ·; ∆ ⊢ P :: (zL:CL). By weakening, we conclude Γ′; ∆ ⊢ P :: (zL:CL)

Case 2.
Γ � Γ′ Â ≤ Â′

Γ, xS:Â � Γ′, xS:Â′
�Γ

Then we have Γ, xS:Â; ∆ ⊢ P :: (zL:CL). By induction hypothesis, we have Γ, xS:Â; ∆ ⊢ P :: (zL:CL).
Then, since Â′ ≤ Â, we have Γ, xS:Â′; ∆ ⊢ P :: (zL:CL) by previously proved admissibility of substitution
by smaller type for shared context.

B Configuration

B.1 Definitions

A configuration consists of a list of shared processes Λ and a list of linear processes Θ. The order of
shared processes have no structure, but the order of linear processes can be seen to form a tree structure;
a linear process can use channels offered by processes to its right, and due to linearity, if it is using a
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channel, it must be the unique process doing so.

Ω ::= Λ;Θ

Λ ::= · | Λ1,Λ2 | proc(aS, P ) | unavail(aS)

Θ ::= · | proc(aL, P ),Θ′ | connect(aL, bS),Θ
′

Well-formedness Λ is well-formed if for any channel name a, proc(aS, P ), unavail(aS) /∈ Λ. Simi-
larly, Θ is well-formed if for any a, Ψa,Ψ

′
a /∈ Θ. The configuration Λ;Θ is well-formed if Ψa ∈ Θ →

unavail(aS) ∈ Λ.

B.2 Configuration Typing

A well-formed configuration Λ;Θ is typed by its shared and linear fragments.

Γ |= Λ :: (Γ) Γ |= Θ :: (∆)

Γ |= Λ;Θ :: (Γ;∆)
Ω

B.2.1 Shared Fragment Λ

Γ |= · :: (·)
Λ1

Γ |= Λ1 :: (Γ1) Γ |= Λ2 :: (Γ2)

Γ |= Λ1,Λ2 :: (Γ1,Γ2)
Λ2

⊢ (A′
S
, AS,⊤) dfsync Γ ⊢ P :: (aS:A

′
S
)

Γ |= proc(aS, P ) :: (aS:AS)
Λ3

Γ |= unavail(aS) :: (aS:Â)
Λ4

B.2.2 Linear Fragment Θ

Γ |= · :: (·)
Θ1

bS:B̂ ∈ Γ bS ≤ AL Γ |= Θ′ :: (∆′)

Γ |= connect(aL, bS),Θ
′ :: (a : AL,∆

′)
Θ2

aS:Â ∈ Γ ⊢ (A′
L
, AL, Â) dfsync Γ;∆a ⊢ P :: (aL:A

′
L
) Γ |= Θ′ :: (∆a,∆

′)

Γ |= proc(aL, P ),Θ′ :: (a : AL,∆
′)

Θ3
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B.3 Meta Theory

Lemma 4. If Γ |= Ψ,Θ :: (∆), then Γ |= Θ :: (∆′) for some ∆′.
More generally, if Γ |= Θ1,Θ2 :: (∆), then Γ |= Θ2 :: (∆

′) for some ∆′.

Proof. For the first part, by case analysis on the derivation of Γ |= Ψ,Θ :: (∆). In both cases (Θ2 and
Θ3), we directly see that Γ |= Θ :: (∆′) for some ∆′.
For the second part, we can repeatedly apply the first part sequentially for every Ψ ∈ Θ1.

Lemma 5. If Γ |= Ψ,Θ :: (∆), Γ |= Θ :: (∆p), and Γ |= Θ′ :: (∆p), then

Γ |= Ψ,Θ′ :: (∆)

More generally, if Γ |= Θ1,Θ2 :: (∆), Γ |= Θ2 :: (∆p), and Γ |= Θ′2 :: (∆p), then

Γ |= Θ1,Θ2 :: (aL:AL,∆)

Proof. For the first part, by case analysis on the derivation of Γ |= Ψ,Θ :: (∆). In both cases (Θ2 and
Θ3), we can directly substitute Θ′ for Θ where it appears in the configuration judgment.
For the second part, we can repeatedly apply the first part sequentially for every Ψ ∈ Θ1.

Remark It turns out that we can prove a stronger property that we can replace Θ with Θ′ that offers
a subtype of what Θ offers, but we will only need this weaker lemma that requires the offering types to
be equivalent for this paper.

Lemma 6. If Γ |= Ψa,Θ1,Ψb,Θ2 :: (aL:AL,∆) and Ψa uses bL, then

Γ |= Ψa,Ψb,Θ1,Θ2 :: (aL:AL,∆)

Proof. By well-formedness, Ψb is the only process in the configuration offering bL. Furthermore by
linearity, there can only be one process that use bL, which is Ψa by assumption, so bL will not be
consumed by any processes in Θ1. Therefore, we can repeatedly move Ψb to the left in the configuration
until it is to the right of Ψa, the unique process using bL.

Lemma 7. If Γ |= Ψa,Θ
′ :: (aL:A

′
L
,∆′), then for any BL such that A′

L
≤ BL, Γ |= Ψa,Θ

′ :: (aL:BL,∆
′).

Proof. By inversion on the derivation of Γ |= Ψa,Θ
′ :: (aL:A

′
L
,∆).
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Case 1.
bS:B̂ ∈ Γ b̂ ≤ AL Γ |= Θ′ :: (∆′)

Γ |= connect(aL, bS),Θ
′ :: (a : AL, aL:A

′
L
,∆′)

Θ2

By transitivity, B̂ ≤ BL therefore Γ |= connect(aL, bS),Θ
′ :: (a : AL, aL:BL,∆

′)

Case 2.
aS:Â ∈ Γ ⊢ (A′

L
, AL, Â) dfsync Γ;∆a ⊢ P :: (aL:A

′
L
) Γ |= Θ′ :: (∆a,∆

′)

Γ |= proc(aL, P ),Θ′ :: (a : AL,∆
′)

Θ3

By transitivity, A′
L
≤ BL and therefore ⊢ (A′

L
, BL, Â) dfsync by Lemma 10.

Therefore, Γ |= proc(aL, P ),Θ′ :: (a : AL,∆
′)

Lemma 8. Substitution by a smaller shared context is admissible. Let Γ′ � Γ then

1. If Γ |= Θ :: (∆) for some Θ,∆, then Γ′ |= Θ :: (∆)

2. If Γ |= Λ :: (Γ′′) for some Λ,Γ′′, then Γ′ |= Θ :: (Γ′′)

Proof. For the first part, by induction on the derivation of Γ |= Θ :: (∆).

Case 1.

Γ |= · :: (·)
Θ1

Any Γ applies, so in particular any Γ′ � Γ will as well.

Case 2.
bS:B̂ ∈ Γ B̂ ≤ AL Γ |= Θ′ :: (∆′)

Γ |= connect(aL, bS),Θ
′ :: (a : AL,∆

′)
Θ2

By exchange, we can assume without loss of generality that Γ = bS:B̂,Γr. Similarly, we can assume
without loss of generality that Γ′ = bS:B̂′,Γ

′
r where B̂′ ≤ B̂ and Γ′r � Γ.

B̂′ ≤ AL follows by transitivity of ≤ and Γ′ |= Θ′ :: (∆a,∆
′) follows from induction hypothesis. There-

fore,
Γ′ |= connect(aL, bS),Θ

′ :: (a : AL,∆
′)

Case 3.
aS:Â ∈ Γ ⊢ (A′

L
, AL, Â) dfsync Γ;∆a ⊢ P :: (aL:A

′
L
) Γ |= Θ′ :: (∆a,∆

′)

Γ |= proc(aL, P ),Θ′ :: (a : AL,∆
′)

Θ3

By exchange, we can assume without loss of generality that Γ = aS:Â,Γr. Similarly, we can assume
without loss of generality that Γ′ = aS:Â′,Γ

′
r where B̂′ ≤ B̂ and Γ′r � Γ.

⊢ (A′
L
, AL, Â′) dfsync follows from Lemma 12, Γ′; ∆a ⊢ P :: (aL:A

′
L
) follows from Lemma 3, and

Γ′ |= Θ′ :: (∆a,∆
′) follows from induction hypothesis. Therefore,

Γ′ |= proc(aL, P ),Θ′ :: (a : AL,∆
′)
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For the second part, by induction on the derivation of Γ |= Λ :: (∆′)

Case 1.

Γ |= · :: (·)
Λ1

Any Γ applies, so in particular any Γ′ � Γ will as well.

Case 2.
Γ |= Λ1 :: (Γ1) Γ |= Λ2 :: (Γ2)

Γ |= Λ1,Λ2 :: (Γ1,Γ2)
Λ2

Both Γ′ |= Λ1 :: (Γ1) and Γ′ |= Λ2 :: (Γ2) follow from induction hypothesis. Therefore,

Γ′ |= Λ1,Λ2 :: (Γ1,Γ2)

Case 3.
⊢ (A′

S
, AS,⊤) dfsync Γ ⊢ P :: (aS:A

′
S
)

Γ |= proc(aS, P ) :: (aS:AS)
Λ3

Γ′ ⊢ P :: (aS:A
′
S
) follows from Lemma 3. Therefore,

Γ |= proc(aS, P ) :: (aS:AS)

Case 4.

Γ |= unavail(aS) :: (aS:Â)
Λ4

Any Γ applies, so in particular any Γ′ � Γ will as well.

Lemma 9. Given a well-formed Λ;Θ, ∀proc(aS,−) ∈ Λ,Ψa /∈ Θ

Proof. By well-formedness of Λ, proc(aS,−) ∈ Λ means that unavail(aS) /∈ Λ. By the contrapositive of
well-formedness of Λ;Θ, unavail(aS) /∈ Λ =⇒ Ψa /∈ Θ

C Safely Synchronizing

C.1 Rules

As introduced previously, the safely synchronizing judgment rules are defined coinductively.

⊢ (1, 1, D̂) dfsync
D1

⊢ (BL, B
′
L
, D̂) dfsync

⊢ (AL ⊗BL, A
′
L
⊗B′

L
, D̂) dfsync

D⊗
⊢ (BL, B

′
L
, D̂) dfsync

⊢ (AL ⊸ BL, A
′
L
⊸ B′

L
, D̂) dfsync

D⊸
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∀i ∈ l ⊢ (AiL, A
′
iL, D̂) dfsync

⊢ (⊕{l:AL},⊕{l:A′L,m:BL}, D̂) dfsync
D⊕

∀i ∈ l ⊢ (AiL, A
′
iL, D̂) dfsync

⊢ (&{l:AL,m:BL},&{l:A′L}, D̂) dfsync
D&

⊢ (AL, A
′
L
, D̂) dfsync

⊢ (↑LLAL, ↑
L
LA
′
L
, D̂) dfsync

D↑LL
⊢ (AL, A

′
L
, D̂) dfsync

⊢ (↓LLAL, ↓
L
LA
′
L
, D̂) dfsync

D↓LL

⊢ (AL, A
′
L
, ↑SLAL) dfsync

⊢ (↑SLAL, ↑
S
LA
′
L
,⊤) dfsync

D↑SL
⊢ (AS, A

′
S
,⊤) dfsync ↓SLAS ≤ D̂

⊢ (↓SLAS, ↓
S
LA
′
S
, D̂) dfsync

D↓SL

⊢ (AL, A
′
L
, ↑SLAL) dfsync

⊢ (↑SLAL, ↑
L
LA
′
L
,⊤) dfsync

D↑SL↑
L
L

⊢ (AS, A
′
L
,⊤) dfsync ↓SLAS ≤ D̂

⊢ (↓SLAS, ↓
L
LA
′
L
, D̂) dfsync

D↓SL↓
L
L

C.2 Lemmas

To prove the following lemmas, we switch to a set-based formulation of safe synchronization; ⊢ (A,B, D̂) dfsync
is written as (A,B, D̂) ∈ dfsync. We also define a monotone map F from the coinductive definition of
dfsync, giving us dfsync ∈ F (dfsync); that is, dfsync is F -consistent.

The first lemma says that we can replace the second argument with a bigger type:

Lemma 10. If A ≤ B ≤ C with all same modalities (that is, A,B,C are either all linear or all shared)
and ⊢ (A,B, D̂) dfsync, then ⊢ (A,C, D̂) dfsync for some D̂.

Proof. We want to show that
dfsync′ ::= dfsync ∪ dfsync⇑

is F -consistent with

dfsync⇑ ::= {(A,C, D̂) | ∃B.B ≤ C ∧ (A,B, D̂) ∈ dfsync}

Again, where A,B,C must all be of the same modality.
We will prove F -consistency of dfsync′, that is, dfsync′ ∈ F (dfsync′) by showing that each of the two
sets dfsync and dfsync⇑ are subsets of F (dfsync′).

First, dfsync ⊆ F (dfsync′) immediately follows because dfsync ⊆ F (dfsync) and F (dfsync) ⊆
F (dfsync′) by monotonicity of F given dfsync ⊆ dfsync′.

We will now consider dfsync⇑ ∈ F (dfsync′) by case analysis on the structure of A. We can uniquely
infer the structure of B and C from the structure of A by inversion on the appropriate subtyping rule
for most cases.
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Case 1. A = ↑LLA
′
L
; then B = ↑LLB

′
L
and C = ↑LLC

′
L
with A′

L
≤ B′

L
≤ C ′

L
.

(↑LLA
′
L
, ↑LLC

′
L
, D̂) ∈ dfsync⇑, (↑

L
LA
′
L
, ↑LLB

′
L
, D̂) ∈ dfsync (this case)

(A′
L
, B′

L
, D̂) ∈ dfsync (by inversion on D↑LL)

(A′
L
, C ′

L
, D̂) ∈ dfsync⇑ (by definition of dfsync⇑ with B′

L
≤ C ′

L
)

(A′
L
, C ′

L
, D̂) ∈ dfsync′ (since dfsync⇑ ⊆ dfsync′)

(↑LLA
′
L
, ↑LLC

′
L
, D̂) ∈ F (dfsync′) (by D↑LL)

↓LL,⊗, and ⊸ follow a similar pattern of appealing to the covariance of subtyping on the continuation
types.

Case 2. A = ⊕{l:AL}; then B = ⊕{l:BL, m:BL} and C = ⊕{l:CL, m:CL, n:CL} with
AiL ≤ BiL ≤ CiL ∀i ∈ l and BiL ≤ CiL ∀i ∈ m.

(⊕{l:AL},⊕{l:CL, m:CL, n:CL}, D̂) ∈ dfsync⇑

(⊕{l:AL},⊕{l:BL, m:BL}, D̂) ∈ dfsync (this case)

(∀i ∈ l) (AiL, BiL, D̂) ∈ dfsync (by inversion on D⊕)

(∀i ∈ l) (AiL, CiL, D̂) ∈ dfsync⇑

(by definition of dfsync⇑ with BiL ≤ CiL)

(∀i ∈ l) (AiL, CiL, D̂) ∈ dfsync′ (since dfsync⇑ ⊆ dfsync′)

(⊕{l:AL},⊕{l:CL, m:CL, n:CL}, D̂) ∈ F (dfsync′) (by D⊕)

D& follows a similar pattern.

Case 3. A = ↓SLAS; then there are three possible assignments to B and C that satisfies the subtyping
constraints, so we will continue by subcasing on the structure of B and C.

Subcase 1. B = ↓SLBS and C = ↓SLCS with AS ≤ BS ≤ CS.

(↓SLAS, ↓
S
LCS, D̂) ∈ dfsync⇑, (↓

S
LAS, ↓

S
LBS, D̂) ∈ dfsync (this case)

(AS, BS,⊤) ∈ dfsync, AS ≤ D̂ (by inversion on D↓SL)

(AS, CS,⊤) ∈ dfsync⇑ (by definition of dfsync⇑ with BS ≤ CS)

(AS, CS,⊤) ∈ dfsync′ (since dfsync⇑ ⊆ dfsync′)

(↓SLAS, ↓
S
LCS, D̂) ∈ F (dfsync′) (by D↓SL)
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Subcase 2. B = ↓SLBS and C = ↓LLCL with AS ≤ BS ≤ CL.

(↓SLAS, ↓
L
LCL, D̂) ∈ dfsync⇑, (↓

S
LAS, ↓

S
LBS, D̂) ∈ dfsync (this case)

(AS, BS,⊤) ∈ dfsync, AS ≤ D̂ (by inversion on D↓SL)

(AS, CL,⊤) ∈ dfsync⇑ (by definition of dfsync⇑ with BS ≤ CL)

(AS, CL,⊤) ∈ dfsync′ (since dfsync⇑ ⊆ dfsync′)

(↓SLAS, ↓
L
LCL, D̂) ∈ F (dfsync′) (by D↓SL)

Subcase 3. B = ↓LLBL and C = ↓LLCL with AS ≤ BL ≤ CL.

(↓SLAS, ↓
L
LCL, D̂) ∈ dfsync⇑, (↓

S
LAS, ↓

L
LBL, D̂) ∈ dfsync (this case)

(AS, BL,⊤) ∈ dfsync, AS ≤ D̂ (by inversion on D↓SL↓
L
L)

(AS, CL,⊤) ∈ dfsync⇑ (by definition of dfsync⇑ with BL ≤ CL)

(AS, CL,⊤) ∈ dfsync′ (since dfsync⇑ ⊆ dfsync′)

(↓SLAS, ↓
L
LCL, D̂) ∈ F (dfsync′) (by D↓SL)

Case 4. A = ↑SLAL; then there are three possible assignments to B and C that satisfies the subtyping
constraints, so we will continue by subcasing on the structure of B and C.

Subcase 1. B = ↑SLBL and C = ↑SLCL with AL ≤ BL ≤ CL.

(↑SLAL, ↑
S
LCL,⊤) ∈ dfsync⇑, (↑

S
LAL, ↑

S
LBL,⊤) ∈ dfsync (this case)

(AL, BL, ↑
S
LAL) ∈ dfsync (by inversion on D↑SL)

(AL, CL, ↑
S
LAL) ∈ dfsync⇑ (by definition of dfsync⇑ with AL ≤ BL)

(AL, CL, ↑
S
LAL) ∈ dfsync′ (since dfsync⇑ ⊆ dfsync′)

(↑SLAL, ↑
S
LCL,⊤) ∈ F (dfsync′) (by D↑SL)

Subcase 2. B = ↑SLBL and C = ↑LLCL with AL ≤ BL ≤ CL.

(↑SLAL, ↑
L
LCL,⊤) ∈ dfsync⇑, (↑

S
LAL, ↑

S
LBL,⊤) ∈ dfsync (this case)

(AL, BL, ↑
S
LAL) ∈ dfsync (by inversion on D↑SL)

(AL, CL, ↑
S
LAL) ∈ dfsync⇑ (by definition of dfsync⇑ with AL ≤ BL)

(AL, CL, ↑
S
LAL) ∈ dfsync′ (since dfsync⇑ ⊆ dfsync′)

(↑SLAL, ↑
L
LCL,⊤) ∈ F (dfsync′) (by D↑SL)
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Subcase 3. B = ↑LLBL and C = ↑LLCL with AL ≤ BL ≤ CL.

(↑SLAL, ↑
L
LCL,⊤) ∈ dfsync⇑, (↑

S
LAL, ↑

L
LBL,⊤) ∈ dfsync (this case)

(AL, BL, ↑
S
LAL) ∈ dfsync (by inversion on D↑SL↑

L
L)

(AL, CL, ↑
S
LAL) ∈ dfsync⇑ (by definition of dfsync⇑ with AL ≤ BL)

(AL, CL, ↑
S
LAL) ∈ dfsync′ (since dfsync⇑ ⊆ dfsync′)

(↑SLAL, ↑
L
LCL,⊤) ∈ F (dfsync′) (by D↑SL)

We missed one case, when A = B = C = 1, but this case is trivial since dfsync⇑ does not add any
new members to the set.

The next lemma says that we can replace the first argument with a smaller type if the result is already
safely synchronizing with some other constraint:

Lemma 11. If A ≤ B ≤ C with all same modalities, ⊢ (B,C, D̂) dfsync, and ⊢ (A,C, Ê) dfsync, then
⊢ (A,C, D̂) dfsync for some D̂ and Ê.

Proof. We want to show that
dfsync′ ::= dfsync ∪ dfsync⇓

is F -consistent with

dfsync⇓ ::= {(A,C, D̂) | ∃B.A ≤ B ∧ (B,C, D̂) ∈ dfsync ∧ ∃Ê.(A,C, Ê) ∈ dfsync}

The proof is very similar in style to the previous lemma, but there is one additional constraint that
(A,C, Ê) ∈ dfsync for any constraint Ê. This assumption is only necessary for the ↑SL case.
In any case, we will prove F -consistency of dfsync′, that is, dfsync′ ∈ F (dfsync′) by showing that each
of the three sets dfsync and dfsync⇓ are subsets of F (dfsync′).

First, dfsync ⊆ F (dfsync′) immediately follows from the same argument as in the previous proof.

We will now consider dfsync⇓ ∈ F (dfsync′) by case analysis on the structure of B. Because all of
A,B,C have the same modality, we can uniquely infer the structure of A and C from the structure of
B by inversion on the appropriate subtyping rule.
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Case 1. A = ↑LLA
′
L
; then B = ↑LLB

′
L
and C = ↑LLC

′
L
with A′

L
≤ B′

L
≤ C ′

L
.

(↑LLA
′
L
, ↑LLC

′
L
, D̂) ∈ dfsync⇓, (↑

L
LB
′
L
, ↑LLC

′
L
, D̂) ∈ dfsync (this case)

(B′
L
, C ′

L
, D̂) ∈ dfsync (by inversion on D↑LL)

(A′
L
, C ′

L
, D̂) ∈ dfsync⇓ (by definition of dfsync⇓ with A′

L
≤ B′

L
)

(A′
L
, C ′

L
, D̂) ∈ dfsync′ (since dfsync⇓ ⊆ dfsync′)

(↑LLA
′
L
, ↑LLC

′
L
, D̂) ∈ F (dfsync′) (by D↑LL)

↓LL,⊗, and ⊸ follow a similar pattern of appealing to the covariance of subtyping on the continuation
types.

Case 2. A = ⊕{l:AL}; then B = ⊕{l:BL, m:BL} and C = ⊕{l:CL, m:CL, n:CL} with
AiL ≤ BiL ≤ CiL ∀i ∈ l and BiL ≤ CiL ∀i ∈ m.

(⊕{l:AL},⊕{l:CL, m:CL, n:CL}, D̂) ∈ dfsync⇓

(⊕{l:BL, m:BL},⊕{l:CL, m:CL, n:CL}, D̂) ∈ dfsync (this case)

(∀i ∈ l, m) (BiL, CiL, D̂) ∈ dfsync (by inversion on D⊕)

(∀i ∈ l) (AiL, CiL, D̂) ∈ dfsync⇓

(by definition of dfsync⇓ with AiL ≤ BiL)

(∀i ∈ l) (AiL, CiL, D̂) ∈ dfsync′ (since dfsync⇓ ⊆ dfsync′)

(⊕{l:AL},⊕{l:CL, m:CL, n:CL}, D̂) ∈ F (dfsync′) (by D⊕)

D& follows a similar pattern.

Case 3. A = ↓SLAS; similar to the proof of Lemma 10, there are three possible assignments for B and
C. We will present one of those subcases: let B = ↓SLBS and C = ↓SLCS with AS ≤ BS ≤ CS. The other
two cases are similar.

(↓SLAS, ↓
S
LCS, D̂) ∈ dfsync⇓, (↓

S
LBS, ↓

S
LCS, D̂) ∈ dfsync (this case)

(BS, CS,⊤) ∈ dfsync, BS ≤ D̂ (by inversion on D↓SL)

(AS, CS,⊤) ∈ dfsync⇓ (by definition of dfsync⇓ with AS ≤ BS)

(AS, CS,⊤) ∈ dfsync′ (since dfsync⇓ ⊆ dfsync′)

AS ≤ D̂ (because AS ≤ BS ≤ D̂)

(↓SLAS, ↓
S
LCS, D̂) ∈ Fdfsync′ (by D↓SL)

Case 4. A = ↑SLAL; again, there are three possible assignments for B and C, and we will take the subcase
when B = ↑SLBL and C = ↑SLCL with AL ≤ BL ≤ CL. The other two cases are similar. This case finally
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uses our assumption that (A,C, Ê) ∈ dfsync – Ê must be ⊤ due to A = ↑SLAL.

(↑SLAL, ↑
S
LCL,⊤) ∈ dfsync⇓, (↑

S
LBL, ↑

S
LCL,⊤) ∈ dfsync (this case)

(↑SLAL, ↑
S
LCL,⊤) ∈ dfsync (By assumption with Ê = ⊤)

(AL, CL, ↑
S
LAL) ∈ dfsync (by inversion on D↑SL)

(AL, CL, ↑
S
LAL) ∈ dfsync′ (since dfsync ⊆ dfsync′)

(↑SLAL, ↑
S
LCL,⊤) ∈ F (dfsync′) (by D↑SL)

We missed one case, when A = B = C = 1, but this case is trivial since dfsync⇓ does not add any
new members to the set.

The next lemma allows us to replace the third argument (the constraint) with a smaller one if the
first argument is linear:

Lemma 12. If ⊢ (AL, BL, Ĉ) dfsync and D̂ ≤ Ĉ, then ⊢ (AL, BL, D̂) dfsync for some AL, BL, Ĉ, and D̂.

Proof. By coinduction where dfsync′ = dfsync ∪ dfsync⇓̂ such that

dfsync⇓̂ = {(AL, BL, D̂) | ∃Ĉ.D̂ ≤ Ĉ ∧ (AL, BL, Ĉ) ∈ dfsync}

We proceed by case analysis on the structure of AL; most of the cases are trivial and follow a similar
style to the previous proofs. An important case that we will present is when AL = ↓SLAS for some AS.
We will take the case when BL = ↓SLBS for some BS since the case when BL = ↓LLB

′
L
follows a similar

pattern.

(↓SLAS, BL, D̂) ∈ dfsync⇓̂, (↓
S
LAS, BL, Ĉ) ∈ dfsync (this case)

(AS, BS,⊤) ∈ dfsync, AS ≤ Ĉ (by inversion on D↓SL)

(AS, BS,⊤) ∈ dfsync′ (since dfsync ⊆ dfsync′)

(↓SLAS, ↓
S
LCS, ES) ∈ F (dfsync′) (by D↓SL with AS ≤ D̂ by transitivity of ≤)

The final lemma again deals with the constraint; if we find that the same pair of types is safely
synchronizing with respect to two constraints, we can replace it with its meet defined in Lemma 2:

Lemma 13. If ⊢ (AL, BL, Ĉ) dfsync and ⊢ (AL, BL, D̂) dfsync, then ⊢ (AL, BL, Ĉ ∧ D̂) dfsync for some
AL, BL, Ĉ, and D̂.
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Proof. First, recall that ⊢ (AL, BL,−) dfsync requires that AL ≤ BL. We want to show that

dfsync′ ::= dfsync ∪ dfsync∧

is F -consistent with

dfsync∧ ::= {(AL, BL, Ĉ ∧ D̂) | (AL, BL, Ĉ) ∈ dfsync ∧ (AL, BL, D̂) ∈ dfsync

As per usual, we will prove F -consistency of dfsync′, that is, dfsync′ ∈ F (dfsync′) by showing that
each of the two sets dfsync and dfsync∧ are subsets of F (dfsync′).

dfsync ⊆ F (dfsync′) immediately follows from the same argument as in previous lemmas.

We will now consider dfsync∧ ∈ F (dfsync′) by case analysis on the structure of AL. We can infer the
structure of BL by inversion on the appropriate subtyping rule. For ease of presentation, let Ê = Ĉ ∧ D̂;
we will expand Ê whenever necessary.

Case 1. AL = ↑LLA
′
L
; then BL = ↑LLB

′
L
with A′

L
≤ B′

L
.

(↑LLA
′
L
, ↑LLB

′
L
, Ê) ∈ dfsync∧, (↑

L
LA
′
L
, ↑LLB

′
L
, Ĉ) ∈ dfsync, (↑LLA

′
L
, ↑LLB

′
L
, D̂) ∈ dfsync (this case)

(A′
L
, B′

L
, Ĉ) ∈ dfsync, (A′

L
, B′

L
, D̂) ∈ dfsync (by inversion on D↑LL)

(A′
L
, B′

L
, Ê) ∈ dfsync∧ (by definition of dfsync∧)

(A′
L
, B′

L
, Ê) ∈ dfsync′ (since dfsync∧ ⊆ dfsync′)

(↑LLA
′
L
, ↑LLB

′
L
, Ê) ∈ F (dfsync′) (by D↑LL)

↓LL,⊗, and ⊸ follow a similar pattern of appealing to the continuation types.

Case 2. AL = ⊕{l:AL}; then BL = ⊕{l:BL, m:BL}; with AiL ≤ BiL ∀i ∈ l.

(⊕{l:AL},⊕{l:BL, m:BL}, Ê) ∈ dfsync∧

(⊕{l:AL},⊕{l:BL, m:BL}, Ĉ) ∈ dfsync, (⊕{l:AL},⊕{l:BL, m:BL}, D̂) ∈ dfsync (this case)

(∀i ∈ l) (AiL, BiL, Ĉ) ∈ dfsync, (AiL, BiL, D̂) ∈ dfsync, (by inversion on D⊕)

(∀i ∈ l) (AiL, BiL, Ê) ∈ dfsync∧ (by definition of dfsync∧)

(∀i ∈ l) (AiL, BiL, Ê) ∈ dfsync′ (since dfsync∧ ⊆ dfsync′)

(⊕{l:AL},⊕{l:BL, m:BL}, Ê) ∈ F (dfsync′) (by D⊕)

D& follows a similar pattern.
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Case 3. AL = ↓SLAS; then there are two subcases for the structure of BL. We shall take the case when
BL = ↓SLBS with AS ≤ BS, but the other case, when BL = ↓LLB

′
L
follows a similar pattern.

At this point we realize what Ê has to be – either Ê = ⊥, in which case we want to derive a contradiction
for this case (the ⊥ constraint requires that there be no releases) or Ê = ES meaning Ê is a non-trivial
meet.

Subcase 1. Ê = ⊥.

(↓SLAS, ↓
S
LBS,⊥) ∈ dfsync∧, (↓

S
LAS, ↓

S
LBS, Ĉ) ∈ dfsync, (↓SLAS, ↓

S
LBS, D̂) ∈ dfsync (this case)

(AS, BS,⊤) ∈ dfsync, AS ≤ Ĉ (by inversion on D↓SL)

(AS, BS,⊤) ∈ dfsync, AS ≤ D̂ (by inversion on D↓SL)

Contradiction (since AS is a lower bound of Ĉ ∧ D̂ but AS is strictly greater than ⊥)

Subcase 2. Ê = ES for some ES.

(↓SLAS, ↓
S
LBS, ES) ∈ dfsync∧, (↓

S
LAS, ↓

S
LBS, Ĉ) ∈ dfsync, (↓SLAS, ↓

S
LBS, D̂) ∈ dfsync (this case)

(AS, BS,⊤) ∈ dfsync, AS ≤ Ĉ, AS ≤ D̂ (by inversion on D↓SL)

(AS, BS,⊤) ∈ dfsync′ (since dfsync ⊆ dfsync′)

(↓SLAS, ↓
S
LCS, ES) ∈ F (dfsync′)

(by D↓SL with AS ≤ ES because AS is a lower bound of Ĉ and D̂ and ES is the greatest lower bound)

Unlike the previous lemmas, we require AL to be linear, so we do not need to consider ↑SL. The case
when A = B = 1 is trivial.
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D Statics

D.1 Rules

BL ≤ AL

Γ; yL:BL ⊢ fwd xL yL :: (xL:AL)
IDL

B̂ ≤ AS

Γ, yS:B̂ ⊢ fwd xS yS :: (xS:AS)
IDS

B̂ ≤ AL

Γ, yS:B̂; · ⊢ fwd xL yS :: (xL:AL)
IDLS

vS :D̂∈Γ

wS :Ê∈Γ

BL≤B
′

L

D̂≤D′

L

Ê≤E′

S

(

x′
L
:(AL ≤ A′

L
)← XL ← y′

L
:B′

L
, v′

L
:D′

L
, w′

S
:E′

S
= P

)

∈ Σ Γ;∆, xL:A
′
L
⊢ Q :: (zL:CL)

Γ;∆, yL:BL ⊢ xL ← XL ← yL, vS, wS;Q :: (zL:CL)
SPLL

yS :B̂∈Γ

B̂≤B′

S

(

x′
S
:(AS ≤ A′

S
)← XS ← y′

S
:B′

S
= P

)

∈ Σ Γ, xS:A
′
S
;∆ ⊢ Q :: (zL:CL)

Γ;∆ ⊢ xS ← XS ← yS;Q :: (zL:CL)
SPLS

yS :B̂∈Γ

B̂≤B′

S

(

x′
S
:(AS ≤ A′

S
)← XS ← y′

S
:B′

S
= P

)

∈ Σ Γ, xS:A
′
S
⊢ Q :: (zS :CS)

Γ ⊢ xS ← XS ← yS;Q :: (zS:CS)
SPSS

Â ≤ ↑SLAL Γ, xS:Â;∆, xL:AL ⊢ P :: (zL:CL)

Γ, xS:Â;∆ ⊢ xL ← acq
S
xS;P :: (zL:CL)

↑SLL
Γ; · ⊢ P :: (xL:AL)

Γ ⊢ xL ← accS xS;P :: (xS:↑
S
LAL)

↑SLR

Γ, xS:AS;∆ ⊢ P :: (zL:CL)

Γ;∆, xL:↓
S
LAS ⊢ xS ← relS xS;P :: (zL:CL)

↓SLL
Γ ⊢ P :: (xS:AS)

Γ; · ⊢ xS ← detS xS;P :: (xL:↓
S
LAS)

↓SLR

Γ;∆, yL:AL ⊢ P :: (zL:CL)

Γ;∆, xL:↑
L
LAL ⊢ yL ← acq

L
xL;P :: (zL:CL)

↑LLL
Γ;∆ ⊢ P :: (xL:AL)

Γ;∆ ⊢ yL ← accL xL;P :: (xL:↑
L
LAL)

↑LLR

Γ;∆, yL:AL ⊢ P :: (zL:CL)

Γ;∆, xL:↓
L
LAL ⊢ yL ← relL xL;P :: (zL:CL)

↓LLL
Γ;∆ ⊢ P :: (yL:AL)

Γ;∆ ⊢ yL ← detL xL;P :: (xL:↓
L
LAL)

↓LLR

Γ;∆ ⊢ P :: (zL:CL)

Γ;∆, xL:1 ⊢ wait xL;P :: (zL:CL)
1L

Γ; · ⊢ close xL :: (xL:1)
1R

Γ;∆, xL:BL, yL:AL ⊢ P :: (zL:CL)

Γ;∆, xL:AL ⊗BL ⊢ yL ← recv xL;P :: (zL:CL)
⊗L

A′
L
≤ AL Γ;∆ ⊢ P :: (xL:BL)

Γ;∆, yL:A
′
L
⊢ send xL yL;P :: (xL:AL ⊗BL)

⊗R

A′
L
≤ AL Γ;∆, xL:B ⊢ P :: (zL:CL)

Γ;∆, xL:AL ⊸ BL, yL:A
′
L
⊢ send xL yL;P :: (zL:CL)

⊸L
Γ;∆, yL:AL ⊢ P :: (xL:BL)

Γ;∆ ⊢ yL ← recv xL;P :: (xL:AL ⊸ BL)
⊸R
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Â ≤ AL Γ, yS:Â;∆, xL:B ⊢ P :: (zL:CL)

Γ, yS:Â;∆, xL:AL ⊸ BL ⊢ send xL yS;P :: (zL:CL)
⊸LS

Â ≤ AL Γ, yS:Â;∆ ⊢ P :: (xL:BL)

Γ, yS:Â;∆ ⊢ send xL yS;P :: (xL:AL ⊗BL)
⊗RS

∀i ∈ l Γ;∆, xL:AiL ⊢ Pi :: (cL:ZL)

Γ;∆, xL:⊕ {l:AL} ⊢ case xL of {l ⇒ P} :: (cL:ZL)
⊕L

i ∈ l Γ;∆ ⊢ P :: (xL:AiL)

Γ;∆ ⊢ x.i;P :: (xL:⊕ {l:AL})
⊕R

i ∈ l Γ;∆, xL:AiL ⊢ P :: (zL:CL)

Γ;∆, xL:&{l:AL} ⊢ x.i;P :: (zL:CL)
&L

∀i ∈ l Γ;∆ ⊢ Pi :: (xL:AiL)

Γ;∆ ⊢ case xL of {l⇒ P} :: (xL:&{l:AL})
&R
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E Dynamics

proc(aL, fwd aL bL),Ψb → Ψb (bL := aL, bS := aS) (D-FWDLL)

proc(aL, fwd aL bS)→ connect(aL, bS) (D-FWDLS)

proc(aS, fwd aS bS)→ unavail(aS) (bS := aS) (D-FWDSS)

proc(aL,xL←XL←bL,dS ,eS ;Q)

!def((x′

L
:(AL≤A

′

L
)←XL←y′

L
:B′

L
,v′

L
:D′

L
,w′

S
:E′

S
)=P )

→
proc(aL,[cL/xL]Q),proc(bL,[cL/x

′

L
,bL/y

′

L
,d′

L
/v′

L
,eS/w

′

S
]P )

connect(d′
L
,dS),unavail(d

′

S
) (d′,c fresh)

(D-SPAWNLL)

proc(aL,xS←XS←bS ;Q)

!def((x′

S
:(AS≤A

′

S
)←XS←y′

S
:B′

S
)=P )

→ proc(aL, [cS/xS]Q),proc(cS, [cS/x
′
S
, bS/y′S]P ) (c fresh) (D-SPAWNLS)

proc(aS ,xS←XS←bS ;Q)

!def((x′

S
:(AS≤A

′

S
)←XS←y′

S
:B′

S
)=P )

→ proc(aS, [cS/xS]Q),proc(cS, [cS/x
′
S
, bS/y′S]P ) (c fresh) (D-SPAWNSS)

proc(aL, xL ← acq
S
bS;P ),proc(bS, xL ← accS bS;Q)→ proc(aL, [bL/xL]P ),proc(bL, [bL/xL]Q),unavail(bS)

(D-↑SL)

proc(aL, xS ← relS bS;P ),proc(bL, xS ← detS bS;Q),unavail(bS)→ proc(aL, [bS/xS]P ),proc(bS, [bS/xSQ)
(D-↓SL)

proc(aL, xL ← acq
L
bL;P ),proc(bL, xL ← accL bL;Q)→ proc(aL, [bL/xL]P ),proc(bL, [bL/xL]Q) (D-↑LL)

proc(aL, xL ← relL bL;P ),proc(bL, xL ← detL bL;Q)→ proc(aL, [bL/xL]P ),proc(bL, [bL/xLQ) (D-↓LL)

proc(aL,xL←acqL bL;P ),connect(bL,cS)
proc(cS ,xL←accS cS ;Q) → proc(aL,[cL/xL]P ),proc(cL,[cL/xL]Q)

unavail(cS)
(D-↑SL2)

proc(aL,xL←relL cL;P ),proc(cL,xS←detS cS ;Q),
unavail(cS)

→ proc(aL,[bL/xL]P ),connect(bL,cS),
unavail(bS)

(D-↓SL2)

proc(cS, [cS/xS]Q) (b fresh)

proc(aL,wait bL;P ),proc(bL, close bL)→ proc(aL, P ) (D-1)

proc(aL, yL ← recv bL;P ),proc(bL, send bL cL;Q),Ψc → proc(aL, [cL/yL]P ),proc(bL, Q),Ψc (D-⊗)

proc(aL, send bL cL;P ),proc(bL, yL ← recv bL;Q),Ψc → proc(aL, P ),proc(bL, [cL/yL]Q),Ψc (D-⊸)

proc(aL, yL ← recv bL;P ),proc(bL, send bL cS;Q)→ proc(aL, [dL/yL]P ),proc(bL, Q), connect(dL, cS),unavail(dS) (d fresh)

(D-⊗2)

proc(aL, send bL cS;P ),proc(bL, yL ← recv bL;Q)→ proc(aL, P )proc(bL, [dL/yL]Q), connect(dL, cS),unavail(dS) (d fresh)

(D-⊸2)

proc(aL, case bL of {l ⇒ P ,m⇒ P}),proc(bL, b.i;Q)→ proc(aL, Pi),proc(bL, Q) (i ∈ l) (D-⊕)

proc(aL, b.i;P ),proc(bL, case bL of {l⇒ Q,m⇒ Q})→ proc(aL, P ),proc(bL, Qi) (i ∈ l) (D-&)

F Preservation

Theorem 1. If Γ |= Λ;Θ :: (Γ;∆) and Λ;Θ→ Λ′; Θ′, then Γ′ |= Λ′; Θ′ :: (Γ′; ∆) for some Λ′,Θ′, and Γ′

such that Γ′ � Γ.
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Proof. By induction on the dynamics to construct a well-formed and well-typed configuration starting
with Γ |= Λ;Θ :: (Γ;∆).

Notation Many of the proof cases involve transitions between linear process terms (either proc or
connect). When reasoning with these transitions, we adopt the notation that Ψa → Ψ′a that is, Ψa

represents the process term offering a before the transition and Ψ′a represents the process term offering
a after the transition.

Case 1. D-FWDLS
proc(aL, fwd aL bS)→ connect(aL, bS)

where Ψa = proc(aL, fwd aL bS) and Ψ′a = connect(aL, bS) (for the remaining cases, these metavariable
assignments are implicit). Let Θ = Θ1,Ψa,Θ2. Then by Lemma 9, Λ = unavail(aS),Λ1.

Γ |= Λ;Θ1,Ψa,Θ2 :: (Γ;∆) (assumption)

Γ |= Λ :: (Γ) Γ |= Θ1,Ψa,Θ2 :: (∆) (by inversion on Ω)

Γ |= proc(aL, fwd aL bS),Θ2 :: (aL:AL,∆p) (by Lemma 4 and expanding Ψa)

Γ |= Θ2 :: (∆p) Γ; · ⊢ fwd aL bS :: (aL:A
′
L
) (by inversion on Θ3)

bS:B̂ ∈ Γ B̂ ≤ A′
L

(by inversion on IDLS)

B̂ ≤ AL (by transitivity of ≤)

Γ |= connect(aL, bS),Θ2 :: (a : AL,∆p) (by Θ2)

Γ |= Θ1,Ψ
′
a,Θ2 :: (∆) (by Lemma 5)

Γ |= Λ;Θ1,Ψ
′
a,Θ2 :: (Γ;∆) (by Ω)

The well-formedness conditions are maintained because only Ψa ∈ Θ was replaced by Ψ′a.

Case 2. D-&

proc(aL, b.i;P ), proc(bL, case bL of {l ⇒ Q,m⇒ Q})→ proc(aL, P ), proc(bL, Qi) (i ∈ l)

Then Θ = Θ1,Ψa,Θ2,Ψb,Θ3
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Γ |= Λ;Θ1,Ψa,Θ2,Ψb,Θ3 :: (Γ;∆) (assumption)

Γ |= Λ :: (Γ) Γ |= Θ1,Ψa,Θ2,Ψb,Θ3 :: (∆) (by inversion on Ω)

Γ |= Ψa,Θ2,Ψb,Θ3 :: (aL:AL,∆r) (by Lemma 4)

Γ |= Ψa,Ψb,Θr :: (aL:AL,∆r) (by Lemma 6 and Θr = Θ2,Θ3)

Γ |= Ψb,Θr :: (bL:&{l:BL},∆a,∆r) Γ;∆a ⊢ b.i;P :: (aL:A
′
L
) aS:Â ∈ Γ ⊢ (A′

L
, AL, Â) dfsync

(by inversion on Θ3)

Γ |= Θr :: (∆a,∆b,∆r) Γ;∆b ⊢ case bL of {l ⇒ Q,m⇒ Q} :: (bL:&{l:B′L, m:B′
L
})

bS:B̂ ∈ Γ ⊢ (&{l:B′
L
, m:B′

L
},&{l:BL}, B̂) dfsync (by inversion on Θ3)

Γ;∆b ⊢ Qi :: (bL:Bi
′
L
) (inversion on &R)

Bi
′
L
≤ BiL ⊢ (B′iL, BiL, B̂) dfsync (by inversion on ≤& and E& respectively)

Γ |= Ψ′b,Θr :: (bL:BiL,∆r,∆a) (by Θ3)

Γ;∆a, bL:BiL ⊢ P :: (aL:A
′
L
) (inversion on &L)

Γ |= Ψ′a,Ψ
′
b,Θr :: (aL:AL,∆r) (by Θ3)

Γ |= Θ1,Ψ
′
a,Ψ

′
b,Θr :: (∆) (by Lemma 5)

Γ |= Λ;Θ1,Ψ
′
a,Ψ

′
b,Θr :: (Γ;∆) (by Ω)

The well-formedness conditions are maintained because Ψa and Ψb were replaced by Ψ′a and Ψ′b respec-
tively in Θ.

The proof of D-⊕ is similar to D-&.

Case 3. D-⊗

proc(aL, yL ← recv bL;P ), proc(bL, send bL cL;Q),Ψc → proc(aL, [cL/yL]P ), proc(bL, Q),Ψc
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Then Θ = Θ1,Ψa,Θ2,Ψb,Θ3,Ψc,Θ4.

Γ |= Λ;Θ1,Ψa,Θ2,Ψb,Θ3,Ψc,Θ4 :: (Γ;∆) (assumption)

Γ |= Λ :: (Γ) Γ |= Θ1,Ψa,Θ2,Ψb,Θ3,Ψc,Θ4 :: (∆) (by inversion on Ω)

Γ |= Ψa,Θ2,Ψb,Θ3,Ψc,Θ4 :: (aL:AL,∆r) (by Lemma 4)

Γ |= Ψa,Ψb,Ψc,Θr :: (aL:AL,∆r) (by Lemma 6 and Θr = Θ2,Θ3,Θ4)

Γ |= Ψb,Ψc,Θr :: (bL:C
a
L
⊗ BL,∆a,∆r) Γ;∆a, bL:BL ⊢ yL ← recv bL;P :: (aL:A

′
L
)

aS:Â ∈ Γ ⊢ (A′
L
, AL, Â) dfsync (by inversion on Θ3)

Γ;∆a, bL:BL, cL:C
a
L
⊢ [cL/yL]P :: (aL:A

′
L
) (by inversion on ⊗L and α equivalance)

Γ |= Ψc,Θr :: (cL:CL,∆a,∆b,∆r) Γ;∆b, cL:CL ⊢ send bL cL;Q :: (bL:C
b
L
⊗ B′

L
)

bS:B̂ ∈ Γ ⊢ (Cb
L
⊗ B′

L
, Ca

L
⊗ BL, B̂) dfsync (by inversion on Θ3)

Γ;∆b ⊢ Q :: (bL:B
′
L
) CL ≤ Cb

L
(by inversion on ⊗R)

Cb
L
≤ Ca

L
B′

L
≤ BL ⊢ (B′

L
, BL, B̂) dfsync (by inversion on ≤⊗ and E⊗ respectively)

Γ |= Ψc,Θr :: (cL:C
a
L
,∆a,∆b,∆r) (by Lemma 7 since CL ≤ Cb

L
≤ Ca

L
.)

Γ |= Ψ′b,Ψc,Θr :: (bL:BL, cL:C
a
L
,∆a,∆r) (by Θ3)

Γ |= Ψ′a,Ψ
′
b,Ψc,Θr :: (aL:AL,∆r) (by Θ3)

Γ |= Θ1,Ψ
′
a,Ψ

′
b,Ψc,Θr :: (∆) (by Lemma 5)

Γ |= Λ;Θ1,Ψ
′
a,Ψ

′
b,Ψc,Θr :: (Γ;∆) (by Ω)

The well-formedness conditions are maintained because Ψa and Ψb were replaced by Ψ′a and Ψ′b respec-
tively in Θ.

Case 4. D-⊗2

proc(aL, yL ← recv bL;P ), proc(bL, send bL cS;Q)

→ proc(aL, [dL/yL]P ), proc(bL, Q), connect(dL, cS), unavail(dS) (d fresh)
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Then Θ = Θ1,Ψa,Θ2,Ψb,Θ3.

Γ |= Λ;Θ1,Ψa,Θ2,Ψb,Θ3 :: (Γ;∆) (assumption)

Γ |= Λ :: (Γ) Γ |= Θ1,Ψa,Θ2,Ψb,Θ3 :: (∆) (by inversion on Ω)

Γ |= Ψa,Θ2,Ψb,Θ3 :: (aL:AL,∆r) (by Lemma 4)

Γ |= Ψa,Ψb,Θr :: (aL:AL,∆r) (by Lemma 6 and Θr = Θ2,Θ3)

Γ |= Ψb,Θr :: (bL:C
a
L
⊗BL,∆a,∆r) Γ;∆a, bL:BL ⊢ yL ← recv bL;P :: (aL:A

′
L
)

aS:Â ∈ Γ ⊢ (A′
L
, AL, Â) dfsync (by inversion on Θ3)

Γ;∆a, bL:BL, dL:C
a
L
⊢ [dL/yL]P :: (aL:A

′
L
) (by inversion on ⊗L and α equivalance)

Γ |= Θr :: (∆a,∆b,∆r) Γ;∆b, cL:CL ⊢ send bL cS;Q :: (bL:C
b
L
⊗ B′

L
)

bS:B̂ ∈ Γ ⊢ (Cb
L
⊗B′

L
, Ca

L
⊗ BL, B̂) dfsync (by inversion on Θ3)

Γ;∆b ⊢ Q :: (bL:B
′
L
) Ĉ ≤ Cb

L
(by inversion on ⊗RS)

Γ |= connect(dL, cS),Θr :: (d : Ca
L
,∆a,∆b,∆r)

Γ |= Ψ′b,Ψd,Θr :: (bL:BL, dL:C
a
L
,∆a,∆r) (by Θ3 where Ψd = connect(dL, cS))

Γ |= Ψ′a,Ψ
′
b,Ψd,Θr :: (aL:AL,∆r) (by Θ3)

Γ |= Θ1,Ψ
′
a,Ψ

′
b,Ψd,Θr :: (∆) (by Lemma 5)

Γ′ |= Θ1,Ψ
′
a,Ψ

′
b,Ψd,Θr :: (∆) (by Lemma 8 with Γ′ = Γ, dS:⊥)

Γ′ |= Λ :: (Γ) (by Lemma 8)

Γ′ |= unavail(dS) :: (dS:⊥) (by Λ4)

Γ′ |= Λ, unavail(dS) :: (Γ
′) (by Λ2)

Γ′ |= Λ, unavail(dS); Θ1,Ψ
′
a,Ψ

′
b,Ψd,Θr :: (Γ

′; ∆) (by Ω)

The well-formedness conditions are maintained because Ψa and Ψb were replaced by Ψ′a and Ψ′b re-
spectively in Θ and a Ψd was added in Θ where d is fresh along with a corresponding unavail(dS) in
Λ′ = Λ, unavail(dS).

The proofs of D-⊸ and D-⊸2 are similar to D-⊗ and D-⊗2 respectively.

We will now present some of the harder cases:

Case 5. D-FWDLL
proc(aL, fwd aL bL),Ψb → Ψb (aL := bL, aS := bS)
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Then Θ = Θ1,Ψa,Θ2,Ψb,Θ3 and Λ = unavail(aS), unavail(bS),Λ1 by Lemma 9.

Γ |= Λ;Θ1,Ψa,Θ2,Ψb,Θ3 :: (Γ;∆) (assumption)

Γ |= Λ :: (Γ) Γ |= Θ1,Ψa,Θ2,Ψb,Θ3 :: (∆) (by inversion on Ω)

Γ |= Ψa,Θ2,Ψb,Θ3 :: (aL:AL,∆r) (by Lemma 4)

Γ |= Ψa,Ψb,Θr :: (aL:AL,∆r) (by Lemma 6 and Θr = Θ2,Θ3)

Γ |= Ψb,Θr :: (bL:bL:BL,∆r) Γ; bL:BL ⊢ fwd aL bL :: (aL:A
′
L
) aS:Â ∈ Γ ⊢ (A′

L
, AL, Â) dfsync

(by inversion on Θ3)

BL ≤ A′
L

(by inversion on IDL)

At this point we need to case on the structure of Ψb. In both cases we will show that Γ′ |= Ψ′a,Θr :: (aL:AL,∆r)
for some Γ′ � Γ and Ψ′a being directly defined from Ψb.

Subcase 1. Ψb = connect(bL, cS) for some cS.

Γ |= connect(bL, cS),Θr :: (b : BL,∆r) cS:Ĉ ∈ Γ Ĉ ≤ BL (by inversion on Θ2)

Ĉ ≤ AL (by transitivity of ≤)

Γ |= connect(bL, cS),Θr :: (b : AL,∆r) (by Θ2)

Γ |= connect(aL, cS),Θr :: (a : AL,∆r) (from renaming)

Subcase 2. Ψb = proc(bL, P ) for some process term P .

Γ |= Θr :: (∆b,∆r) Γ;∆b ⊢ P :: (bL:B
′
L
) bS:B̂ ∈ Γ ⊢ (B′

L
, BL, B̂) dfsync (by inversion on Θ3)

B′
L
≤ BL ≤ A′

L
≤ AL

⊢ (B′
L
, AL, B̂) dfsync ⊢ (B′

L
, AL, Â) dfsync (by Lemma 10 and Lemma 11 respectively)

⊢ (B′
L
, AL, B̂ ∧ Â) dfsync (by Lemma 13)

Γ′ |= Θr :: (∆b,∆r) (by Lemma 8 with Γ′ = [aS:B̂ ∧ Â/aS:Â]Γ)

Γ′; ∆b ⊢ P :: (bL:B
′
L
) (by Lemma 3)

Γ′; ∆b ⊢ [aL/bL, aS/bS]P :: (aL:B
′
L
)

(by α equivalence for aL/bL and a combination of α equivalence and Lemma 8 for aS/bS)

Γ′ |= proc(aL, [aL/bL, aS/bS]P ),Θr :: (a : AL,∆r) (by Θ3)

We will now continue assuming Γ′ |= Ψ′a,Θr :: (aL:AL,∆r) with Γ′ � Γ and Ψ′a = [aL/bL, aS/bS]Ψb.
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For the connect case that did not require a smaller Γ, simply set Γ′ = Γ since Γ′ � Γ by reflexivity.

Γ′ |= Θ1,Ψa,Θr :: (∆) (by Lemma 8)

Γ′ |= Θ1,Ψ
′
a,Θr :: (∆) (by Lemma 5)

Γ′ |= Λ :: (Γ) (by Lemma 5)

Γ′ |= unavail(aS) :: (aS:⊥) (by Λ4)

Γ′ |= unavail(bS),Θ1 :: (Γ
′′) (by inversion on Λ2 where Γ′ = Γ′′, aS:⊥)

Γ′ |= Λ :: (Γ′) (by Λ2)

Γ′ |= [aS/bS]Λ :: (Γ′) (by α equivalence)

Γ′ |= [aS/bS]Θ1,Ψ
′
a, [aS/bS]Θr :: (∆) (by α equivalence)

Γ′ |= Λ; [aS/bS, aL/bL]Θ1,Ψ
′
a, [aS/bS]Θr :: (Γ

′; ∆) (by Ω)

Well-formedness is easily maintained because we only removed something from the linear fragment (it
is okay to have dangling unavail terms in the shared fragment).

Case 6. D-↑SL

proc(aL, xL ← acq
S
bS;P ), proc(bS, xL ← accS bS;Q)

→ proc(aL, [bL/xL]P ), proc(bL, [bL/xL]Q), unavail(bS)

Then Λ = Λb,Λ1 and Θ = Θ1,Ψa,Θ2 with Λb = proc(bS, xL ← accS bS;Q).
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We also define Ψ′b = proc(bL, [bL/xL]Q).

Γ |= Λb,Λ1; Θ1,Ψa,Θ2 :: (Γ;∆) (assumption)

Γ |= Λb,Λ1 :: (Γ) Γ |= Θ1,Ψa,Θ2 :: (∆) (by inversion on Ω)

Γ |= Λb :: (bS:↑
S
LBL) Γ |= Λ1 :: (Γ

′) (by inversion on Λ2 with Γ = bS:↑
S
LBL,Γ

′)

⊢ (↑SLB
′
L
, ↑SLBL,⊤) dfsync Γ ⊢ xL ← accS bS;Q :: (bS:↑

S
LB
′
L
) (by inversion on Λ3)

Γ; · ⊢ [bL/xL]Q :: (bL:B
′
L
) (by inversion on ↑SLR and α equivalence)

⊢ (B′
L
, BL, ↑

S
LB
′
L
) dfsync (by inversion on D↑SL)

Γ |= Ψa,Θ2 :: (aL:AL,∆p) (by Lemma 4)

Γ |= Θ2 :: (∆a,∆p) Γ;∆a ⊢ xL ← acq
S
bS :: (aL:A

′
L
)

aS:Â ∈ Γ ⊢ (A′
L
, AL, Â) dfsync (by inversion on Θ3)

Γ;∆a, bL:B
a
L
⊢ [bL/xL]P :: (aL:A

′
L
) ↑SLBL ≤ ↑

S
LB

a
L

(by inversion on ↑SLL and α equivalence)

Γ |= Ψ′b,Θ2 :: (bL:BL,∆a,∆p) (by Λ3)

Γ |= Ψ′b,Θ2 :: (bL:B
a
L
,∆a,∆p) (by Lemma 7)

Γ |= Ψ′a,Ψ
′
b,Θ2 :: (aL:A,∆p) (by Θ3)

Γ |= Θ1,Ψ
′
a,Ψ

′
b,Θ2 :: (∆) (by Lemma 5)

Γ |= unavail(bS) :: (bS:↑
S
LBL) (by Λ4)

Γ |= unavail(bS),Λ1 :: (Γ) (by Λ2)

Γ |= Λ;Θ1,Ψ
′
a,Ψ

′
b,Θ2 :: (Γ;∆) (by Ω)

Well-formedness is maintained because Ψb /∈ Θ and there is a corresponding unavail(bS) to the newly
added Ψ′b.

Case 7. D-↑SL2

proc(aL, xL ← acq
L
bL;P ), connect(bL, cS), proc(cS, xL ← accS cS;Q)

→ proc(aL, [cL/xL]P ), proc(cL, [cL/xL]Q), unavail(cS)

Then Λ = Λc,Λ1 and Θ = Θ1,Ψa,Θ2,Ψb,Θ3 with Λc = proc(cS, xL ← accS cS;Q).
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We also define Ψ′c = proc(cL, [cL/xL]Q).

Γ |= Λc,Λ1; Θ1,Ψa,Θ2,Ψb,Θ3 :: (Γ;∆) (assumption)

Γ |= Λc,Λ1 :: (Γ) Γ |= Θ1,Ψa,Θ2,Ψb,Θ3 :: (∆) (by inversion on Ω)

Γ |= Λc :: (cS:↑
S
LCL) Γ |= Λ1 :: (Γ

′) (by inversion on Λ2 with Γ = cS:↑
S
LCL,Γ

′)

⊢ (↑SLC
′
L
, ↑SLCL,⊤) dfsync Γ ⊢ xL ← accS cS;Q :: (cS:↑

S
LC
′
L
) (by inversion on Λ3)

Γ; · ⊢ [cL/xL]Q :: (cL:C
′
L
) (by inversion on ↑SLR and α equivalence)

⊢ (C ′
L
, CL, ↑

S
LC
′
L
) dfsync (by inversion on D↑SL)

Γ |= Ψa,Θ2,Ψb,Θ3 :: (aL:AL,∆p) (by Lemma 4)

Γ |= Ψa,Ψb,Θr :: (aL:AL,∆p) (by Lemma 6 with Θr = Θ2,Θ3)

Γ |= connect(bL, cS),Θ2 :: (bS:↑
L
LBL,∆a,∆p) Γ;∆a, bS:↑

L
LBL ⊢ xL ← acq

L
bL :: (aL:A

′
L
)

aS:Â ∈ Γ ⊢ (A′
L
, AL, Â) dfsync (by inversion on Θ3)

Γ |= Θr :: (∆a,∆p) ↑
S
LCL ≤ ↑

L
LBL (by inversion on Θ2)

CL ≤ BL ⊢ (C ′
L
, BL, ↑

S
LC
′
L
) dfsync (by inversion on ≤↑S

L
↑L
L
and Lemma 10 respectively)

Γ |= Ψ′c,Θr :: (cL:CL,∆a,∆p) (by Λ3)

Γ;∆a, cL:CL ⊢ [cL/xL]P :: (aL:A
′
L
) (by inversion on ↑SLL and α equivalence)

Γ |= Ψ′a,Ψ
′
c,Θ2 :: (aL:A,∆p) (by Θ3)

Γ |= Θ1,Ψ
′
a,Ψ

′
b,Θ2 :: (∆) (by Lemma 5)

Γ |= unavail(cS) :: (cS:↑
S
LCL) (by Λ4)

Γ |= unavail(cS),Λ1 :: (Γ) (by Λ2)

Γ |= Λ;Θ1,Ψ
′
a,Ψ

′
c,Θ2 :: (Γ;∆) (by Ω)

Well-formedness is maintained because Ψc /∈ Θ and there is a corresponding unavail(cS) to the newly
added Ψ′c.

Other omitted cases follow a similar strategy as presented.

G Progress

Theorem 2. If Γ |= Λ;Θ :: (Γ;∆) then either:

1. Λ→ Λ′ for some Λ′ or

2. Λ poised and one of:
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(a) Λ;Θ→ Λ′; Θ′ for some Λ′ and Θ′ or

(b) Θ poised or

(c) some Ψ ∈ Θ is blocked

Proof.

Γ |= Λ;Θ :: (Γ;∆) (by assumption)

Γ |= Λ :: (Γ) Γ |= Θ :: (∆) (by inversion on Ω)

for some Γ,Λ,Θ, and ∆.

We first show that either Λ → Λ′ for some Λ′ or that Λ is poised by induction on the derivation of
Γ |= Λ :: (Γ).

Case 1.

Γ |= · :: (·)
Λ1

(·) is poised since there is no proc term.

Case 2.
Γ |= Λ1 :: (Γ1) Γ |= Λ2 :: (Γ2)

Γ |= Λ1,Λ2 :: (Γ1,Γ2)
Λ2

Then either Λ1 → Λ′1 or Λ1 is poised by induction hypothesis, and similarly, either Λ2 → Λ′2 or Λ2 is
poised by induction hypothesis. If both Λ1 and Λ2 are poised, then the concatenation Λ1,Λ2 is poised.
Otherwise, we take the concatenation of the components that progresses. In particular, if Λ1 → Λ′1 and
Λ2 is poised, Λ1,Λ2 → Λ′1,Λ2 (and similarly for the other two combinations).

Case 3.
⊢ (A′

S
, AS,⊤) dfsync Γ ⊢ P :: (aS:A

′
S
)

Γ |= proc(aS, P ) :: (aS:AS)
Λ3

We proceed by case analysis on the syntactic form of P inferred from inversion on the appropriate typing
rule on the derivation of Γ ⊢ P :: (aS:A

′
S
).

Subcase 1. P = fwd aS bS. This case requires a global substitution on the top level Λ. Since there is no
ordering constraint on Λ, let Λ = proc(aS, fwd aS bS),Λ1 without loss of generality. Then by D-FWDSS,

Λ→ [aS/bS]Λ1

Subcase 2. P = xS ← XS ← bS;Q, then by D-SPAWNSS,

proc(aS, xS ← XS ← bS;Q)→ proc(aS, [cS/xS]Q), proc(cS, [cS/x
′
S
, bS/y′S]P ) (c fresh)
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Subcase 3. P = aL ← accS aS;Q, then proc(aS, P ) is poised by definition.

Case 4.

Γ |= unavail(aS) :: (aS:Â)
Λ4

unavail(aS) is poised since there is no proc term.

That concludes the first part of the proof. Now to show the second part, we will assume that Λ is
poised and proceed by induction on the derivation of Γ |= Θ :: (∆) to show one of:

(a) Λ;Θ→ Λ′; Θ′ for some Λ′ and Θ′

(b) Θ poised

(c) some Ψ ∈ Θ is strongly blocked

We will showcase the style of the proof along with the interesting cases.

Case 1.

Γ |= · :: (·)
Θ1

(·) is poised since there is no proc term.

Case 2.
bS:B̂ ∈ Γ bS ≤ AL Γ |= Θ1 :: (∆1)

Γ |= connect(aL, bS),Θ1 :: (a : AL,∆1)
Θ2

By the induction hypothesis, Θ1 either steps, is poised, or contains a Ψ that is strongly blocked.

If Θ1 steps, then Λ;Θ1 → Λ′; Θ′1 for some Λ′ and Θ′1. Then Λ; connect(aL, bS),Θ1 → Λ′; connect(aL, bS),Θ
′
1.

If Θ1 is poised, then connect(aL, bS),Θ1 is poised because connect(−L,−S) is not a proc term.

Finally, if there is some Ψ ∈ Θ1 that is strongly blocked, then of course the same Ψ ∈ (connect(aL, bS),Θ1)
is strongly blocked.

Case 3.
cS:Ĉ ∈ Γ ⊢ (C ′

L
, CL, Ĉ) dfsync Γ;∆c ⊢ P :: (cL:C

′
L
) Γ |= Θ1 :: (∆c,∆1)

Γ |= proc(cL, P ),Θ1 :: (c : CL,∆1)
Θ3

By the induction hypothesis, Θ1 either steps, is poised, or contains a Ψ that is strongly blocked. We
first cover two of the cases:

If Θ1 steps, then Λ;Θ1 → Λ′; Θ′1 for some Λ′ and Θ′1. Then Λ; proc(cL, P ),Θ1 → Λ′; proc(cL, P ),Θ′1.
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If there is some Ψ ∈ Θ1 that is strongly blocked, then of course the same Ψ ∈ (proc(cL, P ),Θ1) is
strongly blocked.

For the final case, we will assume that Θ1 is poised and proceed by case analysis on the derivation
of Γ;∆c ⊢ P :: (cL:C

′
L
). Unlike in the first part, we make the step between identifying the appropriate

typing rule and inferring the form of P explicit because some of the cases are more complicated. In the
type judgement, we replace instantiated channel variables in the context such as x by actual channel
names since they must already exist in the configuration.

Subcase 1. The form of P inferred from all linear right rules (1R,⊗R,⊗RS,⊸R,⊕R,&R, ↑LLR, ↓LLR)
directly coincide with the definition of poised. For example, 1R implies that P = close aL, which is
poised, and so on. Since Θ1 is poised, proc(aL, P ),Θ1 is poised.

Subcase 2.
Γ;∆′c, bL:BL, yL:AL ⊢ P :: (cL:C

′
L
)

Γ;∆′c, bL:AL ⊗BL ⊢ yL ← recv bL;P :: (cL:C
′
L
)
⊗L

where ∆c = ∆′c, bL:AL ⊗ BL. Then Θ1 = Θ2, proc(bL,−),Θ3 for some Θ2 and Θ3 (we know bL is not
provided by a connect term since connect terms offer channels of type ↑LLDL). Since proc(bL,−) is poised
and must offer a channel of type AL ⊗BL, it must be of form proc(bL, send bL aL;Q). Thus, by D-⊗,

Λ; proc(cL, yL ← recv bL;P ),Θ2, proc(bL, send bL aL;Q),Θ3 → Λ; proc(cL, [aL/yL]P ),Θ2, proc(bL, Q),Θ3

All the remaining linear left rules except ↑LLL and ↑LLR (1L,⊸L,⊸LS,⊕L,&L) follow a similar pattern.

Subcase 3.
Â ≤ ↑SLAL Γ, aS:Â; ∆, xL:AL ⊢ P :: (cL:C

′
L
)

Γ, aS:Â; ∆c ⊢ xL ← acq
S
aS;P :: (cL:C

′
L
)
↑SLL

Since Λ is poised, either Λ = unavail(aS),Λ1 or Λ = proc(aS, xL ← accS aS;Q),Λ1 for some Λ1. In the
first case, proc(cL, aL ← acq

S
aS;P ) is strongly blocked, so we are done. In the second case, by D-↑SL,

we have

proc(aS, xL ← accS aS;Q),Λ1; proc(cL, aL ← acq
S
aS;P ),Θ1

→ unavail(aS),Λ1; proc(cL, [aL/xL]P ), proc(aL, [aL/xL]Q),Θ1

Subcase 4.
Γ, xS:AS; ∆

′
c ⊢ P :: (cL:C

′
L
)

Γ;∆′c, aL:↓
S
LAS ⊢ xS ← relS aS;P :: (cL:C

′
L
)
↓SLL

where ∆c = ∆′c, aL:↓
S
LAS. Then Θ1 = Θ2, proc(aL,−),Θ3 for some Θ2 and Θ3. Since there is a

proc(aL,−) in the linear configuration, by well-formedness condition, there must be a corresponding
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unavail(aS) ∈ Λ, so Λ = unavail(aS),Λ1. Furthermore, since Θ1 is poised, the proc term must be of form
proc(aL, xS ← detS aS;Q). By D-↓SL, we have

unavail(aS),Λ1; proc(cL, xS ← relS aS;P ),Θ2, proc(aL, xS ← detS aS;Q),Θ3

→ proc(aS, [aS/xS]Q),Λ1; proc(cL, [aL/xL]P ),Θ2,Θ3

Subcase 5.
Γ;∆′c, xL:AL ⊢ P :: (cL:C

′
L
)

Γ;∆′c, aL:↑
L
LAL ⊢ xL ← acq

L
aL;P :: (cL:C

′
L
)
↑LLL

where ∆c = ∆′c, aL:↑
L
LAL. Then Θ1 = Θ2,Ψa,Θ3 where Ψa is either of form connect(aL, bS) for some

bS or proc(aL,−). In the latter case, we appeal to the term being poised and the proof proceeds like
the other left rules. In the former case, there must be a term in Λ that provides bS. Since Λ is poised,
either Λ = unavail(bS),Λ1 or Λ = proc(bS, xL ← accS bS;Q),Λ1. In the former case, we can conclude that
proc(cL,−) is strongly blocked, so we are done. In the latter case, by D-↑SL2, we have

proc(bS, xL ← accS bS;Q),Λ1; proc(cL, xL ← acq
L
aL;P ),Θ2, connect(aL, bS),Θ3

→ unavail(bS),Λ1; proc(cL, [bL/xL]P ), proc(bL, [bL/xL]Q),Θ2,Θ3

Subcase 6.
Γ;∆′c, xL:AL ⊢ P :: (cL:C

′
L
)

Γ;∆′c, aL:↓
L
LAL ⊢ xL ← relL aL;P :: (cL:C

′
L
)
↓LLL

where ∆c = ∆′c, aL:↓
L
LAL. Then Θ1 = Θ2, proc(aL,−),Θ3. Since Θ1 is poised, there are two possible

forms of proc(aL,−). If we have proc(aL, xL ← detL aL;Q), then we appeal to the term being poised
like the other left rules. If we instead have proc(aL, xS ← detS aS;Q), then we first identify that
Λ = unavail(aS),Λ1 for some Λ1 by the well-formedness condition. By D-↓SL2, we have

unavail(aS),Λ1; proc(cL, xL ← relL aL;P ),Θ2, proc(aL, xS ← detS aS;Q),Θ3

→ proc(aS, [aS/xS]Q),Λ1; proc(cL, [bL/xL]P ), connect(bL, aS),Θ2,Θ3 (b fresh)
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